/* * Vulkan Example - Scene rendering * * Copyright (C) 2016 by Sascha Willems - www.saschawillems.de * * This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT) * * Summary: * Renders a scene made of multiple parts with different materials and textures. * * The example loads a scene made up of multiple parts into one vertex and index buffer to only * have one (big) memory allocation. In Vulkan it's advised to keep number of memory allocations * down and try to allocate large blocks of memory at once instead of having many small allocations. * * Every part has a separate material and multiple descriptor sets (set = x layout qualifier in GLSL) * are used to bind a uniform buffer with global matrices and the part's material's sampler at once. * * To demonstrate another way of passing data the example also uses push constants for passing * material properties. * * Note that this example is just one way of rendering a scene made up of multiple parts in Vulkan. */ #include #include #include #include #include #define GLM_FORCE_RADIANS #define GLM_FORCE_DEPTH_ZERO_TO_ONE #include #include #include #include #include #include #include #include #include "vulkanexamplebase.h" #include "VulkanTexture.hpp" #include "VulkanDevice.hpp" #include "VulkanBuffer.hpp" #define VERTEX_BUFFER_BIND_ID 0 #define ENABLE_VALIDATION false // Vertex layout used in this example struct Vertex { glm::vec3 pos; glm::vec3 normal; glm::vec2 uv; glm::vec3 color; }; // Scene related structs // Shader properites for a material // Will be passed to the shaders using push constant struct SceneMaterialProperties { glm::vec4 ambient; glm::vec4 diffuse; glm::vec4 specular; float opacity; }; // Stores info on the materials used in the scene struct SceneMaterial { std::string name; // Material properties SceneMaterialProperties properties; // The example only uses a diffuse channel vks::Texture2D diffuse; // The material's descriptor contains the material descriptors VkDescriptorSet descriptorSet; // Pointer to the pipeline used by this material VkPipeline *pipeline; }; // Stores per-mesh Vulkan resources struct ScenePart { // Index of first index in the scene buffer uint32_t indexBase; uint32_t indexCount; // Pointer to the material used by this mesh SceneMaterial *material; }; // Class for loading the scene and generating all Vulkan resources class Scene { private: vks::VulkanDevice *vulkanDevice; VkQueue queue; VkDescriptorPool descriptorPool; // We will be using separate descriptor sets (and bindings) // for material and scene related uniforms struct { VkDescriptorSetLayout material; VkDescriptorSetLayout scene; } descriptorSetLayouts; // We will be using one single index and vertex buffer // containing vertices and indices for all meshes in the scene // This allows us to keep memory allocations down vks::Buffer vertexBuffer; vks::Buffer indexBuffer; VkDescriptorSet descriptorSetScene; const aiScene* aScene; // Get materials from the assimp scene and map to our scene structures void loadMaterials() { materials.resize(aScene->mNumMaterials); for (size_t i = 0; i < materials.size(); i++) { materials[i] = {}; aiString name; aScene->mMaterials[i]->Get(AI_MATKEY_NAME, name); // Properties aiColor4D color; aScene->mMaterials[i]->Get(AI_MATKEY_COLOR_AMBIENT, color); materials[i].properties.ambient = glm::make_vec4(&color.r) + glm::vec4(0.1f); aScene->mMaterials[i]->Get(AI_MATKEY_COLOR_DIFFUSE, color); materials[i].properties.diffuse = glm::make_vec4(&color.r); aScene->mMaterials[i]->Get(AI_MATKEY_COLOR_SPECULAR, color); materials[i].properties.specular = glm::make_vec4(&color.r); aScene->mMaterials[i]->Get(AI_MATKEY_OPACITY, materials[i].properties.opacity); if ((materials[i].properties.opacity) > 0.0f) materials[i].properties.specular = glm::vec4(0.0f); materials[i].name = name.C_Str(); std::cout << "Material \"" << materials[i].name << "\"" << std::endl; // Textures std::string texFormatSuffix; VkFormat texFormat; // Get supported compressed texture format if (vulkanDevice->features.textureCompressionBC) { texFormatSuffix = "_bc3_unorm"; texFormat = VK_FORMAT_BC3_UNORM_BLOCK; } else if (vulkanDevice->features.textureCompressionASTC_LDR) { texFormatSuffix = "_astc_8x8_unorm"; texFormat = VK_FORMAT_ASTC_8x8_UNORM_BLOCK; } else if (vulkanDevice->features.textureCompressionETC2) { texFormatSuffix = "_etc2_unorm"; texFormat = VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK; } else { vks::tools::exitFatal("Device does not support any compressed texture format!", "Error"); } aiString texturefile; // Diffuse aScene->mMaterials[i]->GetTexture(aiTextureType_DIFFUSE, 0, &texturefile); if (aScene->mMaterials[i]->GetTextureCount(aiTextureType_DIFFUSE) > 0) { std::cout << " Diffuse: \"" << texturefile.C_Str() << "\"" << std::endl; std::string fileName = std::string(texturefile.C_Str()); std::replace(fileName.begin(), fileName.end(), '\\', '/'); fileName.insert(fileName.find(".ktx"), texFormatSuffix); materials[i].diffuse.loadFromFile(assetPath + fileName, texFormat, vulkanDevice, queue); } else { std::cout << " Material has no diffuse, using dummy texture!" << std::endl; // todo : separate pipeline and layout materials[i].diffuse.loadFromFile(assetPath + "dummy_rgba_unorm.ktx", VK_FORMAT_R8G8B8A8_UNORM, vulkanDevice, queue); } // For scenes with multiple textures per material we would need to check for additional texture types, e.g.: // aiTextureType_HEIGHT, aiTextureType_OPACITY, aiTextureType_SPECULAR, etc. // Assign pipeline materials[i].pipeline = (materials[i].properties.opacity == 0.0f) ? &pipelines.solid : &pipelines.blending; } // Generate descriptor sets for the materials // Descriptor pool std::vector poolSizes; poolSizes.push_back(vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, static_cast(materials.size()))); poolSizes.push_back(vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, static_cast(materials.size()))); VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo( static_cast(poolSizes.size()), poolSizes.data(), static_cast(materials.size()) + 1); VK_CHECK_RESULT(vkCreateDescriptorPool(vulkanDevice->logicalDevice, &descriptorPoolInfo, nullptr, &descriptorPool)); // Descriptor set and pipeline layouts std::vector setLayoutBindings; VkDescriptorSetLayoutCreateInfo descriptorLayout; // Set 0: Scene matrices setLayoutBindings.push_back(vks::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0)); descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo( setLayoutBindings.data(), static_cast(setLayoutBindings.size())); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(vulkanDevice->logicalDevice, &descriptorLayout, nullptr, &descriptorSetLayouts.scene)); // Set 1: Material data setLayoutBindings.clear(); setLayoutBindings.push_back(vks::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 0)); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(vulkanDevice->logicalDevice, &descriptorLayout, nullptr, &descriptorSetLayouts.material)); // Setup pipeline layout std::array setLayouts = { descriptorSetLayouts.scene, descriptorSetLayouts.material }; VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(setLayouts.data(), static_cast(setLayouts.size())); // We will be using a push constant block to pass material properties to the fragment shaders VkPushConstantRange pushConstantRange = vks::initializers::pushConstantRange( VK_SHADER_STAGE_FRAGMENT_BIT, sizeof(SceneMaterialProperties), 0); pipelineLayoutCreateInfo.pushConstantRangeCount = 1; pipelineLayoutCreateInfo.pPushConstantRanges = &pushConstantRange; VK_CHECK_RESULT(vkCreatePipelineLayout(vulkanDevice->logicalDevice, &pipelineLayoutCreateInfo, nullptr, &pipelineLayout)); // Material descriptor sets for (size_t i = 0; i < materials.size(); i++) { // Descriptor set VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo( descriptorPool, &descriptorSetLayouts.material, 1); VK_CHECK_RESULT(vkAllocateDescriptorSets(vulkanDevice->logicalDevice, &allocInfo, &materials[i].descriptorSet)); std::vector writeDescriptorSets; // todo : only use image sampler descriptor set and use one scene ubo for matrices // Binding 0: Diffuse texture writeDescriptorSets.push_back(vks::initializers::writeDescriptorSet( materials[i].descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 0, &materials[i].diffuse.descriptor)); vkUpdateDescriptorSets(vulkanDevice->logicalDevice, static_cast(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL); } // Scene descriptor set VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo( descriptorPool, &descriptorSetLayouts.scene, 