/* * Vulkan Example - Deferred shading with shadows from multiple light sources using geometry shader instancing * * Copyright (C) 2016 by Sascha Willems - www.saschawillems.de * * This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT) */ #include #include #include #include #include #include #define GLM_FORCE_RADIANS #define GLM_FORCE_DEPTH_ZERO_TO_ONE #include #include #include #include "vulkanexamplebase.h" #include "vulkanframebuffer.hpp" #include "vulkanbuffer.hpp" #define VERTEX_BUFFER_BIND_ID 0 #define ENABLE_VALIDATION false // Shadowmap properties #if defined(__ANDROID__) #define SHADOWMAP_DIM 1024 #else #define SHADOWMAP_DIM 2048 #endif // 16 bits of depth is enough for such a small scene #define SHADOWMAP_FORMAT VK_FORMAT_D32_SFLOAT_S8_UINT #if defined(__ANDROID__) // Use max. screen dimension as deferred framebuffer size #define FB_DIM std::max(width,height) #else #define FB_DIM 2048 #endif // Must match the LIGHT_COUNT define in the shadow and deferred shaders #define LIGHT_COUNT 3 // Vertex layout for this example // todo: create class for vertex layout std::vector vertexLayout = { vkMeshLoader::VERTEX_LAYOUT_POSITION, vkMeshLoader::VERTEX_LAYOUT_UV, vkMeshLoader::VERTEX_LAYOUT_COLOR, vkMeshLoader::VERTEX_LAYOUT_NORMAL, vkMeshLoader::VERTEX_LAYOUT_TANGENT }; class VulkanExample : public VulkanExampleBase { public: bool debugDisplay = false; bool enableShadows = true; // Keep depth range as small as possible // for better shadow map precision float zNear = 0.1f; float zFar = 64.0f; float lightFOV = 100.0f; // Depth bias (and slope) are used to avoid shadowing artefacts float depthBiasConstant = 1.25f; float depthBiasSlope = 1.75f; struct { struct { vkTools::VulkanTexture colorMap; vkTools::VulkanTexture normalMap; } model; struct { vkTools::VulkanTexture colorMap; vkTools::VulkanTexture normalMap; } background; } textures; struct { vkMeshLoader::MeshBuffer model; vkMeshLoader::MeshBuffer background; vkMeshLoader::MeshBuffer quad; } meshes; struct { VkPipelineVertexInputStateCreateInfo inputState; std::vector bindingDescriptions; std::vector attributeDescriptions; } vertices; struct { glm::mat4 projection; glm::mat4 model; glm::mat4 view; glm::vec4 instancePos[3]; int layer; } uboVS, uboOffscreenVS; // This UBO stores the shadow matrices for all of the light sources // The matrices are indexed using geometry shader instancing // The instancePos is used to place the models using instanced draws struct { glm::mat4 mvp[LIGHT_COUNT]; glm::vec4 instancePos[3]; } uboShadowGS; struct Light { glm::vec4 position; glm::vec4 target; glm::vec4 color; glm::mat4 viewMatrix; }; struct { glm::vec4 viewPos; Light lights[LIGHT_COUNT]; uint32_t useShadows = 1; } uboFragmentLights; struct { vk::Buffer vsFullScreen; vk::Buffer vsOffscreen; vk::Buffer fsLights; vk::Buffer uboShadowGS; } uniformBuffers; struct { VkPipeline deferred; VkPipeline offscreen; VkPipeline debug; VkPipeline shadowpass; } pipelines; struct { //todo: rename, shared with deferred and shadow pass VkPipelineLayout deferred; VkPipelineLayout offscreen; } pipelineLayouts; struct { VkDescriptorSet model; VkDescriptorSet background; VkDescriptorSet shadow; } descriptorSets; VkDescriptorSet descriptorSet; VkDescriptorSetLayout descriptorSetLayout; struct { // Framebuffer resources for the deferred pass vk::Framebuffer *deferred; // Framebuffer resources for the shadow pass vk::Framebuffer *shadow; } frameBuffers; struct { VkCommandBuffer deferred = VK_NULL_HANDLE; } commandBuffers; // Semaphore used to synchronize between offscreen and final scene rendering VkSemaphore offscreenSemaphore = VK_NULL_HANDLE; VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION) { enableTextOverlay = true; title = "Vulkan Example - Deferred shading with shadows (2016 by Sascha Willems)"; camera.type = Camera::CameraType::firstperson; #if defined(__ANDROID__) camera.movementSpeed = 2.5f; #else camera.movementSpeed = 5.0f; camera.rotationSpeed = 0.25f; #endif camera.position = { 2.15f, 0.3f, -8.75f }; camera.setRotation(glm::vec3(-0.75f, 12.5f, 0.0f)); camera.setPerspective(60.0f, (float)width / (float)height, zNear, zFar); timerSpeed *= 0.25f; paused = true; // Device features to be enabled for this example enabledFeatures.geometryShader = VK_TRUE; } ~VulkanExample() { // Frame buffers if (frameBuffers.deferred) { delete frameBuffers.deferred; } if (frameBuffers.shadow) { delete