/* * Vulkan Example - Physical based shading basics * * See http://graphicrants.blogspot.de/2013/08/specular-brdf-reference.html for a good reference to the different functions that make up a specular BRDF * * Copyright (C) 2017 by Sascha Willems - www.saschawillems.de * * This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT) */ #include "vulkanexamplebase.h" #include "VulkanglTFModel.h" #define VERTEX_BUFFER_BIND_ID 0 #define ENABLE_VALIDATION false #define GRID_DIM 7 #define OBJ_DIM 0.05f struct Material { // Parameter block used as push constant block struct PushBlock { float roughness; float metallic; float r, g, b; } params; std::string name; Material() {}; Material(std::string n, glm::vec3 c, float r, float m) : name(n) { params.roughness = r; params.metallic = m; params.r = c.r; params.g = c.g; params.b = c.b; }; }; class VulkanExample : public VulkanExampleBase { public: struct Meshes { std::vector objects; int32_t objectIndex = 0; } models; struct { vks::Buffer object; vks::Buffer params; } uniformBuffers; struct UBOMatrices { glm::mat4 projection; glm::mat4 model; glm::mat4 view; glm::vec3 camPos; } uboMatrices; struct UBOParams { glm::vec4 lights[4]; } uboParams; VkPipelineLayout pipelineLayout; VkPipeline pipeline; VkDescriptorSetLayout descriptorSetLayout; VkDescriptorSet descriptorSet; // Default materials to select from std::vector materials; int32_t materialIndex = 0; std::vector materialNames; std::vector objectNames; VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION) { title = "Physical based shading basics"; camera.type = Camera::CameraType::firstperson; camera.setPosition(glm::vec3(10.0f, 13.0f, 1.8f)); camera.setRotation(glm::vec3(-62.5f, 90.0f, 0.0f)); camera.movementSpeed = 4.0f; camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 256.0f); camera.rotationSpeed = 0.25f; paused = true; timerSpeed *= 0.25f; // Setup some default materials (source: https://seblagarde.wordpress.com/2011/08/17/feeding-a-physical-based-lighting-mode/) materials.push_back(Material("Gold", glm::vec3(1.0f, 0.765557f, 0.336057f), 0.1f, 1.0f)); materials.push_back(Material("Copper", glm::vec3(0.955008f, 0.637427f, 0.538163f), 0.1f, 1.0f)); materials.push_back(Material("Chromium", glm::vec3(0.549585f, 0.556114f, 0.554256f), 0.1f, 1.0f)); materials.push_back(Material("Nickel", glm::vec3(0.659777f, 0.608679f, 0.525649f), 0.1f, 1.0f)); materials.push_back(Material("Titanium", glm::vec3(0.541931f, 0.496791f, 0.449419f), 0.1f, 1.0f)); materials.push_back(Material("Cobalt", glm::vec3(0.662124f, 0.654864f, 0.633732f), 0.1f, 1.0f)); materials.push_back(Material("Platinum", glm::vec3(0.672411f, 0.637331f, 0.585456f), 0.1f, 1.0f)); // Testing materials materials.push_back(Material("White", glm::vec3(1.0f), 0.1f, 1.0f)); materials.push_back(Material("Red", glm::vec3(1.0f, 0.0f, 0.0f), 0.1f, 1.0f)); materials.push_back(Material("Blue", glm::vec3(0.0f, 0.0f, 1.0f), 0.1f, 1.0f)); materials.push_back(Material("Black", glm::vec3(0.0f), 0.1f, 1.0f)); for (auto material : materials) { materialNames.push_back(material.name); } objectNames = { "Sphere", "Teapot", "Torusknot", "Venus" }; materialIndex = 0; } ~VulkanExample() { vkDestroyPipeline(device, pipeline, nullptr); vkDestroyPipelineLayout(device, pipelineLayout, nullptr); vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr); uniformBuffers.object.destroy(); uniformBuffers.params.destroy(); } void buildCommandBuffers() { VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo(); VkClearValue clearValues[2]; clearValues[0].color = defaultClearColor; clearValues[1].