/* * Vulkan Example - Sparse texture residency example * * Copyright (C) 2016 by Sascha Willems - www.saschawillems.de * * This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT) */ /* todos: - check sparse binding support on queue - residencyNonResidentStrict - meta data - Run-time image data upload */ #include #include #include #include #include #include #define GLM_FORCE_RADIANS #define GLM_FORCE_DEPTH_ZERO_TO_ONE #include #include #include #include "vulkanexamplebase.h" #include "vulkandevice.hpp" #include "vulkanbuffer.hpp" #define VERTEX_BUFFER_BIND_ID 0 #define ENABLE_VALIDATION false // Vertex layout for this example struct Vertex { float pos[3]; float uv[2]; float normal[3]; }; class VulkanExample : public VulkanExampleBase { public: //todo: comments struct SparseTexture { VkSampler sampler; VkImage image; VkImageLayout imageLayout; VkImageView view; VkDescriptorImageInfo descriptor; VkFormat format; uint32_t width, height; uint32_t mipLevels; uint32_t layerCount; std::vector residencyMemoryBinds; // Sparse image mempory bindings for the resident part of the image std::vector opaqueMemoryBinds; // Sparse memory bindings for the mip tail (if present) VkSparseImageMemoryBindInfo imageMemoryBindInfo; // Bind info for queue VkSparseImageOpaqueMemoryBindInfo opaqueMemoryBindInfo; // Opaque bind info for queue } texture; struct { VkPipelineVertexInputStateCreateInfo inputState; std::vector bindingDescriptions; std::vector attributeDescriptions; } vertices; vk::Buffer vertexBuffer; vk::Buffer indexBuffer; uint32_t indexCount; vk::Buffer uniformBufferVS; struct UboVS { glm::mat4 projection; glm::mat4 model; glm::vec4 viewPos; float lodBias = 0.0f; } uboVS; struct { VkPipeline solid; } pipelines; VkPipelineLayout pipelineLayout; VkDescriptorSet descriptorSet; VkDescriptorSetLayout descriptorSetLayout; //todo: comment VkBindSparseInfo bindSparseInfo; VkSemaphore bindSparseSemaphore = VK_NULL_HANDLE; // Device features to be enabled for this example static VkPhysicalDeviceFeatures getEnabledFeatures() { VkPhysicalDeviceFeatures enabledFeatures = {}; enabledFeatures.shaderResourceResidency = VK_TRUE; return enabledFeatures; } VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION, getEnabledFeatures) { zoom = -2.5f; rotation = { 0.0f, 15.0f, 0.0f }; title = "Vulkan Example - Sparse textures residency"; enableTextOverlay = true; std::cout.imbue(std::locale("")); //todo: check if GPU supports sparse binding feature } ~VulkanExample() { // Clean up used Vulkan resources // Note : Inherited destructor cleans up resources stored in base class destroyTextureImage(texture); vkDestroySemaphore(device, bindSparseSemaphore, nullptr); vkDestroyPipeline(device, pipelines.solid, nullptr); vkDestroyPipelineLayout(device, pipelineLayout, nullptr); vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr); vertexBuffer.destroy(); indexBuffer.destroy(); uniformBufferVS.destroy(); } // Create an image memory barrier for changing the layout of // an image and put it into an active command buffer void setImageLayout(VkCommandBuffer cmdBuffer, VkImage image, VkImageAspectFlags aspectMask, VkImageLayout oldImageLayout, VkImageLayout newImageLayout, VkImageSubresourceRange subresourceRange) { // Create an image barrier object VkImageMemoryBarrier imageMemoryBarrier = vkTools::initializers::imageMemoryBarrier();; imageMemoryBarrier.oldLayout = oldImageLayout; imageMemoryBarrier.newLayout = newImageLayout; imageMemoryBarrier.image = image; imageMemoryBarrier.subresourceRange = subresourceRange; // Only sets masks for layouts used in this example // For a more complete version that can be used with other layouts see vkTools::setImageLayout // Source layouts (old) switch (oldImageLayout) { case VK_IMAGE_LAYOUT_UNDEFINED: // Only valid as initial layout, memory contents are not preserved // Can be accessed directly, no source dependency required imageMemoryBarrier.srcAccessMask = 0; break; case VK_IMAGE_LAYOUT_PREINITIALIZED: // Only valid as initial layout for linear images, preserves memory contents // Make sure host