/* * Vulkan Example - Offscreen rendering using a separate framebuffer * * Copyright (C) 2016 by Sascha Willems - www.saschawillems.de * * This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT) */ #include #include #include #include #include #define GLM_FORCE_RADIANS #include #include #include #include "vulkanexamplebase.h" #define VERTEX_BUFFER_BIND_ID 0 #define ENABLE_VALIDATION false // Texture properties #define TEX_DIM 512 #define TEX_FORMAT VK_FORMAT_R8G8B8A8_UNORM #define TEX_FILTER VK_FILTER_LINEAR // Offscreen frame buffer properties #define FB_DIM TEX_DIM #define FB_COLOR_FORMAT VK_FORMAT_R8G8B8A8_UNORM // Vertex layout for this example std::vector vertexLayout = { vkMeshLoader::VERTEX_LAYOUT_POSITION, vkMeshLoader::VERTEX_LAYOUT_UV, vkMeshLoader::VERTEX_LAYOUT_COLOR, vkMeshLoader::VERTEX_LAYOUT_NORMAL }; class VulkanExample : public VulkanExampleBase { public: bool debugDisplay = false; struct { vkTools::VulkanTexture colorMap; } textures; struct { vkMeshLoader::MeshBuffer example; vkMeshLoader::MeshBuffer quad; vkMeshLoader::MeshBuffer plane; } meshes; struct { VkPipelineVertexInputStateCreateInfo inputState; std::vector bindingDescriptions; std::vector attributeDescriptions; } vertices; struct { vkTools::UniformData vsShared; vkTools::UniformData vsMirror; vkTools::UniformData vsOffScreen; vkTools::UniformData vsDebugQuad; } uniformData; struct UBO { glm::mat4 projection; glm::mat4 model; glm::vec4 lightPos = glm::vec4(0.0f, 0.0f, 0.0f, 1.0f); }; struct { UBO vsShared; } ubos; struct { VkPipeline debug; VkPipeline shaded; VkPipeline mirror; } pipelines; struct { VkPipelineLayout quad; VkPipelineLayout offscreen; } pipelineLayouts; struct { VkDescriptorSet offscreen; VkDescriptorSet mirror; VkDescriptorSet model; VkDescriptorSet debugQuad; } descriptorSets; VkDescriptorSetLayout descriptorSetLayout; // Framebuffer for offscreen rendering struct FrameBufferAttachment { VkImage image; VkDeviceMemory mem; VkImageView view; }; struct FrameBuffer { int32_t width, height; VkFramebuffer frameBuffer; FrameBufferAttachment color, depth; // Texture target for framebugger blut vkTools::VulkanTexture textureTarget; } offScreenFrameBuf; VkCommandBuffer offScreenCmdBuffer = VK_NULL_HANDLE; glm::vec3 meshPos = glm::vec3(0.0f, -1.5f, 0.0f); VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION) { zoom = -6.5f; rotation = { -11.25f, 45.0f, 0.0f }; timerSpeed *= 0.25f; title = "Vulkan Example - Offscreen rendering"; } ~VulkanExample() { // Clean up used Vulkan resources // Note : Inherited destructor cleans up resources stored in base class // Textures textureLoader->destroyTexture(offScreenFrameBuf.textureTarget); textureLoader->destroyTexture(textures.colorMap); // Frame buffer // Color attachment vkDestroyImageView(device, offScreenFrameBuf.color.view, nullptr); vkDestroyImage(device, offScreenFrameBuf.color.image, nullptr); vkFreeMemory(device, offScreenFrameBuf.color.mem, nullptr); // Depth attachment vkDestroyImageView(device, offScreenFrameBuf.depth.view, nullptr); vkDestroyImage(device, offScreenFrameBuf.depth.image, nullptr); vkFreeMemory(device, offScreenFrameBuf.depth.mem, nullptr); vkDestroyFramebuffer(device, offScreenFrameBuf.frameBuffer, nullptr); vkDestroyPipeline(device, pipelines.debug, nullptr); vkDestroyPipeline(device, pipelines.shaded, nullptr); vkDestroyPipeline(device, pipelines.mirror, nullptr); vkDestroyPipelineLayout(device, pipelineLayouts.quad, nullptr); vkDestroyPipelineLayout(device, pipelineLayouts.offscreen, nullptr); vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr); // Meshes vkMeshLoader::freeMeshBufferResources(device, &meshes.example); vkMeshLoader::freeMeshBufferResources(device, &meshes.quad); vkMeshLoader::freeMeshBufferResources(device, &meshes.plane); // Uniform buffers vkTools::destroyUniformData(device, &uniformData.vsShared); vkTools::destroyUniformData(device, &uniformData.vsMirror); vkTools::destroyUniformData(device, &uniformData.vsOffScreen); vkTools::destroyUniformData(device, &uniformData.vsDebugQuad); vkFreeCommandBuffers(device, cmdPool, 1, &offScreenCmdBuffer); } // Preapre an empty texture as the blit target from // the offscreen framebuffer void prepareTextureTarget(uint32_t width, uint32_t height, VkFormat format) { createSetupCommandBuffer(); VkFormatProperties formatProperties; VkResult err; // Get device properites for the requested texture format vkGetPhysicalDeviceFormatProperties(physicalDevice, format, &formatProperties); // Check