/* * Vulkan Example - Skeletal animation * * Copyright (C) 2016 by Sascha Willems - www.saschawillems.de * * This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT) */ #include #include #include #include #include #define GLM_FORCE_RADIANS #include #include #include #include #include "vulkanexamplebase.h" #define VERTEX_BUFFER_BIND_ID 0 #define ENABLE_VALIDATION false // Vertex layout used in this example struct Vertex { glm::vec3 pos; glm::vec3 normal; glm::vec2 uv; glm::vec3 color; // Max. four bones per vertex float boneWeights[4]; uint32_t boneIDs[4]; }; class VulkanExample : public VulkanExampleBase { public: struct { vkTools::VulkanTexture colorMap; } textures; struct { VkPipelineVertexInputStateCreateInfo inputState; std::vector bindingDescriptions; std::vector attributeDescriptions; } vertices; // Mesh related stuff // Maximum number of bones per vertex #define MAX_BONES_PER_VERTEX 4 // Per-vertex bone IDs and weights struct VertexBoneData { std::array IDs; std::array weights; // Ad bone weighting to vertex info void add(uint32_t boneID, float weight) { for (uint32_t i = 0; i < MAX_BONES_PER_VERTEX; i++) { if (weights[i] == 0.0f) { IDs[i] = boneID; weights[i] = weight; return; } } } }; // Stores information on a single bone struct BoneInfo { aiMatrix4x4 offset; aiMatrix4x4 finalTransformation; BoneInfo() { offset = aiMatrix4x4(); finalTransformation = aiMatrix4x4(); }; }; struct Mesh { // Bone related stuff // Maps bone name with index std::map boneMapping; // Bone details std::vector boneInfo; // Number of bones present uint32_t numBones = 0; // Root inverese transform matrix aiMatrix4x4 globalInverseTransform; // Per-vertex bone info std::vector bones; // Vulkan buffers vkMeshLoader::MeshBuffer meshBuffer; // Reference to assimp mesh // Required for animation VulkanMeshLoader *meshLoader; } mesh; struct { vkTools::UniformData vsScene; } uniformData; // Must not be higher than same const in skinning shader #define MAX_BONES 128 struct { glm::mat4 projection; glm::mat4 model; glm::mat4 bones[MAX_BONES]; glm::vec4 lightPos = glm::vec4(0.0, -5.0, 25.0, 1.0); } uboVS; struct { VkPipeline solid; } pipelines; VkPipelineLayout pipelineLayout; VkDescriptorSet descriptorSet; VkDescriptorSetLayout descriptorSetLayout; float runningTime = 0.0f; VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION) { width = 1280; height = 720; zoom = -8.0f; zoomSpeed = 2.5f; rotationSpeed = 0.5f; rotation = { -180.0f, -50.0f, 180.0f }; title = "Vulkan Example - Skeletal animation"; } ~VulkanExample() { // Clean up used Vulkan resources // Note : Inherited destructor cleans up resources stored in base class vkDestroyPipeline(device, pipelines.solid, nullptr); vkDestroyPipelineLayout(device, pipelineLayout, nullptr); vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr); // Destroy and free mesh resources vkMeshLoader::freeMeshBufferResources(device, &mesh.meshBuffer); textureLoader->destroyTexture(textures.colorMap); vkTools::destroyUniformData(device, &uniformData.vsScene); delete(mesh.meshLoader); } void buildCommandBuffers() { VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo(); VkClearValue clearValues[2]; clearValues[0].color = defaultClearColor; clearValues[1].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo(); renderPassBeginInfo.renderPass = renderPass; renderPassBeginInfo.renderArea.offset.x = 0; renderPassBeginInfo.renderArea.offset.y = 0; renderPassBeginInfo.renderArea.extent.width = width; renderPassBeginInfo.renderArea.extent.height = height; renderPassBeginInfo.clearValueCount = 2; renderPassBeginInfo.pClearValues = clearValues; VkResult err; for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) { // Set target frame buffer renderPassBeginInfo.framebuffer = frameBuffers[i]; err = vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo); assert(!err); vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); VkViewport viewport = vkTools::initializers::viewport( (float)width, (float)height, 0.0f, 1.0f); vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); VkRect2D scissor = vkTools::initializers::rect2D( width, height, 0, 0); vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor); vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.solid); VkDeviceSize offsets[1] = { 0 }; // Bind mesh vertex buffer vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &mesh.meshBuffer.vertices.buf, offsets); // Bind mesh index buffer vkCmdBindIndexBuffer(drawCmdBuffers[i], mesh.meshBuffer.indices.buf, 0, VK_INDEX_TYPE_UINT32); // Render mesh vertex buffer using it's indices vkCmdDrawIndexed(drawCmdBuffers[i], mesh.meshBuffer.indexCount, 1, 0, 0, 0); vkCmdEndRenderPass(drawCmdBuffers[i]); err = vkEndCommandBuffer(drawCmdBuffers[i]); assert(!err); } } void draw() { VkResult err; // Get next image in the swap chain (back/front buffer) err = swapChain.acquireNextImage(semaphores.presentComplete, ¤tBuffer); assert(!err); submitPostPresentBarrier(swapChain.buffers[currentBuffer].image); // Command buffer to be sumitted to the queue submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer]; // Submit to queue err = vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE); assert(!err); submitPrePresentBarrier(swapChain.buffers[currentBuffer].image); err = swapChain.queuePresent(queue, currentBuffer, semaphores.renderComplete); assert(!err); err = vkQueueWaitIdle(queue); assert(!err); } // Load bone information from ASSIMP mesh void loadBones(uint32_t meshIndex, const aiMesh* pMesh, std::vector& Bones) { for (uint32_t i = 0; i < pMesh->mNumBones; i++) { uint32_t index = 0; std::string name(pMesh->mBones[i]->mName.data); if (mesh.boneMapping.find(name) == mesh.boneMapping.end()) { // Bone not present, add new one index = mesh.numBones; mesh.numBones++; BoneInfo bone; mesh.boneInfo.push_back(bone); mesh.boneInfo[index].offset = pMesh->mBones[i]->mOffsetMatrix; mesh.boneMapping[name] = index; } else { index = mesh.boneMapping[name]; } for (uint32_t j = 0; j < pMesh->mBones[i]->mNumWeights; j++) { uint32_t vertexID = mesh.meshLoader->m_Entries[meshIndex].vertexBase + pMesh->mBones[i]->mWeights[j].mVertexId; Bones[vertexID].add(index, pMesh->mBones[i]->mWeights[j].mWeight); } } } // Find animation for a given node const aiNodeAnim* findNodeAnim(const aiAnimation* animation, const std::string nodeName) { for (uint32_t i = 0; i < animation->mNumChannels; i++) { const aiNodeAnim* nodeAnim = animation->mChannels[i]; if (std::string(nodeAnim->mNodeName.data) == nodeName) { return nodeAnim; } } return nullptr; } // Returns a 4x4 matrix with interpolated translation between current and next frame aiMatrix4x4 interpolateTranslation(float time, const aiNodeAnim* pNodeAnim) { aiVector3D translation; if (pNodeAnim->mNumPositionKeys == 1) { translation = pNodeAnim->mPositionKeys[0].mValue; } else { uint32_t frameIndex = 0; for (uint32_t i = 0; i < pNodeAnim->mNumPositionKeys - 1; i++) { if (time < (float)pNodeAnim->mPositionKeys[i + 1].mTime) { frameIndex = i; break; } } aiVectorKey currentFrame = pNodeAnim->mPositionKeys[frameIndex]; aiVectorKey nextFrame = pNodeAnim->mPositionKeys[(frameIndex + 1) % pNodeAnim->mNumPositionKeys]; float delta = (time - (float)currentFrame.mTime) / (float)(nextFrame.mTime - currentFrame.mTime); const aiVector3D& start = currentFrame.mValue; const aiVector3D& end = nextFrame.mValue; translation = (start + delta * (end - start)); } aiMatrix4x4 mat; aiMatrix4x4::Translation(translation, mat); return mat; } // Returns a 4x4 matrix with interpolated rotation between current and next frame aiMatrix4x4 interpolateRotation(float time, const aiNodeAnim* pNodeAnim) { aiQuaternion