frameBuffers.shadow; } vkDestroyPipeline(device, pipelines.deferred, nullptr); vkDestroyPipeline(device, pipelines.offscreen, nullptr); vkDestroyPipeline(device, pipelines.shadowpass, nullptr); vkDestroyPipeline(device, pipelines.debug, nullptr); vkDestroyPipelineLayout(device, pipelineLayouts.deferred, nullptr); vkDestroyPipelineLayout(device, pipelineLayouts.offscreen, nullptr); vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr); // Meshes vkMeshLoader::freeMeshBufferResources(device, &meshes.model); vkMeshLoader::freeMeshBufferResources(device, &meshes.background); vkMeshLoader::freeMeshBufferResources(device, &meshes.quad); // Uniform buffers uniformBuffers.vsOffscreen.destroy(); uniformBuffers.vsFullScreen.destroy(); uniformBuffers.fsLights.destroy(); uniformBuffers.uboShadowGS.destroy(); vkFreeCommandBuffers(device, cmdPool, 1, &commandBuffers.deferred); // Textures textureLoader->destroyTexture(textures.model.colorMap); textureLoader->destroyTexture(textures.model.normalMap); textureLoader->destroyTexture(textures.background.colorMap); textureLoader->destroyTexture(textures.background.normalMap); vkDestroySemaphore(device, offscreenSemaphore, nullptr); } // Prepare a layered shadow map with each layer containing depth from a light's point of view // The shadow mapping pass uses geometry shader instancing to output the scene from the different // light sources' point of view to the layers of the depth attachment in one single pass void shadowSetup() { frameBuffers.shadow = new vk::Framebuffer(vulkanDevice); frameBuffers.shadow->width = SHADOWMAP_DIM; frameBuffers.shadow->height = SHADOWMAP_DIM; // Create a layered depth attachment for rendering the depth maps from the lights' point of view // Each layer corresponds to one of the lights // The actual output to the separate layers is done in the geometry shader using shader instancing // We will pass the matrices of the lights to the GS that selects the layer by the current invocation vk::AttachmentCreateInfo attachmentInfo = {}; attachmentInfo.format = SHADOWMAP_FORMAT; attachmentInfo.width = SHADOWMAP_DIM; attachmentInfo.height = SHADOWMAP_DIM; attachmentInfo.layerCount = LIGHT_COUNT; attachmentInfo.usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | VK_IMAGE_USAGE_SAMPLED_BIT; frameBuffers.shadow->addAttachment(attachmentInfo); // Create sampler to sample from to depth attachment // Used to sample in the fragment shader for shadowed rendering VK_CHECK_RESULT(frameBuffers.shadow->createSampler(VK_FILTER_LINEAR, VK_FILTER_LINEAR, VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE)); // Create default renderpass for the framebuffer VK_CHECK_RESULT(frameBuffers.shadow->createRenderPass()); VkCommandBuffer cmdBuf = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true); vkTools::setImageLayout( cmdBuf, frameBuffers.shadow->attachments[0].image, VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL, frameBuffers.shadow->attachments[0].subresourceRange); vulkanDevice->flushCommandBuffer(cmdBuf, queue); } // Prepare the framebuffer for offscreen rendering with multiple attachments used as render targets inside the fragment shaders void deferredSetup() { frameBuffers.deferred = new vk::Framebuffer(vulkanDevice); frameBuffers.deferred->width = FB_DIM; frameBuffers.deferred->height = FB_DIM; // Four attachments (3 color, 1 depth) vk::AttachmentCreateInfo attachmentInfo = {}; attachmentInfo.width = FB_DIM; attachmentInfo.height = FB_DIM; attachmentInfo.layerCount = 1; attachmentInfo.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_SAMPLED_BIT; // Color attachments // Attachment 0: (World space) Positions attachmentInfo.format = VK_FORMAT_R16G16B16A16_SFLOAT; frameBuffers.deferred->addAttachment(attachmentInfo); // Attachment 1: (World space) Normals attachmentInfo.format = VK_FORMAT_R16G16B16A16_SFLOAT; frameBuffers.deferred->addAttachment(attachmentInfo); // Attachment 2: Albedo (color) attachmentInfo.format = VK_FORMAT_R8G8B8A8_UNORM; frameBuffers.deferred->addAttachment(attachmentInfo); // Depth attachment // Find a suitable depth format VkFormat attDepthFormat; VkBool32 validDepthFormat = vkTools::getSupportedDepthFormat(physicalDevice, &attDepthFormat); assert(validDepthFormat); attachmentInfo.format = attDepthFormat; attachmentInfo.usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT; frameBuffers.deferred->addAttachment(attachmentInfo); // Create sampler to sample from the color attachments VK_CHECK_RESULT(frameBuffers.deferred->createSampler(VK_FILTER_NEAREST, VK_FILTER_NEAREST, VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE)); // Create default renderpass for the framebuffer VK_CHECK_RESULT(frameBuffers.deferred->createRenderPass()); } // Put render commands for the scene into the given command buffer void renderScene(VkCommandBuffer