if blit destination is supported for the requested format // Only try for optimal tiling, linear tiling usually won't support blit as destination anyway assert(formatProperties.optimalTilingFeatures & VK_FORMAT_FEATURE_BLIT_DST_BIT); // Prepare blit target texture offScreenFrameBuf.textureTarget.width = width; offScreenFrameBuf.textureTarget.height = height; VkImageCreateInfo imageCreateInfo = vkTools::initializers::imageCreateInfo(); imageCreateInfo.imageType = VK_IMAGE_TYPE_2D; imageCreateInfo.format = format; imageCreateInfo.extent = { width, height, 1 }; imageCreateInfo.mipLevels = 1; imageCreateInfo.arrayLayers = 1; imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT; imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL; // Texture will be sampled in a shader and is also the blit destination imageCreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT; imageCreateInfo.flags = 0; VkMemoryAllocateInfo memAllocInfo = vkTools::initializers::memoryAllocateInfo(); VkMemoryRequirements memReqs; err = vkCreateImage(device, &imageCreateInfo, nullptr, &offScreenFrameBuf.textureTarget.image); assert(!err); vkGetImageMemoryRequirements(device, offScreenFrameBuf.textureTarget.image, &memReqs); memAllocInfo.allocationSize = memReqs.size; getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &memAllocInfo.memoryTypeIndex); err = vkAllocateMemory(device, &memAllocInfo, nullptr, &offScreenFrameBuf.textureTarget.deviceMemory); assert(!err); err = vkBindImageMemory(device, offScreenFrameBuf.textureTarget.image, offScreenFrameBuf.textureTarget.deviceMemory, 0); assert(!err); // Image memory barrier // Set initial layout for the offscreen texture transfer destination // Will be transformed while updating the texture offScreenFrameBuf.textureTarget.imageLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL; vkTools::setImageLayout( setupCmdBuffer, offScreenFrameBuf.textureTarget.image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_UNDEFINED, offScreenFrameBuf.textureTarget.imageLayout); // Create sampler VkSamplerCreateInfo sampler = vkTools::initializers::samplerCreateInfo(); sampler.magFilter = TEX_FILTER; sampler.minFilter = TEX_FILTER; sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR; sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE; sampler.addressModeV = sampler.addressModeU; sampler.addressModeW = sampler.addressModeU; sampler.mipLodBias = 0.0f; sampler.maxAnisotropy = 0; sampler.compareOp = VK_COMPARE_OP_NEVER; sampler.minLod = 0.0f; sampler.maxLod = 0.0f; sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE; err = vkCreateSampler(device, &sampler, nullptr, &offScreenFrameBuf.textureTarget.sampler); assert(!err); // Create image view VkImageViewCreateInfo view = {}; view.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO; view.pNext = NULL; view.image = VK_NULL_HANDLE; view.viewType = VK_IMAGE_VIEW_TYPE_2D; view.format = format; view.components = { VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A }; view.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 }; view.image = offScreenFrameBuf.textureTarget.image; err = vkCreateImageView(device, &view, nullptr, &offScreenFrameBuf.textureTarget.view); assert(!err); flushSetupCommandBuffer(); } // Prepare a new framebuffer for offscreen rendering // The contents of this framebuffer are then // blitted to our render target void prepareOffscreenFramebuffer() { createSetupCommandBuffer(); offScreenFrameBuf.width = FB_DIM; offScreenFrameBuf.height = FB_DIM; VkFormat fbColorFormat = FB_COLOR_FORMAT; // Find a suitable depth format VkFormat fbDepthFormat; VkBool32 validDepthFormat = vkTools::getSupportedDepthFormat(physicalDevice, &fbDepthFormat); assert(validDepthFormat); VkResult err; // Color attachment VkImageCreateInfo image = vkTools::initializers::imageCreateInfo(); image.imageType = VK_IMAGE_TYPE_2D; image.format = fbColorFormat; image.extent.width = offScreenFrameBuf.width; image.extent.height = offScreenFrameBuf.height; image.mipLevels = 1; image.arrayLayers = 1; image.samples = VK_SAMPLE_COUNT_1_BIT; image.tiling = VK_IMAGE_TILING_OPTIMAL; // Image of the framebuffer is blit source image.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT; image.flags = 0; VkMemoryAllocateInfo memAlloc = vkTools::initializers::memoryAllocateInfo(); VkImageViewCreateInfo colorImageView = vkTools::initializers::imageViewCreateInfo(); colorImageView.viewType = VK_IMAGE_VIEW_TYPE_2D; colorImageView.format = fbColorFormat; colorImageView.flags = 0; colorImageView.subresourceRange = {}; colorImageView.