rotation; if (pNodeAnim->mNumRotationKeys == 1) { rotation = pNodeAnim->mRotationKeys[0].mValue; } else { uint32_t frameIndex = 0; for (uint32_t i = 0; i < pNodeAnim->mNumRotationKeys - 1; i++) { if (time < (float)pNodeAnim->mRotationKeys[i + 1].mTime) { frameIndex = i; break; } } aiQuatKey currentFrame = pNodeAnim->mRotationKeys[frameIndex]; aiQuatKey nextFrame = pNodeAnim->mRotationKeys[(frameIndex + 1) % pNodeAnim->mNumRotationKeys]; float delta = (time - (float)currentFrame.mTime) / (float)(nextFrame.mTime - currentFrame.mTime); const aiQuaternion& start = currentFrame.mValue; const aiQuaternion& end = nextFrame.mValue; aiQuaternion::Interpolate(rotation, start, end, delta); rotation.Normalize(); } aiMatrix4x4 mat(rotation.GetMatrix()); return mat; } // Returns a 4x4 matrix with interpolated scaling between current and next frame aiMatrix4x4 interpolateScale(float time, const aiNodeAnim* pNodeAnim) { aiVector3D scale; if (pNodeAnim->mNumScalingKeys == 1) { scale = pNodeAnim->mScalingKeys[0].mValue; } else { uint32_t frameIndex = 0; for (uint32_t i = 0; i < pNodeAnim->mNumScalingKeys - 1; i++) { if (time < (float)pNodeAnim->mScalingKeys[i + 1].mTime) { frameIndex = i; break; } } aiVectorKey currentFrame = pNodeAnim->mScalingKeys[frameIndex]; aiVectorKey nextFrame = pNodeAnim->mScalingKeys[(frameIndex + 1) % pNodeAnim->mNumScalingKeys]; float delta = (time - (float)currentFrame.mTime) / (float)(nextFrame.mTime - currentFrame.mTime); const aiVector3D& start = currentFrame.mValue; const aiVector3D& end = nextFrame.mValue; scale = (start + delta * (end - start)); } aiMatrix4x4 mat; aiMatrix4x4::Scaling(scale, mat); return mat; } // Get node hierarchy for current animation time void readNodeHierarchy(float AnimationTime, const aiNode* pNode, const aiMatrix4x4& ParentTransform) { std::string NodeName(pNode->mName.data); const aiAnimation* pAnimation = mesh.meshLoader->pScene->mAnimations[0]; aiMatrix4x4 NodeTransformation(pNode->mTransformation); const aiNodeAnim* pNodeAnim = findNodeAnim(pAnimation, NodeName); if (pNodeAnim) { // Get interpolated matrices between current and next frame aiMatrix4x4 matScale = interpolateScale(AnimationTime, pNodeAnim); aiMatrix4x4 matRotation = interpolateRotation(AnimationTime, pNodeAnim); aiMatrix4x4 matTranslation = interpolateTranslation(AnimationTime, pNodeAnim); NodeTransformation = matTranslation * matRotation;// *matScale; } aiMatrix4x4 GlobalTransformation = ParentTransform * NodeTransformation; if (mesh.boneMapping.find(NodeName) != mesh.boneMapping.end()) { uint32_t BoneIndex = mesh.boneMapping[NodeName]; mesh.boneInfo[BoneIndex].finalTransformation = mesh.globalInverseTransform * GlobalTransformation * mesh.boneInfo[BoneIndex].offset; } for (uint32_t i = 0; i < pNode->mNumChildren; i++) { readNodeHierarchy(AnimationTime, pNode->mChildren[i], GlobalTransformation); } } // Recursive bone transformation // Results are stored in the Transforms vector void boneTransform(float time, std::vector& boneTransforms) { float TicksPerSecond = (float)(mesh.meshLoader->pScene->mAnimations[0]->mTicksPerSecond != 0 ? mesh.meshLoader->pScene->mAnimations[0]->mTicksPerSecond : 25.0f); float TimeInTicks = time * TicksPerSecond; float AnimationTime = fmod(TimeInTicks, (float)mesh.meshLoader->pScene->mAnimations[0]->mDuration); aiMatrix4x4 identity = aiMatrix4x4(); readNodeHierarchy(AnimationTime, mesh.meshLoader->pScene->mRootNode, identity); boneTransforms.resize(mesh.numBones); for (uint32_t i = 0; i < boneTransforms.size(); i++) { boneTransforms[i] = mesh.boneInfo[i].finalTransformation; } } // Load a mesh based on data read via assimp // The other example will use the VulkanMesh loader which has some additional functionality for loading meshes void loadMesh() { mesh.meshLoader = new VulkanMeshLoader(); mesh.meshLoader->LoadMesh("./../data/models/astroboy/astroBoy_walk.dae", 