writes to the image have been finished imageMemoryBarrier.srcAccessMask = VK_ACCESS_HOST_WRITE_BIT; break; case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL: // Old layout is transfer destination // Make sure any writes to the image have been finished imageMemoryBarrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT; break; } // Target layouts (new) switch (newImageLayout) { case VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL: // Transfer source (copy, blit) // Make sure any reads from the image have been finished imageMemoryBarrier.dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT; break; case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL: // Transfer destination (copy, blit) // Make sure any writes to the image have been finished imageMemoryBarrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT; break; case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL: // Shader read (sampler, input attachment) imageMemoryBarrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT; break; } // Put barrier on top of pipeline VkPipelineStageFlags srcStageFlags = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT; VkPipelineStageFlags destStageFlags = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT; // Put barrier inside setup command buffer vkCmdPipelineBarrier( cmdBuffer, srcStageFlags, destStageFlags, VK_FLAGS_NONE, 0, nullptr, 0, nullptr, 1, &imageMemoryBarrier); } glm::uvec3 alignedDivision(const VkExtent3D& extent, const VkExtent3D& granularity) { glm::uvec3 res; res.x = extent.width / granularity.width + ((extent.width % granularity.width) ? 1u : 0u); res.y = extent.height / granularity.height + ((extent.height % granularity.height) ? 1u : 0u); res.z = extent.depth / granularity.depth + ((extent.depth % granularity.depth) ? 1u : 0u); return res; } void prepareSparseTexture(uint32_t width, uint32_t height, uint32_t layerCount, VkFormat format) { texture.width = width; texture.height = height; //texture.mipLevels = floor(log2(std::max(width, height))) + 1; //todo texture.mipLevels = 1; texture.layerCount = layerCount; texture.format = format; // Get device properites for the requested texture format VkFormatProperties formatProperties; vkGetPhysicalDeviceFormatProperties(physicalDevice, format, &formatProperties); // Get sparse image properties std::vector sparseProperties(32); // Sparse properties count for the desired format uint32_t sparsePropertiesCount; // todo: Temporary workaround, crashes in NV driver if last param is nullptr (to get just count) vkGetPhysicalDeviceSparseImageFormatProperties( physicalDevice, format, VK_IMAGE_TYPE_2D, VK_SAMPLE_COUNT_1_BIT, VK_IMAGE_USAGE_SAMPLED_BIT, VK_IMAGE_TILING_OPTIMAL, &sparsePropertiesCount, sparseProperties.data()); sparseProperties.resize(sparsePropertiesCount); // Check if sparse is supported for this format if (sparsePropertiesCount == 0) { std::cout << "Error: Requested format does not support sparse features!" << std::endl; return; } std::cout << "Sparse image format properties: " << sparsePropertiesCount << std::endl; for (auto props : sparseProperties) { std::cout << "\t Image granularity: w = " << props.imageGranularity.width << " h = " << props.imageGranularity.height << " d = " << props.imageGranularity.depth << std::endl; std::cout << "\t Aspect mask: " << props.aspectMask << std::endl; std::cout << "\t Flags: " << props.flags << std::endl; } // Create sparse image VkImageCreateInfo sparseImageCreateInfo = vkTools::initializers::imageCreateInfo(); sparseImageCreateInfo.imageType = VK_IMAGE_TYPE_2D; sparseImageCreateInfo.format = texture.format; sparseImageCreateInfo.mipLevels = texture.mipLevels; sparseImageCreateInfo.arrayLayers = texture.layerCount; sparseImageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT; sparseImageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL; sparseImageCreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT; sparseImageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; sparseImageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; sparseImageCreateInfo.extent = { texture.width, texture.height, 1 }; sparseImageCreateInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT; sparseImageCreateInfo.flags = VK_IMAGE_CREATE_SPARSE_BINDING_BIT | VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT; VK_CHECK_RESULT(vkCreateImage(device, &sparseImageCreateInfo, nullptr, &texture.image)); // Get memory requirements VkMemoryRequirements sparseImageMemoryReqs; vkGetImageMemoryRequirements(device, texture.image, &sparseImageMemoryReqs); std::cout << "Image memory requirements:" << std::endl; std::cout << "\t Size: " << sparseImageMemoryReqs.size << std::endl; std::cout << "\t Alignment: " << sparseImageMemoryReqs.alignment << std::endl; // Check requested image size against hardware sparse limit if (sparseImageMemoryReqs.size > vulkanDevice->properties.limits.sparseAddressSpaceSize) { std::cout << "Error: Requested sparse image size exceeds supportes sparse address space size!" << std::endl; return; }; // Get sparse memory requirements uint32_t sparseMemoryReqsCount; std::vector sparseMemoryReqs(32); // todo: Temporary workaround, crashes in NV driver if last param is nullptr (to get just count) vkGetImageSparseMemoryRequirements(device, texture.image, &sparseMemoryReqsCount, sparseMemoryReqs.data()); if (sparseMemoryReqsCount == 0) { std::cout << "Error: No memory requirements for the sparse image!" << std::endl; return; } sparseMemoryReqs.resize(sparseMemoryReqsCount); std::cout << "Sparse image memory requirements: " << sparseMemoryReqsCount << std::endl; for (auto reqs : sparseMemoryReqs) { std::cout << "\t Image granularity: w = " << reqs.formatProperties.imageGranularity.width << " h = " << reqs.formatProperties.imageGranularity.height << " d = " << reqs.formatProperties.imageGranularity.depth << std::endl; std::cout << "\t Mip tail first LOD: " << reqs.imageMipTailFirstLod << std::endl; std::cout << "\t Mip tail size: " << reqs.imageMipTailSize << std::endl; std::cout << "\t Mip tail offset: " << reqs.imageMipTailOffset << std::endl; std::cout << "\t Mip tail stride: " << reqs.imageMipTailStride << std::endl; } // Get sparse image requirements for the color aspect VkSparseImageMemoryRequirements sparseMemoryReq; bool colorAspectFound = false; for (auto reqs : sparseMemoryReqs) { if (reqs.formatProperties.aspectMask & VK_IMAGE_ASPECT_COLOR_BIT) { sparseMemoryReq = reqs; colorAspectFound = true; break; } } if (!colorAspectFound) { std::cout << "Error: Could not find sparse image memory requirements for color aspect bit!" << std::endl; return; } // todo: // Calculate number of required sparse memory bindings by alignment assert((sparseImageMemoryReqs.size % sparseImageMemoryReqs.alignment) == 0); uint32_t memoryTypeIndex = vulkanDevice->getMemoryType(sparseImageMemoryReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); // Get sparse bindings uint32_t sparseBindsCount = static_cast(sparseImageMemoryReqs.size / sparseImageMemoryReqs.alignment); std::vector sparseMemoryBinds(sparseBindsCount); // Sparse bindings for each mip level of all layers outside of the mip tail for (uint32_t layer = 0; layer < texture.layerCount; layer++) { for (uint32_t mipLevel = 0; mipLevel < sparseMemoryReq.imageMipTailFirstLod; mipLevel++) { VkExtent3D extent; extent.width = std::max(sparseImageCreateInfo.extent.width >> mipLevel, 1u); extent.height = std::max(sparseImageCreateInfo.extent.height >> mipLevel, 1u); extent.depth = std::max(sparseImageCreateInfo.extent.depth >> mipLevel, 1u); VkImageSubresource subResource{}; subResource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; subResource.mipLevel = mipLevel; subResource.arrayLayer = layer; // Aligned sizes by image granularity VkExtent3D imageGranularity = sparseMemoryReq.formatProperties.imageGranularity; glm::uvec3 sparseBindCounts = alignedDivision(extent, imageGranularity); glm::uvec3 lastBlockExtent; lastBlockExtent.x = (extent.width % imageGranularity.width) ? extent.width % imageGranularity.width : imageGranularity.width; lastBlockExtent.y = (extent.height % imageGranularity.height) ? extent.height % imageGranularity.height : imageGranularity.height; lastBlockExtent.z = (extent.depth % imageGranularity.depth) ? extent.depth % imageGranularity.depth : imageGranularity.depth; // Alllocate memory for some blocks uint32_t index = 0; for (uint32_t z = 0; z < sparseBindCounts.z; z++) { for (uint32_t y = 0; y < sparseBindCounts.y; y++) { for (uint32_t x = 0; x < sparseBindCounts.x; x++) { if ((x % 2 == 1) || (y % 2 == 1)) continue; VkOffset3D offset; offset.x = x * imageGranularity.width; offset.y = y * imageGranularity.height; offset.z = z * imageGranularity.depth; VkExtent3D extent; extent.width = (x == sparseBindCounts.x - 1) ? lastBlockExtent.x : imageGranularity.width; extent.height = (y == sparseBindCounts.y - 1) ? lastBlockExtent.y : imageGranularity.height; extent.depth = (z == sparseBindCounts.z - 1) ? lastBlockExtent.z : imageGranularity.depth; // Allocate memory for this sparse block VkMemoryAllocateInfo allocInfo = vkTools::initializers::memoryAllocateInfo(); allocInfo.allocationSize = sparseImageMemoryReqs.alignment; allocInfo.memoryTypeIndex = memoryTypeIndex; VkDeviceMemory deviceMemory; VK_CHECK_RESULT(vkAllocateMemory(device, &allocInfo, nullptr, &deviceMemory)); // Sparse image memory binding VkSparseImageMemoryBind sparseImageMemoryBind{}; sparseImageMemoryBind.subresource = subResource; sparseImageMemoryBind.extent = extent; sparseImageMemoryBind.offset = offset; sparseImageMemoryBind.memory = deviceMemory; texture.residencyMemoryBinds.push_back(sparseImageMemoryBind); } } } } // Sparse binding for the mip tail (if present) containing the remaining mip levels // The mip tail contains all mip levels > sparseMemoryReq.imageMipTailFirstLod if ((sparseMemoryReq.formatProperties.flags & VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT) && (sparseMemoryReq.imageMipTailFirstLod < texture.mipLevels)) { //todo } } // end layers and mips // Create signal semaphore for sparse binding VkSemaphoreCreateInfo semaphoreCreateInfo = vkTools::initializers::semaphoreCreateInfo(); VK_CHECK_RESULT(vkCreateSemaphore(device, &semaphoreCreateInfo, nullptr, &bindSparseSemaphore)); // Prepare bind sparse info for reuse in queue submission bindSparseInfo = vkTools::initializers::bindSparseInfo(); //bindSparseInfo.signalSemaphoreCount = 1; //bindSparseInfo.pSignalSemaphores = &bindSparseSemaphore; if (texture.residencyMemoryBinds.size() > 0) { texture.imageMemoryBindInfo.image = texture.image; texture.imageMemoryBindInfo.bindCount = static_cast(texture.residencyMemoryBinds.size()); texture.imageMemoryBindInfo.pBinds = texture.residencyMemoryBinds.data(); bindSparseInfo.imageBindCount = 1; bindSparseInfo.pImageBinds = &texture.imageMemoryBindInfo; } if (texture.opaqueMemoryBinds.size() > 0) { texture.opaqueMemoryBindInfo.image = texture.image; texture.opaqueMemoryBindInfo.bindCount = static_cast(texture.opaqueMemoryBinds.size()); texture.opaqueMemoryBindInfo.pBinds = texture.opaqueMemoryBinds.data(); bindSparseInfo.imageOpaqueBindCount = 1; bindSparseInfo.pImageOpaqueBinds = &texture.opaqueMemoryBindInfo; } // Bind to queue // todo: in draw? vkQueueBindSparse(queue, 1, &bindSparseInfo, VK_NULL_HANDLE); //todo: use sparse bind semaphore vkQueueWaitIdle(queue); // Create sampler VkSamplerCreateInfo sampler = vkTools::initializers::samplerCreateInfo(); sampler.magFilter = VK_FILTER_LINEAR; sampler.minFilter = VK_FILTER_LINEAR; sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR; sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT; sampler.addressModeV = VK_SAMPLER_ADDRESS_MODE_REPEAT; sampler.addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT; sampler.mipLodBias = 0.0f; sampler.compareOp = VK_COMPARE_OP_NEVER; sampler.minLod = 0.0f; sampler.maxLod = (float)texture.mipLevels; sampler.maxAnisotropy = 1.0; sampler.anisotropyEnable = VK_FALSE; if (vulkanDevice->features.samplerAnisotropy) { // Use max. level of anisotropy for this example sampler.maxAnisotropy = vulkanDevice->properties.limits.maxSamplerAnisotropy; sampler.anisotropyEnable = VK_TRUE; } sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE; VK_CHECK_RESULT(vkCreateSampler(device, &sampler, nullptr, &texture.sampler)); // Create image view VkImageViewCreateInfo view = vkTools::initializers::imageViewCreateInfo(); view.image = VK_NULL_HANDLE; view.viewType = VK_IMAGE_VIEW_TYPE_2D; view.format = format; view.components = { VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A }; view.