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; colorImageView.subresourceRange.baseMipLevel = 0; colorImageView.subresourceRange.levelCount = 1; colorImageView.subresourceRange.baseArrayLayer = 0; colorImageView.subresourceRange.layerCount = 1; VkMemoryRequirements memReqs; err = vkCreateImage(device, &image, nullptr, &offScreenFrameBuf.color.image); assert(!err); vkGetImageMemoryRequirements(device, offScreenFrameBuf.color.image, &memReqs); memAlloc.allocationSize = memReqs.size; getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &memAlloc.memoryTypeIndex); err = vkAllocateMemory(device, &memAlloc, nullptr, &offScreenFrameBuf.color.mem); assert(!err); err = vkBindImageMemory(device, offScreenFrameBuf.color.image, offScreenFrameBuf.color.mem, 0); assert(!err); vkTools::setImageLayout( setupCmdBuffer, offScreenFrameBuf.color.image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL); colorImageView.image = offScreenFrameBuf.color.image; err = vkCreateImageView(device, &colorImageView, nullptr, &offScreenFrameBuf.color.view); assert(!err); // Depth stencil attachment image.format = fbDepthFormat; image.usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT; VkImageViewCreateInfo depthStencilView = vkTools::initializers::imageViewCreateInfo(); depthStencilView.viewType = VK_IMAGE_VIEW_TYPE_2D; depthStencilView.format = fbDepthFormat; depthStencilView.flags = 0; depthStencilView.subresourceRange = {}; depthStencilView.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT; depthStencilView.subresourceRange.baseMipLevel = 0; depthStencilView.subresourceRange.levelCount = 1; depthStencilView.subresourceRange.baseArrayLayer = 0; depthStencilView.subresourceRange.layerCount = 1; err = vkCreateImage(device, &image, nullptr, &offScreenFrameBuf.depth.image); assert(!err); vkGetImageMemoryRequirements(device, offScreenFrameBuf.depth.image, &memReqs); memAlloc.allocationSize = memReqs.size; getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &memAlloc.memoryTypeIndex); err = vkAllocateMemory(device, &memAlloc, nullptr, &offScreenFrameBuf.depth.mem); assert(!err); err = vkBindImageMemory(device, offScreenFrameBuf.depth.image, offScreenFrameBuf.depth.mem, 0); assert(!err); createSetupCommandBuffer(); vkTools::setImageLayout( setupCmdBuffer, offScreenFrameBuf.depth.image, VK_IMAGE_ASPECT_DEPTH_BIT, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL); depthStencilView.image = offScreenFrameBuf.depth.image; err = vkCreateImageView(device, &depthStencilView, nullptr, &offScreenFrameBuf.depth.view); assert(!err); VkImageView attachments[2]; attachments[0] = offScreenFrameBuf.color.view; attachments[1] = offScreenFrameBuf.depth.view; VkFramebufferCreateInfo fbufCreateInfo = {}; fbufCreateInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO; fbufCreateInfo.pNext = NULL; fbufCreateInfo.renderPass = renderPass; fbufCreateInfo.attachmentCount = 2; fbufCreateInfo.pAttachments = attachments; fbufCreateInfo.width = offScreenFrameBuf.width; fbufCreateInfo.height = offScreenFrameBuf.height; fbufCreateInfo.layers = 1; err = vkCreateFramebuffer(device, &fbufCreateInfo, nullptr, &offScreenFrameBuf.frameBuffer); assert(!err); flushSetupCommandBuffer(); } void createOffscreenCommandBuffer() { VkCommandBufferAllocateInfo cmd = vkTools::initializers::commandBufferAllocateInfo( cmdPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY, 1); VkResult vkRes = vkAllocateCommandBuffers(device, &cmd, &offScreenCmdBuffer); assert(!vkRes); } // The command buffer to copy for rendering // the offscreen scene and blitting it into // the texture target is only build once // and gets resubmitted void buildOffscreenCommandBuffer() { VkResult err; VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo(); VkClearValue clearValues[2]; clearValues[0].color = { { 0.0f, 0.0f, 0.0f, 0.0f } }; clearValues[1].