cmdBuffer, bool shadow) { VkDeviceSize offsets[1] = { 0 }; // Background vkCmdBindDescriptorSets(cmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.offscreen, 0, 1, shadow ? &descriptorSets.shadow : &descriptorSets.background, 0, NULL); vkCmdBindVertexBuffers(cmdBuffer, VERTEX_BUFFER_BIND_ID, 1, &meshes.background.vertices.buf, offsets); vkCmdBindIndexBuffer(cmdBuffer, meshes.background.indices.buf, 0, VK_INDEX_TYPE_UINT32); vkCmdDrawIndexed(cmdBuffer, meshes.background.indexCount, 1, 0, 0, 0); // Objects vkCmdBindDescriptorSets(cmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.offscreen, 0, 1, shadow ? &descriptorSets.shadow : &descriptorSets.model, 0, NULL); vkCmdBindVertexBuffers(cmdBuffer, VERTEX_BUFFER_BIND_ID, 1, &meshes.model.vertices.buf, offsets); vkCmdBindIndexBuffer(cmdBuffer, meshes.model.indices.buf, 0, VK_INDEX_TYPE_UINT32); vkCmdDrawIndexed(cmdBuffer, meshes.model.indexCount, 3, 0, 0, 0); } // Build a secondary command buffer for rendering the scene values to the offscreen frame buffer attachments void buildDeferredCommandBuffer() { if (commandBuffers.deferred == VK_NULL_HANDLE) { commandBuffers.deferred = VulkanExampleBase::createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, false); } // Create a semaphore used to synchronize offscreen rendering and usage VkSemaphoreCreateInfo semaphoreCreateInfo = vkTools::initializers::semaphoreCreateInfo(); VK_CHECK_RESULT(vkCreateSemaphore(device, &semaphoreCreateInfo, nullptr, &offscreenSemaphore)); VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo(); VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo(); std::array clearValues = {}; VkViewport viewport; VkRect2D scissor; // First pass: Shadow map generation // ------------------------------------------------------------------------------------------------------- clearValues[0].depthStencil = { 1.0f, 0 }; renderPassBeginInfo.renderPass = frameBuffers.shadow->renderPass; renderPassBeginInfo.framebuffer = frameBuffers.shadow->framebuffer; renderPassBeginInfo.renderArea.extent.width = frameBuffers.shadow->width; renderPassBeginInfo.renderArea.extent.height = frameBuffers.shadow->height; renderPassBeginInfo.clearValueCount = 1; renderPassBeginInfo.pClearValues = clearValues.data(); VK_CHECK_RESULT(vkBeginCommandBuffer(commandBuffers.deferred, &cmdBufInfo)); viewport = vkTools::initializers::viewport((float)frameBuffers.shadow->width, (float)frameBuffers.shadow->height, 0.0f, 1.0f); vkCmdSetViewport(commandBuffers.deferred, 0, 1, &viewport); scissor = vkTools::initializers::rect2D(frameBuffers.shadow->width, frameBuffers.shadow->height, 0, 0); vkCmdSetScissor(commandBuffers.deferred, 0, 1, &scissor); // Set depth bias (aka "Polygon offset") vkCmdSetDepthBias( commandBuffers.deferred, depthBiasConstant, 0.0f, depthBiasSlope); vkCmdBeginRenderPass(commandBuffers.deferred, &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); vkCmdBindPipeline(commandBuffers.deferred, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.shadowpass); renderScene(commandBuffers.deferred, true); vkCmdEndRenderPass(commandBuffers.deferred); // Second pass: Deferred calculations // ------------------------------------------------------------------------------------------------------- // Clear values for all attachments written in the fragment sahder clearValues[0].color = { { 0.0f, 0.0f, 0.0f, 0.0f } }; clearValues[1].color = { { 0.0f, 0.0f, 0.0f, 0.0f } }; clearValues[2].color = { { 0.0f, 0.0f, 0.0f, 0.0f } }; clearValues[3].depthStencil = { 1.0f, 0 }; renderPassBeginInfo.renderPass = frameBuffers.deferred->renderPass; renderPassBeginInfo.framebuffer = frameBuffers.deferred->framebuffer; renderPassBeginInfo.renderArea.extent.width = frameBuffers.deferred->width; renderPassBeginInfo.renderArea.extent.height = frameBuffers.deferred->height; renderPassBeginInfo.clearValueCount = static_cast(clearValues.size()); renderPassBeginInfo.pClearValues = clearValues.data(); vkCmdBeginRenderPass(commandBuffers.deferred, &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); viewport = vkTools::initializers::viewport((float)frameBuffers.deferred->width, (float)frameBuffers.deferred->height, 0.0f, 1.0f); vkCmdSetViewport(commandBuffers.deferred, 0, 1, &viewport); scissor = vkTools::initializers::rect2D(frameBuffers.deferred->width, frameBuffers.deferred->height, 0, 0); vkCmdSetScissor(commandBuffers.deferred, 0, 1, &scissor); vkCmdBindPipeline(commandBuffers.deferred, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.offscreen); renderScene(commandBuffers.deferred, false); vkCmdEndRenderPass(commandBuffers.deferred); VK_CHECK_RESULT(vkEndCommandBuffer(commandBuffers.deferred)); } void