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo(); renderPassBeginInfo.renderPass = renderPass; renderPassBeginInfo.renderArea.offset.x = 0; renderPassBeginInfo.renderArea.offset.y = 0; renderPassBeginInfo.renderArea.extent.width = width; renderPassBeginInfo.renderArea.extent.height = height; renderPassBeginInfo.clearValueCount = 2; renderPassBeginInfo.pClearValues = clearValues; for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) { // Set target frame buffer renderPassBeginInfo.framebuffer = frameBuffers[i]; VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo)); vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f); vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0); vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor); VkDeviceSize offsets[1] = { 0 }; // Objects vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline); vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL); Material mat = materials[materialIndex]; //#define SINGLE_ROW 1 #ifdef SINGLE_ROW mat.params.metallic = 1.0; uint32_t objcount = 10; for (uint32_t x = 0; x < objcount; x++) { glm::vec3 pos = glm::vec3(float(x - (objcount / 2.0f)) * 2.5f, 0.0f, 0.0f); mat.params.roughness = glm::clamp((float)x / (float)objcount, 0.005f, 1.0f); vkCmdPushConstants(drawCmdBuffers[i], pipelineLayout, VK_SHADER_STAGE_VERTEX_BIT, 0, sizeof(glm::vec3), &pos); vkCmdPushConstants(drawCmdBuffers[i], pipelineLayout, VK_SHADER_STAGE_FRAGMENT_BIT, sizeof(glm::vec3), sizeof(Material::PushBlock), &mat); models.objects[models.objectIndex].draw(drawCmdBuffers[i]); } #else for (uint32_t y = 0; y < GRID_DIM; y++) { for (uint32_t x = 0; x < GRID_DIM; x++) { glm::vec3 pos = glm::vec3(float(x - (GRID_DIM / 2.0f)) * 2.5f, 0.0f, float(y - (GRID_DIM / 2.0f)) * 2.5f); vkCmdPushConstants(drawCmdBuffers[i], pipelineLayout, VK_SHADER_STAGE_VERTEX_BIT, 0, sizeof(glm::vec3), &pos); mat.params.metallic = glm::clamp((float)x / (float)(GRID_DIM - 1), 0.1f, 1.0f); mat.params.roughness = glm::clamp((float)y / (float)(GRID_DIM - 1), 0.05f, 1.0f); vkCmdPushConstants(drawCmdBuffers[i], pipelineLayout, VK_SHADER_STAGE_FRAGMENT_BIT, sizeof(glm::vec3), sizeof(Material::PushBlock), &mat); models.objects[models.objectIndex].draw(drawCmdBuffers[i]); } } #endif drawUI(drawCmdBuffers[i]); vkCmdEndRenderPass(drawCmdBuffers[i]); VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i])); } } void loadAssets() { std::vector filenames = { "sphere.gltf", "teapot.gltf", "torusknot.gltf", "venus.gltf" }; models.objects.resize(filenames.size()); for (size_t i = 0; i < filenames.size(); i++) { models.objects[i].loadFromFile(getAssetPath() + "models/" + filenames[i], vulkanDevice, queue, vkglTF::FileLoadingFlags::PreTransformVertices | vkglTF::FileLoadingFlags::FlipY); } } void setupDescriptorSetLayout() { std::vector setLayoutBindings = { vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, 0), vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_FRAGMENT_BIT, 1), }; VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout)); VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayout, 1); std::vector pushConstantRanges = { vks::initializers::pushConstantRange(VK_SHADER_STAGE_VERTEX_BIT, sizeof(glm::vec3), 0), vks::initializers::pushConstantRange(VK_SHADER_STAGE_FRAGMENT_BIT, sizeof(Material::PushBlock), sizeof(glm::vec3)), }; pipelineLayoutCreateInfo.pushConstantRangeCount = 2; pipelineLayoutCreateInfo.pPushConstantRanges = pushConstantRanges.data(); VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &pipelineLayout)); } void setupDescriptorSets() { // Descriptor Pool std::vector poolSizes = { vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 4), }; VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, 2); VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool)); // Descriptor sets VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1); // 3D object descriptor set VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet)); std::vector writeDescriptorSets = { vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.object.descriptor), vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1, &uniformBuffers.params.descriptor), }; vkUpdateDescriptorSets(device, static_cast(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL); } void