0); // Setup bones // One vertex bone info structure per vertex mesh.bones.resize(mesh.meshLoader->numVertices); // Store global inverse transform matrix of root node mesh.globalInverseTransform = mesh.meshLoader->pScene->mRootNode->mTransformation; mesh.globalInverseTransform.Inverse(); // Load bones (weights and IDs) for (uint32_t m = 0; m < mesh.meshLoader->m_Entries.size(); m++) { aiMesh *paiMesh = mesh.meshLoader->pScene->mMeshes[m]; if (paiMesh->mNumBones > 0) { loadBones(m, paiMesh, mesh.bones); } } // Generate vertex buffer float scale = 1.0f; std::vector vertexBuffer; // Iterate through all meshes in the file // and extract the vertex information used in this demo for (uint32_t m = 0; m < mesh.meshLoader->m_Entries.size(); m++) { for (uint32_t i = 0; i < mesh.meshLoader->m_Entries[m].Vertices.size(); i++) { Vertex vertex; vertex.pos = mesh.meshLoader->m_Entries[m].Vertices[i].m_pos * scale; vertex.pos.y = -vertex.pos.y; vertex.normal = mesh.meshLoader->m_Entries[m].Vertices[i].m_normal; vertex.uv = mesh.meshLoader->m_Entries[m].Vertices[i].m_tex; vertex.color = mesh.meshLoader->m_Entries[m].Vertices[i].m_color; // Fetch bone weights and IDs for (uint32_t j = 0; j < 4; j++) { vertex.boneWeights[j] = mesh.bones[mesh.meshLoader->m_Entries[m].vertexBase + i].weights[j]; vertex.boneIDs[j] = mesh.bones[mesh.meshLoader->m_Entries[m].vertexBase + i].IDs[j]; } vertexBuffer.push_back(vertex); } } uint32_t vertexBufferSize = vertexBuffer.size() * sizeof(Vertex); // Generate index buffer from loaded mesh file std::vector indexBuffer; for (uint32_t m = 0; m < mesh.meshLoader->m_Entries.size(); m++) { uint32_t indexBase = indexBuffer.size(); for (uint32_t i = 0; i < mesh.meshLoader->m_Entries[m].Indices.size(); i++) { indexBuffer.push_back(mesh.meshLoader->m_Entries[m].Indices[i] + indexBase); } } uint32_t indexBufferSize = indexBuffer.size() * sizeof(uint32_t); mesh.meshBuffer.indexCount = indexBuffer.size(); // Generate vertex buffer createBuffer( VK_BUFFER_USAGE_VERTEX_BUFFER_BIT, vertexBufferSize, vertexBuffer.data(), &mesh.meshBuffer.vertices.buf, &mesh.meshBuffer.vertices.mem); // Generate index buffer createBuffer( VK_BUFFER_USAGE_INDEX_BUFFER_BIT, indexBufferSize, indexBuffer.data(), &mesh.meshBuffer.indices.buf, &mesh.meshBuffer.indices.mem); } void loadTextures() { textureLoader->loadTexture( "./../data/models/astroboy/astroboy.ktx", VK_FORMAT_BC3_UNORM_BLOCK, &textures.colorMap); } void setupVertexDescriptions() { // Binding description vertices.bindingDescriptions.resize(1); vertices.bindingDescriptions[0] = vkTools::initializers::vertexInputBindingDescription( VERTEX_BUFFER_BIND_ID, sizeof(Vertex), VK_VERTEX_INPUT_RATE_VERTEX); // Attribute descriptions // Describes memory layout and shader positions vertices.attributeDescriptions.resize(6); // Location 0 : Position vertices.attributeDescriptions[0] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 0, VK_FORMAT_R32G32B32_SFLOAT, 0); // Location 1 : Normal vertices.attributeDescriptions[1] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 1, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 3); // Location 2 : Texture coordinates vertices.attributeDescriptions[2] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 2, VK_FORMAT_R32G32_SFLOAT, sizeof(float) * 6); // Location 3 : Color vertices.attributeDescriptions[3] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 3, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 8); // Location 4 : Bone weights vertices.attributeDescriptions[4] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 4, VK_FORMAT_R32G32B32A32_SFLOAT, sizeof(float) * 11); // Location 5 : Bone IDs vertices.attributeDescriptions[5] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 5, VK_FORMAT_R32G32B32A32_SINT, sizeof(float) * 