loadTextures() { textureLoader->loadTexture(getAssetPath() + "models/armor/colormap.ktx", VK_FORMAT_BC3_UNORM_BLOCK, &textures.model.colorMap); textureLoader->loadTexture(getAssetPath() + "models/armor/normalmap.ktx", VK_FORMAT_BC3_UNORM_BLOCK, &textures.model.normalMap); textureLoader->loadTexture(getAssetPath() + "textures/pattern_57_diffuse_bc3.ktx", VK_FORMAT_BC3_UNORM_BLOCK, &textures.background.colorMap); textureLoader->loadTexture(getAssetPath() + "textures/pattern_57_normal_bc3.ktx", VK_FORMAT_BC3_UNORM_BLOCK, &textures.background.normalMap); } void reBuildCommandBuffers() { if (!checkCommandBuffers()) { destroyCommandBuffers(); createCommandBuffers(); } buildCommandBuffers(); } void buildCommandBuffers() { VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo(); VkClearValue clearValues[2]; clearValues[0].color = { { 0.0f, 0.0f, 0.2f, 0.0f } }; clearValues[1].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo(); renderPassBeginInfo.renderPass = renderPass; renderPassBeginInfo.renderArea.offset.x = 0; renderPassBeginInfo.renderArea.offset.y = 0; renderPassBeginInfo.renderArea.extent.width = width; renderPassBeginInfo.renderArea.extent.height = height; renderPassBeginInfo.clearValueCount = 2; renderPassBeginInfo.pClearValues = clearValues; for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) { // Set target frame buffer renderPassBeginInfo.framebuffer = VulkanExampleBase::frameBuffers[i]; VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo)); vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); VkViewport viewport = vkTools::initializers::viewport((float)width, (float)height, 0.0f, 1.0f); vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); VkRect2D scissor = vkTools::initializers::rect2D(width, height, 0, 0); vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor); VkDeviceSize offsets[1] = { 0 }; vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.deferred, 0, 1, &descriptorSet, 0, NULL); // Final composition as full screen quad vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.deferred); vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &meshes.quad.vertices.buf, offsets); vkCmdBindIndexBuffer(drawCmdBuffers[i], meshes.quad.indices.buf, 0, VK_INDEX_TYPE_UINT32); vkCmdDrawIndexed(drawCmdBuffers[i], 6, 1, 0, 0, 0); if (debugDisplay) { // Visualize depth maps vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.debug); vkCmdDrawIndexed(drawCmdBuffers[i], 6, LIGHT_COUNT, 0, 0, 0); } vkCmdEndRenderPass(drawCmdBuffers[i]); VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i])); } } void loadMeshes() { loadMesh(getAssetPath() + "models/armor/armor.dae", &meshes.model, vertexLayout, 1.0f); vkMeshLoader::MeshCreateInfo meshCreateInfo; meshCreateInfo.scale = glm::vec3(15.0f); meshCreateInfo.uvscale = glm::vec2(1.0f, 1.5f); meshCreateInfo.center = glm::vec3(0.0f, 2.3f, 0.0f); loadMesh(getAssetPath() + "models/openbox.dae", &meshes.background, vertexLayout, &meshCreateInfo); } /** @brief Create a single quad for fullscreen deferred pass and debug passes (debug pass uses instancing for light visualization) */ void generateQuads() { struct Vertex { float pos[3]; float uv[2]; float col[3]; float normal[3]; float tangent[3]; }; std::vector vertexBuffer; vertexBuffer.push_back({ { 1.0f, 1.0f, 0.0f },{ 1.0f, 1.0f },{ 1.0f, 1.0f, 1.0f },{ 0.0f, 0.0f, 0.0f } }); vertexBuffer.push_back({ { 0.0f, 1.0f, 0.0f },{ 0.0f, 1.0f },{ 1.0f, 1.0f, 1.0f },{ 0.0f, 0.0f, 0.0f } }); vertexBuffer.push_back({ { 0.0f, 0.0f, 0.0f },{ 0.0f, 0.0f },{ 1.0f, 1.0f, 1.0f },{ 0.0f, 0.0f, 0.0f } }); vertexBuffer.push_back({ { 1.0f, 0.0f, 0.0f },{ 1.0f, 0.0f },{ 1.0f, 1.0f, 1.0f },{ 0.0f, 0.0f, 0.0f } }); VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_VERTEX_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, vertexBuffer.size() * sizeof(Vertex), &meshes.quad.vertices.buf, &meshes.quad.vertices.mem, vertexBuffer.data())); // Setup indices std::vector indexBuffer = { 0,1,2, 2,3,0 }; for (uint32_t i = 0; i < 3; ++i) { uint32_t indices[6] = { 0,1,2, 2,3,0 }; for (auto index : indices) { indexBuffer.push_back(i * 4 + index); } } meshes.quad.indexCount = static_cast(indexBuffer.size()); VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_INDEX_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, indexBuffer.size() * sizeof(uint32_t), &meshes.quad.indices.buf, &meshes.quad.indices.mem, indexBuffer.data())); } void setupVertexDescriptions() { // Binding description