1); VK_CHECK_RESULT(vkAllocateDescriptorSets(vulkanDevice->logicalDevice, &allocInfo, &descriptorSetScene)); std::vector writeDescriptorSets; // Binding 0 : Vertex shader uniform buffer writeDescriptorSets.push_back(vks::initializers::writeDescriptorSet( descriptorSetScene, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffer.descriptor)); vkUpdateDescriptorSets(vulkanDevice->logicalDevice, static_cast(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL); } // Load all meshes from the scene and generate the buffers for rendering them void loadMeshes(VkCommandBuffer copyCmd) { std::vector vertices; std::vector indices; uint32_t indexBase = 0; meshes.resize(aScene->mNumMeshes); for (uint32_t i = 0; i < meshes.size(); i++) { aiMesh *aMesh = aScene->mMeshes[i]; std::cout << "Mesh \"" << aMesh->mName.C_Str() << "\"" << std::endl; std::cout << " Material: \"" << materials[aMesh->mMaterialIndex].name << "\"" << std::endl; std::cout << " Faces: " << aMesh->mNumFaces << std::endl; meshes[i].material = &materials[aMesh->mMaterialIndex]; meshes[i].indexBase = indexBase; meshes[i].indexCount = aMesh->mNumFaces * 3; // Vertices bool hasUV = aMesh->HasTextureCoords(0); bool hasColor = aMesh->HasVertexColors(0); bool hasNormals = aMesh->HasNormals(); for (uint32_t v = 0; v < aMesh->mNumVertices; v++) { Vertex vertex; vertex.pos = glm::make_vec3(&aMesh->mVertices[v].x); vertex.pos.y = -vertex.pos.y; vertex.uv = hasUV ? glm::make_vec2(&aMesh->mTextureCoords[0][v].x) : glm::vec2(0.0f); vertex.normal = hasNormals ? glm::make_vec3(&aMesh->mNormals[v].x) : glm::vec3(0.0f); vertex.normal.y = -vertex.normal.y; vertex.color = hasColor ? glm::make_vec3(&aMesh->mColors[0][v].r) : glm::vec3(1.0f); vertices.push_back(vertex); } // Indices for (uint32_t f = 0; f < aMesh->mNumFaces; f++) { for (uint32_t j = 0; j < 3; j++) { indices.push_back(aMesh->mFaces[f].mIndices[j]); } } indexBase += aMesh->mNumFaces * 3; } // Create buffers // For better performance we only create one index and vertex buffer to keep number of memory allocations down size_t vertexDataSize = vertices.size() * sizeof(Vertex); size_t indexDataSize = indices.size() * sizeof(uint32_t); vks::Buffer vertexStaging, indexStaging; // Vertex buffer // Staging buffer VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &vertexStaging, static_cast(vertexDataSize), vertices.data())); // Target VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &vertexBuffer, static_cast(vertexDataSize))); // Index buffer VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &indexStaging, static_cast(indexDataSize), indices.data())); // Target VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_INDEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &indexBuffer, static_cast(indexDataSize))); // Copy VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo(); VK_CHECK_RESULT(vkBeginCommandBuffer(copyCmd, &cmdBufInfo)); VkBufferCopy copyRegion = {}; copyRegion.size = vertexDataSize; vkCmdCopyBuffer( copyCmd, vertexStaging.buffer, vertexBuffer.buffer, 1, ©Region); copyRegion.size = indexDataSize; vkCmdCopyBuffer( copyCmd, indexStaging.buffer, indexBuffer.buffer, 1, ©Region); VK_CHECK_RESULT(vkEndCommandBuffer(copyCmd)); VkSubmitInfo submitInfo = {}; submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = ©Cmd; VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE)); VK_CHECK_RESULT(vkQueueWaitIdle(queue)); //todo: fence vertexStaging.destroy(); indexStaging.destroy(); } public: #if defined(__ANDROID__) AAssetManager* assetManager = nullptr; #endif std::string assetPath = ""; std::vector materials; std::vector meshes; // Shared ubo containing matrices used by all // materials and meshes vks::Buffer uniformBuffer; struct UniformData { glm::mat4 projection; glm::mat4 view; glm::mat4 model; glm::vec4 lightPos = glm::vec4(1.25f, 8.35f, 0.0f, 0.0f); } uniformData; // Scene uses multiple pipelines struct { VkPipeline solid; VkPipeline blending; VkPipeline wireframe; } pipelines; // Shared pipeline layout VkPipelineLayout pipelineLayout; // For displaying only a single part of the scene bool renderSingleScenePart = false; int32_t scenePartIndex = 0; // Default constructor Scene(vks::VulkanDevice *vulkanDevice, VkQueue queue) { this->vulkanDevice = vulkanDevice; this->queue = queue; // Prepare uniform buffer for global matrices