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo(); renderPassBeginInfo.renderPass = renderPass; renderPassBeginInfo.framebuffer = offScreenFrameBuf.frameBuffer; renderPassBeginInfo.renderArea.extent.width = offScreenFrameBuf.width; renderPassBeginInfo.renderArea.extent.height = offScreenFrameBuf.height; renderPassBeginInfo.clearValueCount = 2; renderPassBeginInfo.pClearValues = clearValues; err = vkBeginCommandBuffer(offScreenCmdBuffer, &cmdBufInfo); assert(!err); vkCmdBeginRenderPass(offScreenCmdBuffer, &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); VkViewport viewport = vkTools::initializers::viewport( (float)offScreenFrameBuf.width, (float)offScreenFrameBuf.height, 0.0f, 1.0f); vkCmdSetViewport(offScreenCmdBuffer, 0, 1, &viewport); VkRect2D scissor = vkTools::initializers::rect2D( offScreenFrameBuf.width, offScreenFrameBuf.height, 0, 0); vkCmdSetScissor(offScreenCmdBuffer, 0, 1, &scissor); VkDeviceSize offsets[1] = { 0 }; // Model vkCmdBindDescriptorSets(offScreenCmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.offscreen, 0, 1, &descriptorSets.offscreen, 0, NULL); vkCmdBindPipeline(offScreenCmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.shaded); vkCmdBindVertexBuffers(offScreenCmdBuffer, VERTEX_BUFFER_BIND_ID, 1, &meshes.example.vertices.buf, offsets); vkCmdBindIndexBuffer(offScreenCmdBuffer, meshes.example.indices.buf, 0, VK_INDEX_TYPE_UINT32); vkCmdDrawIndexed(offScreenCmdBuffer, meshes.example.indexCount, 1, 0, 0, 0); vkCmdEndRenderPass(offScreenCmdBuffer); // Make sure color writes to the framebuffer are finished before using it as transfer source vkTools::setImageLayout( offScreenCmdBuffer, offScreenFrameBuf.color.image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL); // Transform texture target to transfer source vkTools::setImageLayout( offScreenCmdBuffer, offScreenFrameBuf.textureTarget.image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL); // Blit offscreen color buffer to our texture target VkImageBlit imgBlit; imgBlit.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; imgBlit.srcSubresource.mipLevel = 0; imgBlit.srcSubresource.baseArrayLayer = 0; imgBlit.srcSubresource.layerCount = 1; imgBlit.srcOffsets[0] = { 0, 0, 0 }; imgBlit.srcOffsets[1].x = offScreenFrameBuf.width; imgBlit.srcOffsets[1].y = offScreenFrameBuf.height; imgBlit.srcOffsets[1].z = 1; imgBlit.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; imgBlit.dstSubresource.mipLevel = 0; imgBlit.dstSubresource.baseArrayLayer = 0; imgBlit.dstSubresource.layerCount = 1; imgBlit.dstOffsets[0] = { 0, 0, 0 }; imgBlit.dstOffsets[1].x = offScreenFrameBuf.textureTarget.width; imgBlit.dstOffsets[1].y = offScreenFrameBuf.textureTarget.height; imgBlit.dstOffsets[1].z = 1; // Blit from framebuffer image to texture image // vkCmdBlitImage does scaling and (if necessary and possible) also does format conversions vkCmdBlitImage( offScreenCmdBuffer, offScreenFrameBuf.color.image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, offScreenFrameBuf.textureTarget.image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &imgBlit, VK_FILTER_LINEAR ); // Transform framebuffer color attachment back vkTools::setImageLayout( offScreenCmdBuffer, offScreenFrameBuf.color.image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL); // Transform texture target back to shader read // Makes sure that writes to the textuer are finished before // it's accessed in the shader vkTools::setImageLayout( offScreenCmdBuffer, offScreenFrameBuf.textureTarget.image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL); err = vkEndCommandBuffer(offScreenCmdBuffer); assert(!err); } void buildCommandBuffers() { VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo(); VkClearValue clearValues[2]; clearValues[0].color = defaultClearColor; clearValues[1].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo(); renderPassBeginInfo.renderPass = renderPass; renderPassBeginInfo.renderArea.offset.x = 0; renderPassBeginInfo.renderArea.offset.y = 0; renderPassBeginInfo.renderArea.extent.width = width; renderPassBeginInfo.renderArea.extent.height = height; renderPassBeginInfo.clearValueCount = 2; renderPassBeginInfo.pClearValues = clearValues; VkResult err; for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) { // Set target frame buffer renderPassBeginInfo.framebuffer = frameBuffers[i]; err = vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo); assert(!err); vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); VkViewport viewport = vkTools::initializers::viewport( (float)width, (float)height, 0.0f, 1.0f); vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); VkRect2D scissor = vkTools::initializers::rect2D( width, height, 0, 0); vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor); VkDeviceSize offsets[1] = { 0 }; if (debugDisplay) { vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.quad, 0, 1, &descriptorSets.debugQuad, 