vertices.bindingDescriptions.resize(1); vertices.bindingDescriptions[0] = vkTools::initializers::vertexInputBindingDescription( VERTEX_BUFFER_BIND_ID, vkMeshLoader::vertexSize(vertexLayout), VK_VERTEX_INPUT_RATE_VERTEX); // Attribute descriptions vertices.attributeDescriptions.clear(); vkMeshLoader::getVertexInputAttributeDescriptions( vertexLayout, vertices.attributeDescriptions, VERTEX_BUFFER_BIND_ID); vertices.inputState = vkTools::initializers::pipelineVertexInputStateCreateInfo(); vertices.inputState.vertexBindingDescriptionCount = static_cast(vertices.bindingDescriptions.size()); vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data(); vertices.inputState.vertexAttributeDescriptionCount = static_cast(vertices.attributeDescriptions.size()); vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data(); } void setupDescriptorPool() { std::vector poolSizes = { vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 12), //todo: separate set layouts vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 16) }; VkDescriptorPoolCreateInfo descriptorPoolInfo = vkTools::initializers::descriptorPoolCreateInfo( static_cast(poolSizes.size()), poolSizes.data(), 4); VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool)); } void setupDescriptorSetLayout() { // todo: split for clarity, esp. with GS instancing // Deferred shading layout (Shared with debug display) std::vector setLayoutBindings = { // Binding 0: Vertex shader uniform buffer vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_GEOMETRY_BIT, 0), // Binding 1: Position texture vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1), // Binding 2: Normals texture vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 2), // Binding 3: Albedo texture vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 3), // Binding 4: Fragment shader uniform buffer vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_FRAGMENT_BIT, 4), // Binding 5: Shadow map vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 5), }; VkDescriptorSetLayoutCreateInfo descriptorLayout = vkTools::initializers::descriptorSetLayoutCreateInfo( setLayoutBindings.data(), static_cast(setLayoutBindings.size())); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout)); VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = vkTools::initializers::pipelineLayoutCreateInfo( &descriptorSetLayout, 1); VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayouts.deferred)); // Offscreen (scene) rendering pipeline layout VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayouts.offscreen)); } void setupDescriptorSet() { std::vector writeDescriptorSets; // Textured quad descriptor set VkDescriptorSetAllocateInfo allocInfo = vkTools::initializers::descriptorSetAllocateInfo( descriptorPool, &descriptorSetLayout, 1); VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet)); // Image descriptors for the offscreen color attachments VkDescriptorImageInfo texDescriptorPosition = vkTools::initializers::descriptorImageInfo( frameBuffers.deferred->sampler, frameBuffers.deferred->attachments[0].view, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL); VkDescriptorImageInfo texDescriptorNormal = vkTools::initializers::descriptorImageInfo( frameBuffers.deferred->sampler, frameBuffers.deferred->attachments[1].view, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL); VkDescriptorImageInfo texDescriptorAlbedo = vkTools::initializers::descriptorImageInfo( frameBuffers.deferred->sampler, frameBuffers.deferred->attachments[2].view, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL); VkDescriptorImageInfo texDescriptorShadowMap = vkTools::initializers::descriptorImageInfo( frameBuffers.shadow->sampler, frameBuffers.shadow->attachments[0].view, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL); writeDescriptorSets = { // Binding 0: Vertex shader uniform buffer vkTools::initializers::writeDescriptorSet( descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.vsFullScreen.descriptor), // Binding 1: World space position texture vkTools::initializers::writeDescriptorSet( descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &texDescriptorPosition), // Binding 2: World space normals texture vkTools::initializers::writeDescriptorSet( descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2, &texDescriptorNormal), // Binding 3: Albedo texture vkTools::initializers::writeDescriptorSet( descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 3, &texDescriptorAlbedo), // Binding 4: Fragment shader uniform buffer vkTools::initializers::writeDescriptorSet( descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 4, &uniformBuffers.fsLights.descriptor), // Binding 