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; view.subresourceRange.baseMipLevel = 0; view.subresourceRange.baseArrayLayer = 0; view.subresourceRange.layerCount = 1; view.subresourceRange.levelCount = texture.mipLevels; view.image = texture.image; VK_CHECK_RESULT(vkCreateImageView(device, &view, nullptr, &texture.view)); // Fill image descriptor image info that can be used during the descriptor set setup texture.descriptor.imageLayout = VK_IMAGE_LAYOUT_GENERAL; texture.descriptor.imageView = texture.view; texture.descriptor.sampler = texture.sampler; } // Free all Vulkan resources used a texture object void destroyTextureImage(SparseTexture texture) { vkDestroyImageView(device, texture.view, nullptr); vkDestroyImage(device, texture.image, nullptr); vkDestroySampler(device, texture.sampler, nullptr); //vkFreeMemory(device, texture.deviceMemory, nullptr); // Sparse memory for (auto residency : texture.residencyMemoryBinds) { vkFreeMemory(device, residency.memory, nullptr); } } void buildCommandBuffers() { VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo(); VkClearValue clearValues[2]; clearValues[0].color = defaultClearColor; clearValues[1].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo(); renderPassBeginInfo.renderPass = renderPass; renderPassBeginInfo.renderArea.offset.x = 0; renderPassBeginInfo.renderArea.offset.y = 0; renderPassBeginInfo.renderArea.extent.width = width; renderPassBeginInfo.renderArea.extent.height = height; renderPassBeginInfo.clearValueCount = 2; renderPassBeginInfo.pClearValues = clearValues; for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) { // Set target frame buffer renderPassBeginInfo.framebuffer = frameBuffers[i]; VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo)); vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); VkViewport viewport = vkTools::initializers::viewport((float)width, (float)height, 0.0f, 1.0f); vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); VkRect2D scissor = vkTools::initializers::rect2D(width, height, 0, 0); vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor); vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.solid); VkDeviceSize offsets[1] = { 0 }; vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &vertexBuffer.buffer, offsets); vkCmdBindIndexBuffer(drawCmdBuffers[i], indexBuffer.buffer, 0, VK_INDEX_TYPE_UINT32); vkCmdDrawIndexed(drawCmdBuffers[i], indexCount, 1, 0, 0, 0); vkCmdEndRenderPass(drawCmdBuffers[i]); VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i])); } } void draw() { VulkanExampleBase::prepareFrame(); // Sparse bindings // vkQueueBindSparse(queue, 1, &bindSparseInfo, VK_NULL_HANDLE); //todo: use sparse bind semaphore // vkQueueWaitIdle(queue); // Command buffer to be sumitted to the queue submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer]; // Submit to queue VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE)); VulkanExampleBase::submitFrame(); } void generateQuad() { // Setup vertices for a single uv-mapped quad made from two triangles std::vector vertices = { { { 1.0f, 1.0f, 0.0f }, { 1.0f, 1.0f },{ 0.0f, 0.0f, 1.0f } }, { { -1.0f, 1.0f, 0.0f }, { 0.0f, 1.0f },{ 0.0f, 0.0f, 1.0f } }, { { -1.0f, -1.0f, 0.0f }, { 0.0f, 0.0f },{ 0.0f, 0.0f, 1.0f } }, { { 1.0f, -1.0f, 0.0f }, { 1.0f, 0.0f },{ 0.0f, 0.0f, 1.0f } } }; // Setup indices std::vector indices = { 0,1,2, 2,3,0 }; indexCount = static_cast(indices.size()); // Create buffers // For the sake of simplicity we won't stage the vertex data to the gpu memory // Vertex buffer VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_VERTEX_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &vertexBuffer, vertices.size() * sizeof(Vertex), vertices.data())); // Index