15); vertices.inputState = vkTools::initializers::pipelineVertexInputStateCreateInfo(); vertices.inputState.vertexBindingDescriptionCount = vertices.bindingDescriptions.size(); vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data(); vertices.inputState.vertexAttributeDescriptionCount = vertices.attributeDescriptions.size(); vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data(); } void setupDescriptorPool() { // Example uses one ubo and one combined image sampler std::vector poolSizes = { vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1), vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1), }; VkDescriptorPoolCreateInfo descriptorPoolInfo = vkTools::initializers::descriptorPoolCreateInfo( poolSizes.size(), poolSizes.data(), 2); VkResult vkRes = vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool); assert(!vkRes); } void setupDescriptorSetLayout() { std::vector setLayoutBindings = { // Binding 0 : Vertex shader uniform buffer vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0), // Binding 1 : Fragment shader combined sampler vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1), }; VkDescriptorSetLayoutCreateInfo descriptorLayout = vkTools::initializers::descriptorSetLayoutCreateInfo( setLayoutBindings.data(), setLayoutBindings.size()); VkResult err = vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout); assert(!err); VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = vkTools::initializers::pipelineLayoutCreateInfo( &descriptorSetLayout, 1); err = vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout); assert(!err); } void setupDescriptorSet() { VkDescriptorSetAllocateInfo allocInfo = vkTools::initializers::descriptorSetAllocateInfo( descriptorPool, &descriptorSetLayout, 1); VkResult vkRes = vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet); assert(!vkRes); VkDescriptorImageInfo texDescriptor = vkTools::initializers::descriptorImageInfo( textures.colorMap.sampler, textures.colorMap.view, VK_IMAGE_LAYOUT_GENERAL); std::vector writeDescriptorSets = { // Binding 0 : Vertex shader uniform buffer vkTools::initializers::writeDescriptorSet( descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformData.vsScene.descriptor), // Binding 1 : Color map vkTools::initializers::writeDescriptorSet( descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &texDescriptor) }; vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL); } void preparePipelines() { VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vkTools::initializers::pipelineInputAssemblyStateCreateInfo( VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE); VkPipelineRasterizationStateCreateInfo rasterizationState = vkTools::initializers::pipelineRasterizationStateCreateInfo( VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_CLOCKWISE, 0); VkPipelineColorBlendAttachmentState blendAttachmentState = vkTools::initializers::pipelineColorBlendAttachmentState( 0xf, VK_FALSE); VkPipelineColorBlendStateCreateInfo colorBlendState = vkTools::initializers::pipelineColorBlendStateCreateInfo( 1, &blendAttachmentState); VkPipelineDepthStencilStateCreateInfo depthStencilState = vkTools::initializers::pipelineDepthStencilStateCreateInfo( VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL); VkPipelineViewportStateCreateInfo viewportState = vkTools::initializers::pipelineViewportStateCreateInfo(1, 1, 0); VkPipelineMultisampleStateCreateInfo multisampleState = vkTools::initializers::pipelineMultisampleStateCreateInfo( VK_SAMPLE_COUNT_1_BIT, 0); std::vector dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR }; VkPipelineDynamicStateCreateInfo dynamicState = vkTools::initializers::pipelineDynamicStateCreateInfo( dynamicStateEnables.data(), dynamicStateEnables.size(), 0); // Solid rendering pipeline // Load shaders std::array shaderStages; shaderStages[0] = loadShader("./../data/shaders/skeletalanimation/mesh.