5: Shadow map vkTools::initializers::writeDescriptorSet( descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 5, &texDescriptorShadowMap), }; vkUpdateDescriptorSets(device, static_cast(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL); // Offscreen (scene) // Model VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.model)); writeDescriptorSets = { // Binding 0: Vertex shader uniform buffer vkTools::initializers::writeDescriptorSet( descriptorSets.model, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.vsOffscreen.descriptor), // Binding 1: Color map vkTools::initializers::writeDescriptorSet( descriptorSets.model, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &textures.model.colorMap.descriptor), // Binding 2: Normal map vkTools::initializers::writeDescriptorSet( descriptorSets.model, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2, &textures.model.normalMap.descriptor) }; vkUpdateDescriptorSets(device, static_cast(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL); // Background VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.background)); writeDescriptorSets = { // Binding 0: Vertex shader uniform buffer vkTools::initializers::writeDescriptorSet( descriptorSets.background, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.vsOffscreen.descriptor), // Binding 1: Color map vkTools::initializers::writeDescriptorSet( descriptorSets.background, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &textures.background.colorMap.descriptor), // Binding 2: Normal map vkTools::initializers::writeDescriptorSet( descriptorSets.background, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2, &textures.background.normalMap.descriptor) }; vkUpdateDescriptorSets(device, static_cast(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL); // Shadow mapping VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.shadow)); writeDescriptorSets = { // Binding 0: Vertex shader uniform buffer vkTools::initializers::writeDescriptorSet( descriptorSets.shadow, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.uboShadowGS.descriptor), }; vkUpdateDescriptorSets(device, static_cast(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL); } void preparePipelines() { VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vkTools::initializers::pipelineInputAssemblyStateCreateInfo( VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE); VkPipelineRasterizationStateCreateInfo rasterizationState = vkTools::initializers::pipelineRasterizationStateCreateInfo( VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_CLOCKWISE, 0); VkPipelineColorBlendAttachmentState blendAttachmentState = vkTools::initializers::pipelineColorBlendAttachmentState( 0xf, VK_FALSE); VkPipelineColorBlendStateCreateInfo colorBlendState = vkTools::initializers::pipelineColorBlendStateCreateInfo( 1, &blendAttachmentState); VkPipelineDepthStencilStateCreateInfo depthStencilState = vkTools::initializers::pipelineDepthStencilStateCreateInfo( VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL); VkPipelineViewportStateCreateInfo viewportState = vkTools::initializers::pipelineViewportStateCreateInfo(1, 1, 0); VkPipelineMultisampleStateCreateInfo multisampleState = vkTools::initializers::pipelineMultisampleStateCreateInfo( VK_SAMPLE_COUNT_1_BIT, 0); std::vector dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR }; VkPipelineDynamicStateCreateInfo dynamicState = vkTools::initializers::pipelineDynamicStateCreateInfo( dynamicStateEnables.data(), static_cast(dynamicStateEnables.size()), 0); // Final fullscreen pass pipeline std::array shaderStages; shaderStages[0] = loadShader(getAssetPath() + "shaders/deferredshadows/deferred.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getAssetPath() + "shaders/deferredshadows/deferred.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); VkGraphicsPipelineCreateInfo pipelineCreateInfo = vkTools::initializers::pipelineCreateInfo( pipelineLayouts.deferred, renderPass, 0); pipelineCreateInfo.pVertexInputState = &vertices.inputState; pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState; pipelineCreateInfo.pRasterizationState = &rasterizationState; pipelineCreateInfo.pColorBlendState = &colorBlendState; pipelineCreateInfo.pMultisampleState = &multisampleState; pipelineCreateInfo.pViewportState = &viewportState; pipelineCreateInfo.pDepthStencilState = &depthStencilState; pipelineCreateInfo.pDynamicState = &dynamicState; pipelineCreateInfo.stageCount = static_cast(shaderStages.size()); pipelineCreateInfo.pStages = shaderStages.data(); VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.deferred)); // Debug display pipeline shaderStages[0] = loadShader(getAssetPath() + "shaders/deferredshadows/debug.