buffer VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_INDEX_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &indexBuffer, indices.size() * sizeof(uint32_t), indices.data())); } void setupVertexDescriptions() { // Binding description vertices.bindingDescriptions.resize(1); vertices.bindingDescriptions[0] = vkTools::initializers::vertexInputBindingDescription( VERTEX_BUFFER_BIND_ID, sizeof(Vertex), VK_VERTEX_INPUT_RATE_VERTEX); // Attribute descriptions // Describes memory layout and shader positions vertices.attributeDescriptions.resize(3); // Location 0 : Position vertices.attributeDescriptions[0] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 0, VK_FORMAT_R32G32B32_SFLOAT, offsetof(Vertex, pos)); // Location 1 : Texture coordinates vertices.attributeDescriptions[1] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 1, VK_FORMAT_R32G32_SFLOAT, offsetof(Vertex, uv)); // Location 1 : Vertex normal vertices.attributeDescriptions[2] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 2, VK_FORMAT_R32G32B32_SFLOAT, offsetof(Vertex, normal)); vertices.inputState = vkTools::initializers::pipelineVertexInputStateCreateInfo(); vertices.inputState.vertexBindingDescriptionCount = static_cast(vertices.bindingDescriptions.size()); vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data(); vertices.inputState.vertexAttributeDescriptionCount = static_cast(vertices.attributeDescriptions.size()); vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data(); } void setupDescriptorPool() { // Example uses one ubo and one image sampler std::vector poolSizes = { vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1), vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1) }; VkDescriptorPoolCreateInfo descriptorPoolInfo = vkTools::initializers::descriptorPoolCreateInfo( static_cast(poolSizes.size()), poolSizes.data(), 2); VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool)); } void setupDescriptorSetLayout() { std::vector setLayoutBindings = { // Binding 0 : Vertex shader uniform buffer vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0), // Binding 1 : Fragment shader image sampler vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1) }; VkDescriptorSetLayoutCreateInfo descriptorLayout = vkTools::initializers::descriptorSetLayoutCreateInfo( setLayoutBindings.data(), static_cast(setLayoutBindings.size())); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout)); VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = vkTools::initializers::pipelineLayoutCreateInfo( &descriptorSetLayout, 1); VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout)); } void setupDescriptorSet() { VkDescriptorSetAllocateInfo allocInfo = vkTools::initializers::descriptorSetAllocateInfo( descriptorPool, &descriptorSetLayout, 1); VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet)); std::vector writeDescriptorSets = { // Binding 0 : Vertex shader uniform buffer vkTools::initializers::writeDescriptorSet( descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBufferVS.descriptor), // Binding 1 : Fragment shader texture sampler vkTools::initializers::writeDescriptorSet( descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &texture.descriptor) }; vkUpdateDescriptorSets(device, static_cast(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL); } void preparePipelines() { VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vkTools::initializers::pipelineInputAssemblyStateCreateInfo( VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE); VkPipelineRasterizationStateCreateInfo rasterizationState = vkTools::initializers::pipelineRasterizationStateCreateInfo( VK_POLYGON_MODE_FILL, VK_CULL_MODE_NONE, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0); VkPipelineColorBlendAttachmentState blendAttachmentState = vkTools::initializers::pipelineColorBlendAttachmentState( 0xf, VK_FALSE); VkPipelineColorBlendStateCreateInfo colorBlendState = vkTools::initializers::pipelineColorBlendStateCreateInfo( 1, &blendAttachmentState); VkPipelineDepthStencilStateCreateInfo