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader("./../data/shaders/skeletalanimation/mesh.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); VkGraphicsPipelineCreateInfo pipelineCreateInfo = vkTools::initializers::pipelineCreateInfo( pipelineLayout, renderPass, 0); pipelineCreateInfo.pVertexInputState = &vertices.inputState; pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState; pipelineCreateInfo.pRasterizationState = &rasterizationState; pipelineCreateInfo.pColorBlendState = &colorBlendState; pipelineCreateInfo.pMultisampleState = &multisampleState; pipelineCreateInfo.pViewportState = &viewportState; pipelineCreateInfo.pDepthStencilState = &depthStencilState; pipelineCreateInfo.pDynamicState = &dynamicState; pipelineCreateInfo.stageCount = shaderStages.size(); pipelineCreateInfo.pStages = shaderStages.data(); VkResult err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.solid); assert(!err); } // Prepare and initialize uniform buffer containing shader uniforms void prepareUniformBuffers() { // Vertex shader uniform buffer block createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, sizeof(uboVS), &uboVS, &uniformData.vsScene.buffer, &uniformData.vsScene.memory, &uniformData.vsScene.descriptor); updateUniformBuffers(); } void updateUniformBuffers() { // Vertex shader uboVS.projection = glm::perspective(deg_to_rad(60.0f), (float)width / (float)height, 0.1f, 256.0f); glm::mat4 viewMatrix = glm::translate(glm::mat4(), glm::vec3(0.0f, 0.0f, zoom)); viewMatrix = glm::rotate(viewMatrix, deg_to_rad(90), glm::vec3(1.0f, 0.0f, 0.0f)); uboVS.model = glm::mat4(); uboVS.model = viewMatrix * glm::translate(uboVS.model, glm::vec3(0.0f, 0.0f, -3.5f)); uboVS.model = glm::rotate(uboVS.model, deg_to_rad(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f)); uboVS.model = glm::rotate(uboVS.model, deg_to_rad(rotation.z), glm::vec3(0.0f, 1.0f, 0.0f)); uboVS.model = glm::rotate(uboVS.model, deg_to_rad(-rotation.y), glm::vec3(0.0f, 0.0f, 1.0f)); // Update bones std::vector boneTransforms; boneTransform(runningTime, boneTransforms); for (uint32_t i = 0; i < boneTransforms.size(); i++) { uboVS.bones[i] = glm::transpose(glm::make_mat4(&boneTransforms[i].a1)); } uint8_t *pData; VkResult err = vkMapMemory(device, uniformData.vsScene.memory, 0, sizeof(uboVS), 0, (void **)&pData); assert(!err); memcpy(pData, &uboVS, sizeof(uboVS)); vkUnmapMemory(device, uniformData.vsScene.memory); } void prepare() { VulkanExampleBase::prepare(); loadTextures(); loadMesh(); setupVertexDescriptions(); prepareUniformBuffers(); setupDescriptorSetLayout(); preparePipelines(); setupDescriptorPool(); setupDescriptorSet(); buildCommandBuffers(); prepared = true; } virtual void render() { if (!prepared) return; vkDeviceWaitIdle(device); draw(); vkDeviceWaitIdle(device); if (!paused) { runningTime += frameTimer * 0.75f; updateUniformBuffers(); } } virtual void viewChanged() { updateUniformBuffers(); } }; VulkanExample *vulkanExample; #ifdef _WIN32 LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam) { if (vulkanExample != NULL) { vulkanExample->handleMessages(hWnd, uMsg, wParam, lParam); } return (DefWindowProc(hWnd, uMsg, wParam, lParam)); } #else static void handleEvent(const xcb_generic_event_t *event) { if (vulkanExample != NULL) { vulkanExample->handleEvent(event); } } #endif #ifdef _WIN32 int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR pCmdLine, int nCmdShow) #else int main(const int argc, const char *argv[]) #endif { vulkanExample = new VulkanExample(); #ifdef _WIN32 vulkanExample->setupWindow(hInstance, WndProc); #else vulkanExample->setupWindow(); #endif vulkanExample->initSwapchain(); vulkanExample->prepare(); vulkanExample->renderLoop(); delete(vulkanExample); return 0; }