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getAssetPath() + "shaders/deferredshadows/debug.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.debug)); // Offscreen pipeline shaderStages[0] = loadShader(getAssetPath() + "shaders/deferredshadows/mrt.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getAssetPath() + "shaders/deferredshadows/mrt.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); // Separate render pass pipelineCreateInfo.renderPass = frameBuffers.deferred->renderPass; // Separate layout pipelineCreateInfo.layout = pipelineLayouts.offscreen; // Blend attachment states required for all color attachments // This is important, as color write mask will otherwise be 0x0 and you // won't see anything rendered to the attachment std::array blendAttachmentStates = { vkTools::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE), vkTools::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE), vkTools::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE) }; colorBlendState.attachmentCount = static_cast(blendAttachmentStates.size()); colorBlendState.pAttachments = blendAttachmentStates.data(); VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.offscreen)); // Shadow mapping pipeline // The shadow mapping pipeline uses geometry shader instancing (invoctations layout modifier) to output // shadow maps for multiple lights sources into the different shadiw map layers in one single render pass std::array shadowStages; shadowStages[0] = loadShader(getAssetPath() + "shaders/deferredshadows/shadow.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shadowStages[1] = loadShader(getAssetPath() + "shaders/deferredshadows/shadow.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); shadowStages[2] = loadShader(getAssetPath() + "shaders/deferredshadows/shadow.geom.spv", VK_SHADER_STAGE_GEOMETRY_BIT); pipelineCreateInfo.pStages = shadowStages.data(); pipelineCreateInfo.stageCount = static_cast(shadowStages.size()); // Shadow pass doesn't use any color attachments colorBlendState.attachmentCount = 0; colorBlendState.pAttachments = nullptr; // Cull front faces rasterizationState.cullMode = VK_CULL_MODE_FRONT_BIT; depthStencilState.depthCompareOp = VK_COMPARE_OP_LESS_OR_EQUAL; // Enable depth bias rasterizationState.depthBiasEnable = VK_TRUE; // Add depth bias to dynamic state, so we can change it at runtime dynamicStateEnables.push_back(VK_DYNAMIC_STATE_DEPTH_BIAS); dynamicState = vkTools::initializers::pipelineDynamicStateCreateInfo( dynamicStateEnables.data(), static_cast(dynamicStateEnables.size()), 0); // Reset blend attachment state pipelineCreateInfo.renderPass = frameBuffers.shadow->renderPass; VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.shadowpass)); } // Prepare and initialize uniform buffer containing shader uniforms void prepareUniformBuffers() { // Fullscreen vertex shader VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBuffers.vsFullScreen, sizeof(uboVS))); // Deferred vertex shader VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBuffers.vsOffscreen, sizeof(uboOffscreenVS))); // Deferred fragment shader VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBuffers.fsLights, sizeof(uboFragmentLights))); // Shadow map vertex shader (matrices from shadow's pov) VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBuffers.uboShadowGS, sizeof(uboShadowGS))); // Map persistent VK_CHECK_RESULT(uniformBuffers.vsFullScreen.map()); VK_CHECK_RESULT(uniformBuffers.vsOffscreen.map()); VK_CHECK_RESULT(uniformBuffers.fsLights.map()); VK_CHECK_RESULT(uniformBuffers.uboShadowGS.map()); // Init some values uboOffscreenVS.instancePos[0] = glm::vec4(0.0f); uboOffscreenVS.instancePos[1] = glm::vec4(-4.0f, 0.0, -4.0f, 0.0f); uboOffscreenVS.instancePos[2] = glm::vec4(4.0f, 0.0, -4.0f, 0.0f); uboOffscreenVS.instancePos[1] = glm::vec4(-7.0f, 0.0, -4.0f, 0.0f); uboOffscreenVS.instancePos[2] = glm::vec4(4.0f, 0.0, -6.0f, 0.0f); // Update updateUniformBuffersScreen(); updateUniformBufferDeferredMatrices(); updateUniformBufferDeferredLights(); } void updateUniformBuffersScreen() { uboVS.projection = glm::ortho(0.0f, 1.0f, 0.0f, 1.0f, -1.0f, 1.0f); uboVS.model = glm::mat4(); memcpy(uniformBuffers.vsFullScreen.mapped, &uboVS, sizeof(uboVS)); } void updateUniformBufferDeferredMatrices() { uboOffscreenVS.projection = camera.matrices.perspective; uboOffscreenVS.view = camera.matrices.view; uboOffscreenVS.model = glm::mat4(); memcpy(uniformBuffers.vsOffscreen.mapped, &uboOffscreenVS, sizeof(uboOffscreenVS)); } Light