preparePipelines() { VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE); VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_COUNTER_CLOCKWISE); VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE); VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState); VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_FALSE, VK_FALSE, VK_COMPARE_OP_LESS_OR_EQUAL); VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1); VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT); std::vector dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR }; VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables); VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass); std::array shaderStages; pipelineCI.pInputAssemblyState = &inputAssemblyState; pipelineCI.pRasterizationState = &rasterizationState; pipelineCI.pColorBlendState = &colorBlendState; pipelineCI.pMultisampleState = &multisampleState; pipelineCI.pViewportState = &viewportState; pipelineCI.pDepthStencilState = &depthStencilState; pipelineCI.pDynamicState = &dynamicState; pipelineCI.stageCount = static_cast(shaderStages.size()); pipelineCI.pStages = shaderStages.data(); pipelineCI.pVertexInputState = vkglTF::Vertex::getPipelineVertexInputState({ vkglTF::VertexComponent::Position, vkglTF::VertexComponent::Normal }); // PBR pipeline shaderStages[0] = loadShader(getShadersPath() + "pbrbasic/pbr.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getShadersPath() + "pbrbasic/pbr.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); // Enable depth test and write depthStencilState.depthWriteEnable = VK_TRUE; depthStencilState.depthTestEnable = VK_TRUE; VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipeline)); } // Prepare and initialize uniform buffer containing shader uniforms void prepareUniformBuffers() { // Object vertex shader uniform buffer VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBuffers.object, sizeof(uboMatrices))); // Shared parameter uniform buffer VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBuffers.params, sizeof(uboParams))); // Map persistent VK_CHECK_RESULT(uniformBuffers.object.map()); VK_CHECK_RESULT(uniformBuffers.params.map()); updateUniformBuffers(); updateLights(); } void updateUniformBuffers() { // 3D object uboMatrices.projection = camera.matrices.perspective; uboMatrices.view = camera.matrices.view; uboMatrices.model = glm::rotate(glm::mat4(1.0f), glm::radians(-90.0f + (models.objectIndex == 1 ? 45.0f : 0.0f)), glm::vec3(0.0f, 1.0f, 0.0f)); uboMatrices.camPos = camera.position * -1.0f; memcpy(uniformBuffers.object.mapped, &uboMatrices, sizeof(uboMatrices)); } void updateLights() { const float p = 15.0f; uboParams.lights[0] = glm::vec4(-p, -p*0.5f, -p, 1.0f); uboParams.lights[1] = glm::vec4(-p, -p*0.5f, p, 1.0f); uboParams.lights[2] = glm::vec4( p, -p*0.5f, p, 1.0f); uboParams.lights[3] = glm::vec4( p, -p*0.5f, -p, 1.0f); if (!paused) { uboParams.lights[0].x = sin(glm::radians(timer * 360.0f)) * 20.0f; uboParams.lights[0].z = cos(glm::radians(timer * 360.0f)) * 20.0f; uboParams.lights[1].x = cos(glm::radians(timer * 360.0f)) * 20.0f; uboParams.lights[1].y = sin(glm::radians(timer * 360.0f)) * 20.0f; } memcpy(uniformBuffers.params.mapped, &uboParams, sizeof(uboParams)); } void draw() { VulkanExampleBase::prepareFrame(); submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer]; VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE)); VulkanExampleBase::submitFrame(); } void prepare() { VulkanExampleBase::prepare(); loadAssets(); prepareUniformBuffers(); setupDescriptorSetLayout(); preparePipelines(); setupDescriptorSets(); buildCommandBuffers(); prepared = true; } virtual void render() { if (!prepared) return; draw(); if (!paused) updateLights(); } virtual void viewChanged() { updateUniformBuffers(); } virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay) { if (overlay->header("Settings")) { if (overlay->comboBox("Material", &materialIndex, materialNames)) { buildCommandBuffers(); } if (overlay->comboBox("Object type", &models.objectIndex, objectNames)) { updateUniformBuffers(); buildCommandBuffers(); } } } }; VULKAN_EXAMPLE_MAIN()