0, NULL); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.debug); vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &meshes.quad.vertices.buf, offsets); vkCmdBindIndexBuffer(drawCmdBuffers[i], meshes.quad.indices.buf, 0, VK_INDEX_TYPE_UINT32); vkCmdDrawIndexed(drawCmdBuffers[i], meshes.quad.indexCount, 1, 0, 0, 0); } // Scene vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.debug); // Reflection plane vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.quad, 0, 1, &descriptorSets.mirror, 0, NULL); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.mirror); vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &meshes.plane.vertices.buf, offsets); vkCmdBindIndexBuffer(drawCmdBuffers[i], meshes.plane.indices.buf, 0, VK_INDEX_TYPE_UINT32); vkCmdDrawIndexed(drawCmdBuffers[i], meshes.plane.indexCount, 1, 0, 0, 0); // Model vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.quad, 0, 1, &descriptorSets.model, 0, NULL); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.shaded); vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &meshes.example.vertices.buf, offsets); vkCmdBindIndexBuffer(drawCmdBuffers[i], meshes.example.indices.buf, 0, VK_INDEX_TYPE_UINT32); vkCmdDrawIndexed(drawCmdBuffers[i], meshes.example.indexCount, 1, 0, 0, 0); vkCmdEndRenderPass(drawCmdBuffers[i]); err = vkEndCommandBuffer(drawCmdBuffers[i]); assert(!err); } } void draw() { VkResult err; // Get next image in the swap chain (back/front buffer) err = swapChain.acquireNextImage(semaphores.presentComplete, ¤tBuffer); assert(!err); submitPostPresentBarrier(swapChain.buffers[currentBuffer].image); // Gather command buffers to be sumitted to the queue std::vector submitCmdBuffers = { offScreenCmdBuffer, drawCmdBuffers[currentBuffer], }; submitInfo.commandBufferCount = submitCmdBuffers.size(); submitInfo.pCommandBuffers = submitCmdBuffers.data(); // Submit to queue err = vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE); assert(!err); submitPrePresentBarrier(swapChain.buffers[currentBuffer].image); err = swapChain.queuePresent(queue, currentBuffer, semaphores.renderComplete); assert(!err); err = vkQueueWaitIdle(queue); assert(!err); } void loadMeshes() { loadMesh("./../data/models/plane.obj", &meshes.plane, vertexLayout, 0.4f); loadMesh("./../data/models/chinesedragon.X", &meshes.example, vertexLayout, 0.3f); } void loadTextures() { textureLoader->loadTexture( "./../data/textures/darkmetal_bc3.ktx", VK_FORMAT_BC3_UNORM_BLOCK, &textures.colorMap); } void generateQuad() { // Setup vertices for a single uv-mapped quad struct Vertex { float pos[3]; float uv[2]; float col[3]; float normal[3]; }; #define QUAD_COLOR_NORMAL { 1.0f, 1.0f, 1.0f }, { 0.0f, 0.0f, 1.0f } std::vector vertexBuffer = { { { 1.0f, 1.0f, 0.0f },{ 1.0f, 1.0f }, QUAD_COLOR_NORMAL }, { { 0.0f, 1.0f, 0.0f },{ 0.0f, 1.0f }, QUAD_COLOR_NORMAL }, { { 0.0f, 0.0f, 0.0f },{ 0.0f, 0.0f }, QUAD_COLOR_NORMAL }, { { 1.0f, 0.0f, 0.0f },{ 1.0f, 0.0f }, QUAD_COLOR_NORMAL } }; #undef QUAD_COLOR_NORMAL createBuffer( VK_BUFFER_USAGE_VERTEX_BUFFER_BIT, vertexBuffer.size() * sizeof(Vertex), vertexBuffer.data(), &meshes.quad.vertices.buf, &meshes.quad.vertices.mem); // Setup indices std::vector indexBuffer = { 0,1,2, 2,3,0 }; meshes.quad.indexCount = indexBuffer.size(); createBuffer( VK_BUFFER_USAGE_INDEX_BUFFER_BIT, indexBuffer.size() * sizeof(uint32_t), indexBuffer.data(), &meshes.quad.indices.buf, &meshes.quad.indices.mem); } void setupVertexDescriptions() { // Binding description vertices.bindingDescriptions.resize(1); vertices.bindingDescriptions[0] = vkTools::initializers::vertexInputBindingDescription( VERTEX_BUFFER_BIND_ID, vkMeshLoader::vertexSize(vertexLayout), VK_VERTEX_INPUT_RATE_VERTEX); // Attribute descriptions vertices.attributeDescriptions.resize(4); // Location 0 : Position vertices.attributeDescriptions[0] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 0, VK_FORMAT_R32G32B32_SFLOAT, 0); // Location 1 : Texture coordinates vertices.attributeDescriptions[1] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 1, VK_FORMAT_R32G32_SFLOAT, sizeof(float) * 3); // Location 2 : Color vertices.attributeDescriptions[2] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 2, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 5); // Location 3 : Normal vertices.attributeDescriptions[3] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 3, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 8); vertices.inputState = vkTools::initializers::pipelineVertexInputStateCreateInfo(); vertices.inputState.vertexBindingDescriptionCount = vertices.bindingDescriptions.size(); vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data(); vertices.inputState.vertexAttributeDescriptionCount = vertices.attributeDescriptions.size(); vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data(); } void setupDescriptorPool() { std::vector poolSizes = { vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 6), vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 8) }; VkDescriptorPoolCreateInfo descriptorPoolInfo = vkTools::initializers::descriptorPoolCreateInfo( poolSizes.size(), poolSizes.data(), 5); VkResult vkRes = vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool); assert(!vkRes); } void setupDescriptorSetLayout() { // Textured quad pipeline layout std::vector setLayoutBindings = { // Binding 0 : Vertex shader uniform buffer vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0), // Binding 1 : Fragment shader image sampler vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1), // Binding 2 : Fragment shader image sampler vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 2) }; VkDescriptorSetLayoutCreateInfo descriptorLayout = vkTools::initializers::descriptorSetLayoutCreateInfo( setLayoutBindings.data(), setLayoutBindings.size()); VkResult err = vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout); assert(!err); VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = vkTools::initializers::pipelineLayoutCreateInfo( &descriptorSetLayout, 1); err = vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayouts.quad); assert(!err); // Offscreen pipeline layout err = vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayouts.offscreen); assert(!err); } void setupDescriptorSet() { // Mirror plane descriptor set VkDescriptorSetAllocateInfo allocInfo = vkTools::initializers::descriptorSetAllocateInfo( descriptorPool, &descriptorSetLayout, 1); VkResult vkRes = vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.mirror); assert(!vkRes); // Image descriptor for the offscreen mirror texture VkDescriptorImageInfo texDescriptorMirror = vkTools::initializers::descriptorImageInfo( offScreenFrameBuf.textureTarget.sampler, offScreenFrameBuf.textureTarget.view, VK_IMAGE_LAYOUT_GENERAL); // Image descriptor for the color map VkDescriptorImageInfo texDescriptorColorMap = vkTools::initializers::descriptorImageInfo( textures.colorMap.sampler, textures.colorMap.view, VK_IMAGE_LAYOUT_GENERAL); std::vector writeDescriptorSets = { // Binding 0 : Vertex shader uniform buffer vkTools::initializers::writeDescriptorSet( descriptorSets.mirror, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformData.vsMirror.descriptor), // Binding 1 : Fragment shader texture sampler vkTools::initializers::writeDescriptorSet( descriptorSets.mirror, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &texDescriptorMirror), // Binding 2 : Fragment shader texture sampler vkTools::initializers::writeDescriptorSet( descriptorSets.mirror, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2, &texDescriptorColorMap) }; vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL); // Model // No texture vkRes = vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.model); assert(!vkRes); std::vector modelWriteDescriptorSets = { // Binding 0 : Vertex shader uniform buffer vkTools::initializers::writeDescriptorSet( descriptorSets.model, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformData.vsShared.descriptor) }; vkUpdateDescriptorSets(device, modelWriteDescriptorSets.size(), modelWriteDescriptorSets.data(), 0, NULL); // Offscreen vkRes = vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.offscreen); assert(!vkRes); std::vector offScreenWriteDescriptorSets = { // Binding 0 : Vertex shader uniform buffer vkTools::initializers::writeDescriptorSet( descriptorSets.offscreen, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformData.vsOffScreen.descriptor) }; vkUpdateDescriptorSets(device, offScreenWriteDescriptorSets.size(), offScreenWriteDescriptorSets.data(), 0, NULL); // Debug quad vkRes = vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.debugQuad); assert(!vkRes); std::vector debugQuadWriteDescriptorSets = { // Binding 0 : Vertex shader uniform buffer vkTools::initializers::writeDescriptorSet( descriptorSets.debugQuad, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformData.vsDebugQuad.descriptor), // Binding 1 : Fragment shader texture sampler