initLight(glm::vec3 pos, glm::vec3 target, glm::vec3 color) { Light light; light.position = glm::vec4(pos, 1.0f); light.target = glm::vec4(target, 0.0f); light.color = glm::vec4(color, 0.0f); return light; } void initLights() { uboFragmentLights.lights[0] = initLight(glm::vec3(-14.0f, -0.5f, 15.0f), glm::vec3(-2.0f, 0.0f, 0.0f), glm::vec3(1.0f, 0.5f, 0.5f)); uboFragmentLights.lights[1] = initLight(glm::vec3(14.0f, -4.0f, 12.0f), glm::vec3(2.0f, 0.0f, 0.0f), glm::vec3(0.0f, 0.0f, 1.0f)); uboFragmentLights.lights[2] = initLight(glm::vec3(0.0f, -10.0f, 4.0f), glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(1.0f, 1.0f, 1.0f)); } // Update fragment shader light position uniform block void updateUniformBufferDeferredLights() { // Animate //if (!paused) { uboFragmentLights.lights[0].position.x = -14.0f + std::abs(sin(glm::radians(timer * 360.0f)) * 20.0f); uboFragmentLights.lights[0].position.z = 15.0f + cos(glm::radians(timer *360.0f)) * 1.0f; uboFragmentLights.lights[1].position.x = 14.0f - std::abs(sin(glm::radians(timer * 360.0f)) * 2.5f); uboFragmentLights.lights[1].position.z = 13.0f + cos(glm::radians(timer *360.0f)) * 4.0f; uboFragmentLights.lights[2].position.x = 0.0f + sin(glm::radians(timer *360.0f)) * 4.0f; uboFragmentLights.lights[2].position.z = 4.0f + cos(glm::radians(timer *360.0f)) * 2.0f; } for (uint32_t i = 0; i < LIGHT_COUNT; i++) { // mvp from light's pov (for shadows) glm::mat4 shadowProj = glm::perspective(glm::radians(lightFOV), 1.0f, zNear, zFar); glm::mat4 shadowView = glm::lookAt(glm::vec3(uboFragmentLights.lights[i].position), glm::vec3(uboFragmentLights.lights[i].target), glm::vec3(0.0f, 1.0f, 0.0f)); glm::mat4 shadowModel = glm::mat4(); uboShadowGS.mvp[i] = shadowProj * shadowView * shadowModel; uboFragmentLights.lights[i].viewMatrix = uboShadowGS.mvp[i]; } uint8_t *pData; memcpy(uboShadowGS.instancePos, uboOffscreenVS.instancePos, sizeof(uboOffscreenVS.instancePos)); memcpy(uniformBuffers.uboShadowGS.mapped, &uboShadowGS, sizeof(uboShadowGS)); uboFragmentLights.viewPos = glm::vec4(camera.position, 0.0f) * glm::vec4(-1.0f, 1.0f, -1.0f, 1.0f);; memcpy(uniformBuffers.fsLights.mapped, &uboFragmentLights, sizeof(uboFragmentLights)); } void draw() { VulkanExampleBase::prepareFrame(); // Offscreen rendering // Wait for swap chain presentation to finish submitInfo.pWaitSemaphores = &semaphores.presentComplete; // Signal ready with offscreen semaphore submitInfo.pSignalSemaphores = &offscreenSemaphore; // Submit work // Shadow map pass submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &commandBuffers.deferred; VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE)); // Scene rendering // Wait for offscreen semaphore submitInfo.pWaitSemaphores = &offscreenSemaphore; // Signal ready with render complete semaphpre submitInfo.pSignalSemaphores = &semaphores.renderComplete; // Submit work submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer]; VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE)); VulkanExampleBase::submitFrame(); } void prepare() { VulkanExampleBase::prepare(); loadTextures(); generateQuads(); loadMeshes(); setupVertexDescriptions(); deferredSetup(); shadowSetup(); initLights(); prepareUniformBuffers(); setupDescriptorSetLayout(); preparePipelines(); setupDescriptorPool(); setupDescriptorSet(); buildCommandBuffers(); buildDeferredCommandBuffer(); prepared = true; } virtual void render() { if (!prepared) return; draw(); updateUniformBufferDeferredLights(); } virtual void viewChanged() { updateUniformBufferDeferredMatrices(); } void toggleDebugDisplay() { debugDisplay = !debugDisplay; reBuildCommandBuffers(); updateUniformBuffersScreen(); } void toggleShadows() { uboFragmentLights.useShadows = !uboFragmentLights.useShadows; updateUniformBufferDeferredLights(); } virtual void keyPressed(uint32_t keyCode) { switch (keyCode) { case KEY_F1: case GAMEPAD_BUTTON_A: toggleDebugDisplay(); updateTextOverlay(); break; case KEY_F2: case GAMEPAD_BUTTON_X: toggleShadows(); updateTextOverlay(); break; } } virtual void getOverlayText(VulkanTextOverlay *textOverlay) { #if defined(__ANDROID__) textOverlay->addText("Press \"Button A\" to toggle debug view", 5.0f, 85.0f, VulkanTextOverlay::alignLeft); textOverlay->addText("Press \"Button X\" to toggle shadows", 5.0f, 100.0f, VulkanTextOverlay::alignLeft); #else textOverlay->addText("Press \"F1\" to toggle debug view", 5.0f, 85.0f, VulkanTextOverlay::alignLeft); textOverlay->addText("Press \"F2\" to toggle shadows", 5.0f, 100.0f, VulkanTextOverlay::alignLeft); #endif } }; VULKAN_EXAMPLE_MAIN()