depthStencilState = vkTools::initializers::pipelineDepthStencilStateCreateInfo( VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL); VkPipelineViewportStateCreateInfo viewportState = vkTools::initializers::pipelineViewportStateCreateInfo(1, 1, 0); VkPipelineMultisampleStateCreateInfo multisampleState = vkTools::initializers::pipelineMultisampleStateCreateInfo( VK_SAMPLE_COUNT_1_BIT, 0); std::vector dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR }; VkPipelineDynamicStateCreateInfo dynamicState = vkTools::initializers::pipelineDynamicStateCreateInfo( dynamicStateEnables.data(), static_cast(dynamicStateEnables.size()), 0); // Load shaders std::array shaderStages; shaderStages[0] = loadShader(getAssetPath() + "shaders/texturesparseresidency/sparseresidency.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getAssetPath() + "shaders/texturesparseresidency/sparseresidency.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); VkGraphicsPipelineCreateInfo pipelineCreateInfo = vkTools::initializers::pipelineCreateInfo( pipelineLayout, renderPass, 0); pipelineCreateInfo.pVertexInputState = &vertices.inputState; pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState; pipelineCreateInfo.pRasterizationState = &rasterizationState; pipelineCreateInfo.pColorBlendState = &colorBlendState; pipelineCreateInfo.pMultisampleState = &multisampleState; pipelineCreateInfo.pViewportState = &viewportState; pipelineCreateInfo.pDepthStencilState = &depthStencilState; pipelineCreateInfo.pDynamicState = &dynamicState; pipelineCreateInfo.stageCount = static_cast(shaderStages.size()); pipelineCreateInfo.pStages = shaderStages.data(); VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.solid)); } // Prepare and initialize uniform buffer containing shader uniforms void prepareUniformBuffers() { // Vertex shader uniform buffer block VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBufferVS, sizeof(uboVS), &uboVS)); updateUniformBuffers(); } void updateUniformBuffers() { // Vertex shader uboVS.projection = glm::perspective(glm::radians(60.0f), (float)width / (float)height, 0.001f, 256.0f); glm::mat4 viewMatrix = glm::translate(glm::mat4(), glm::vec3(0.0f, 0.0f, zoom)); uboVS.model = viewMatrix * glm::translate(glm::mat4(), cameraPos); uboVS.model = glm::rotate(uboVS.model, glm::radians(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f)); uboVS.model = glm::rotate(uboVS.model, glm::radians(rotation.y), glm::vec3(0.0f, 1.0f, 0.0f)); uboVS.model = glm::rotate(uboVS.model, glm::radians(rotation.z), glm::vec3(0.0f, 0.0f, 1.0f)); uboVS.viewPos = glm::vec4(0.0f, 0.0f, -zoom, 0.0f); VK_CHECK_RESULT(uniformBufferVS.map()); memcpy(uniformBufferVS.mapped, &uboVS, sizeof(uboVS)); uniformBufferVS.unmap(); } void prepare() { VulkanExampleBase::prepare(); generateQuad(); setupVertexDescriptions(); prepareUniformBuffers(); prepareSparseTexture(8192, 8192, 1, VK_FORMAT_R8G8B8A8_UNORM); setupDescriptorSetLayout(); preparePipelines(); setupDescriptorPool(); setupDescriptorSet(); buildCommandBuffers(); prepared = true; } virtual void render() { if (!prepared) return; draw(); } virtual void viewChanged() { updateUniformBuffers(); } void changeLodBias(float delta) { uboVS.lodBias += delta; if (uboVS.lodBias < 0.0f) { uboVS.lodBias = 0.0f; } if (uboVS.lodBias > texture.mipLevels) { uboVS.lodBias = (float)texture.mipLevels; } updateUniformBuffers(); updateTextOverlay(); } virtual void keyPressed(uint32_t keyCode) { switch (keyCode) { case KEY_KPADD: case GAMEPAD_BUTTON_R1: changeLodBias(0.1f); break; case KEY_KPSUB: case GAMEPAD_BUTTON_L1: changeLodBias(-0.1f); break; } } virtual void getOverlayText(VulkanTextOverlay *textOverlay) { std::stringstream ss; ss << std::setprecision(2) << std::fixed << uboVS.lodBias; #if defined(__ANDROID__) textOverlay->addText("LOD bias: " + ss.str() + " (Buttons L1/R1 to change)", 5.0f, 85.0f, VulkanTextOverlay::alignLeft); #else textOverlay->addText("LOD bias: " + ss.str() + " (numpad +/- to change)", 5.0f, 85.0f, VulkanTextOverlay::alignLeft); #endif } }; VULKAN_EXAMPLE_MAIN()