vkTools::initializers::writeDescriptorSet( descriptorSets.debugQuad, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &texDescriptorMirror) }; vkUpdateDescriptorSets(device, debugQuadWriteDescriptorSets.size(), debugQuadWriteDescriptorSets.data(), 0, NULL); } void preparePipelines() { VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vkTools::initializers::pipelineInputAssemblyStateCreateInfo( VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE); VkPipelineRasterizationStateCreateInfo rasterizationState = vkTools::initializers::pipelineRasterizationStateCreateInfo( VK_POLYGON_MODE_FILL, VK_CULL_MODE_NONE, VK_FRONT_FACE_CLOCKWISE, 0); VkPipelineColorBlendAttachmentState blendAttachmentState = vkTools::initializers::pipelineColorBlendAttachmentState( 0xf, VK_FALSE); VkPipelineColorBlendStateCreateInfo colorBlendState = vkTools::initializers::pipelineColorBlendStateCreateInfo( 1, &blendAttachmentState); VkPipelineDepthStencilStateCreateInfo depthStencilState = vkTools::initializers::pipelineDepthStencilStateCreateInfo( VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL); VkPipelineViewportStateCreateInfo viewportState = vkTools::initializers::pipelineViewportStateCreateInfo(1, 1, 0); VkPipelineMultisampleStateCreateInfo multisampleState = vkTools::initializers::pipelineMultisampleStateCreateInfo( VK_SAMPLE_COUNT_1_BIT, 0); std::vector dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR }; VkPipelineDynamicStateCreateInfo dynamicState = vkTools::initializers::pipelineDynamicStateCreateInfo( dynamicStateEnables.data(), dynamicStateEnables.size(), 0); // Solid rendering pipeline // Load shaders std::array shaderStages; shaderStages[0] = loadShader("./../data/shaders/offscreen/quad.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader("./../data/shaders/offscreen/quad.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); VkGraphicsPipelineCreateInfo pipelineCreateInfo = vkTools::initializers::pipelineCreateInfo( pipelineLayouts.quad, renderPass, 0); pipelineCreateInfo.pVertexInputState = &vertices.inputState; pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState; pipelineCreateInfo.pRasterizationState = &rasterizationState; pipelineCreateInfo.pColorBlendState = &colorBlendState; pipelineCreateInfo.pMultisampleState = &multisampleState; pipelineCreateInfo.pViewportState = &viewportState; pipelineCreateInfo.pDepthStencilState = &depthStencilState; pipelineCreateInfo.pDynamicState = &dynamicState; pipelineCreateInfo.stageCount = shaderStages.size(); pipelineCreateInfo.pStages = shaderStages.data(); VkResult err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.debug); assert(!err); // Mirror shaderStages[0] = loadShader("./../data/shaders/offscreen/mirror.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader("./../data/shaders/offscreen/mirror.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.mirror); assert(!err); // Solid shading pipeline shaderStages[0] = loadShader("./../data/shaders/offscreen/offscreen.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader("./../data/shaders/offscreen/offscreen.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); pipelineCreateInfo.layout = pipelineLayouts.offscreen; err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.shaded); assert(!err); } // Prepare and initialize uniform buffer containing shader uniforms void prepareUniformBuffers() { // Mesh vertex shader uniform buffer block createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, sizeof(ubos.vsShared), nullptr, &uniformData.vsShared.buffer, &uniformData.vsShared.memory, &uniformData.vsShared.descriptor); // Mirror plane vertex shader uniform buffer block createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, sizeof(ubos.vsShared), nullptr, &uniformData.vsMirror.buffer, &uniformData.vsMirror.memory, &uniformData.vsMirror.descriptor); // Offscreen vertex shader uniform buffer block createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, sizeof(ubos.vsShared), nullptr, &uniformData.vsOffScreen.buffer, &uniformData.vsOffScreen.memory, &uniformData.vsOffScreen.descriptor); // Debug quad vertex shader uniform buffer block createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, sizeof(ubos.vsShared), nullptr, &uniformData.vsDebugQuad.buffer, &uniformData.vsDebugQuad.memory, &uniformData.vsDebugQuad.descriptor); updateUniformBuffers(); updateUniformBufferOffscreen(); } void updateUniformBuffers() { // Mesh ubos.vsShared.projection = glm::perspective(deg_to_rad(60.0f), (float)width / (float)height, 0.1f, 256.0f); glm::mat4 viewMatrix = glm::translate(glm::mat4(), glm::vec3(0.0f, 0.0f, zoom)); ubos.vsShared.model = viewMatrix * glm::translate(glm::mat4(), glm::vec3(0, 0, 0)); ubos.vsShared.model = glm::rotate(ubos.vsShared.model, deg_to_rad(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f)); ubos.vsShared.model = glm::rotate(ubos.vsShared.model, deg_to_rad(rotation.y), glm::vec3(0.0f, 1.0f, 0.0f)); ubos.vsShared.model = glm::rotate(ubos.vsShared.model, deg_to_rad(rotation.z), glm::vec3(0.0f, 0.0f, 1.0f)); ubos.vsShared.model = glm::translate(ubos.vsShared.model, meshPos); uint8_t *pData; VkResult err = vkMapMemory(device, uniformData.vsShared.memory, 0, sizeof(ubos.vsShared), 0, (void **)&pData); assert(!err); memcpy(pData, &ubos.vsShared, sizeof(ubos.vsShared)); vkUnmapMemory(device, uniformData.vsShared.memory); // Mirror ubos.vsShared.model = viewMatrix * glm::translate(glm::mat4(), glm::vec3(0, 0, 0)); ubos.vsShared.model = glm::rotate(ubos.vsShared.model, deg_to_rad(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f)); ubos.vsShared.model = glm::rotate(ubos.vsShared.model, deg_to_rad(rotation.y), glm::vec3(0.0f, 1.0f, 0.0f)); ubos.vsShared.model = glm::rotate(ubos.vsShared.model, deg_to_rad(rotation.z), glm::vec3(0.0f, 0.0f, 1.0f)); err = vkMapMemory(device, uniformData.vsMirror.memory, 0, sizeof(ubos.vsShared), 0, (void **)&pData); assert(!err); memcpy(pData, &ubos.vsShared, sizeof(ubos.vsShared)); vkUnmapMemory(device, uniformData.vsMirror.memory); // Debug quad ubos.vsShared.projection = glm::ortho(0.0f, 4.0f, 0.0f, 4.0f*(float)height / (float)width, -1.0f, 1.0f); ubos.vsShared.model = glm::translate(glm::mat4(), glm::vec3(0.0f, 0.0f, 0.0f)); err = vkMapMemory(device, uniformData.vsDebugQuad.memory, 0, sizeof(ubos.vsShared), 0, (void **)&pData); assert(!err); memcpy(pData, &ubos.vsShared, sizeof(ubos.vsShared)); vkUnmapMemory(device, uniformData.vsDebugQuad.memory); } void updateUniformBufferOffscreen() { ubos.vsShared.projection = glm::perspective(deg_to_rad(60.0f), (float)width / (float)height, 0.1f, 256.0f); glm::mat4 viewMatrix = glm::translate(glm::mat4(), glm::vec3(0.0f, 0.0f, zoom)); ubos.vsShared.model = viewMatrix * glm::translate(glm::mat4(), glm::vec3(0, 0, 0)); ubos.vsShared.model = glm::rotate(ubos.vsShared.model, deg_to_rad(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f)); ubos.vsShared.model = glm::rotate(ubos.vsShared.model, deg_to_rad(rotation.y), glm::vec3(0.0f, 1.0f, 0.0f)); ubos.vsShared.model = glm::rotate(ubos.vsShared.model, deg_to_rad(rotation.z), glm::vec3(0.0f, 0.0f, 1.0f)); ubos.vsShared.model = glm::scale(ubos.vsShared.model, glm::vec3(1.0f, -1.0f, 1.0f)); ubos.vsShared.model = glm::translate(ubos.vsShared.model, meshPos); uint8_t *pData; VkResult err = vkMapMemory(device, uniformData.vsOffScreen.memory, 0, sizeof(ubos.vsShared), 0, (void **)&pData); assert(!err); memcpy(pData, &ubos.vsShared, sizeof(ubos.vsShared)); vkUnmapMemory(device, uniformData.vsOffScreen.memory); } void prepare() { VulkanExampleBase::prepare(); loadTextures(); generateQuad(); loadMeshes(); setupVertexDescriptions(); prepareUniformBuffers(); prepareTextureTarget(TEX_DIM, TEX_DIM, TEX_FORMAT); setupDescriptorSetLayout(); preparePipelines(); setupDescriptorPool(); setupDescriptorSet(); createOffscreenCommandBuffer(); prepareOffscreenFramebuffer(); buildCommandBuffers(); buildOffscreenCommandBuffer(); prepared = true; } virtual void render() { if (!prepared) return; vkDeviceWaitIdle(device); draw(); vkDeviceWaitIdle(device); if (!paused) { updateUniformBuffers(); updateUniformBufferOffscreen(); } } virtual void viewChanged() { updateUniformBuffers(); updateUniformBufferOffscreen(); } }; VulkanExample *vulkanExample; #ifdef _WIN32 LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam) { if (vulkanExample != NULL) { vulkanExample->handleMessages(hWnd, uMsg, wParam, lParam); } return (DefWindowProc(hWnd, uMsg, wParam, lParam)); } #else static void handleEvent(const xcb_generic_event_t *event) { if (vulkanExample != NULL) { vulkanExample->handleEvent(event); } } #endif #ifdef _WIN32 int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR pCmdLine, int nCmdShow) #else int main(const int argc, const char *argv[]) #endif { vulkanExample = new VulkanExample(); #ifdef _WIN32 vulkanExample->setupWindow(hInstance, WndProc); #else vulkanExample->setupWindow(); #endif vulkanExample->initSwapchain(); vulkanExample->prepare(); vulkanExample->renderLoop(); delete(vulkanExample); return 0; }