VkMemoryRequirements memReqs; VkMemoryAllocateInfo memAlloc = vks::initializers::memoryAllocateInfo(); VkBufferCreateInfo bufferCreateInfo = vks::initializers::bufferCreateInfo(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, sizeof(uniformData)); VK_CHECK_RESULT(vkCreateBuffer(vulkanDevice->logicalDevice, &bufferCreateInfo, nullptr, &uniformBuffer.buffer)); vkGetBufferMemoryRequirements(vulkanDevice->logicalDevice, uniformBuffer.buffer, &memReqs); memAlloc.allocationSize = memReqs.size; memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT); VK_CHECK_RESULT(vkAllocateMemory(vulkanDevice->logicalDevice, &memAlloc, nullptr, &uniformBuffer.memory)); VK_CHECK_RESULT(vkBindBufferMemory(vulkanDevice->logicalDevice, uniformBuffer.buffer, uniformBuffer.memory, 0)); VK_CHECK_RESULT(vkMapMemory(vulkanDevice->logicalDevice, uniformBuffer.memory, 0, sizeof(uniformData), 0, (void **)&uniformBuffer.mapped)); uniformBuffer.descriptor.offset = 0; uniformBuffer.descriptor.buffer = uniformBuffer.buffer; uniformBuffer.descriptor.range = sizeof(uniformData); uniformBuffer.device = vulkanDevice->logicalDevice; } // Default destructor ~Scene() { vertexBuffer.destroy(); indexBuffer.destroy(); for (auto material : materials) { material.diffuse.destroy(); } vkDestroyPipelineLayout(vulkanDevice->logicalDevice, pipelineLayout, nullptr); vkDestroyDescriptorSetLayout(vulkanDevice->logicalDevice, descriptorSetLayouts.material, nullptr); vkDestroyDescriptorSetLayout(vulkanDevice->logicalDevice, descriptorSetLayouts.scene, nullptr); vkDestroyDescriptorPool(vulkanDevice->logicalDevice, descriptorPool, nullptr); vkDestroyPipeline(vulkanDevice->logicalDevice, pipelines.solid, nullptr); vkDestroyPipeline(vulkanDevice->logicalDevice, pipelines.blending, nullptr); vkDestroyPipeline(vulkanDevice->logicalDevice, pipelines.wireframe, nullptr); uniformBuffer.destroy(); } void load(std::string filename, VkCommandBuffer copyCmd) { Assimp::Importer Importer; int flags = aiProcess_PreTransformVertices | aiProcess_Triangulate | aiProcess_GenNormals; #if defined(__ANDROID__) AAsset* asset = AAssetManager_open(assetManager, filename.c_str(), AASSET_MODE_STREAMING); assert(asset); size_t size = AAsset_getLength(asset); assert(size > 0); void *meshData = malloc(size); AAsset_read(asset, meshData, size); AAsset_close(asset); aScene = Importer.ReadFileFromMemory(meshData, size, flags); free(meshData); #else aScene = Importer.ReadFile(filename.c_str(), flags); #endif if (aScene) { loadMaterials(); loadMeshes(copyCmd); } else { printf("Error parsing '%s': '%s'\n", filename.c_str(), Importer.GetErrorString()); #if defined(__ANDROID__) LOGE("Error parsing '%s': '%s'", filename.c_str(), Importer.GetErrorString()); #endif } } // Renders the scene into an active command buffer // In a real world application we would do some visibility culling in here void render(VkCommandBuffer cmdBuffer, bool wireframe) { VkDeviceSize offsets[1] = { 0 }; // Bind scene vertex and index buffers vkCmdBindVertexBuffers(cmdBuffer, 0, 1, &vertexBuffer.buffer, offsets); vkCmdBindIndexBuffer(cmdBuffer, indexBuffer.buffer, 0, VK_INDEX_TYPE_UINT32); for (size_t i = 0; i < meshes.size(); i++) { if ((renderSingleScenePart) && (i != scenePartIndex)) continue; // todo : per material pipelines // vkCmdBindPipeline(cmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, *mesh.material->pipeline); // We will be using multiple descriptor sets for rendering // In GLSL the selection is done via the set and binding keywords // VS: layout (set = 0, binding = 0) uniform UBO; // FS: layout (set = 1, binding = 0) uniform sampler2D samplerColorMap; std::array descriptorSets; // Set 0: Scene descriptor set containing global matrices descriptorSets[0] = descriptorSetScene; // Set 1: Per-Material descriptor set containing bound images descriptorSets[1] = meshes[i].material->descriptorSet; vkCmdBindPipeline(cmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, wireframe ? pipelines.wireframe : *meshes[i].material->pipeline); vkCmdBindDescriptorSets(cmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, static_cast(descriptorSets.size()), descriptorSets.data(), 0, NULL); // Pass material properies via push constants vkCmdPushConstants( cmdBuffer, pipelineLayout, VK_SHADER_STAGE_FRAGMENT_BIT, 0, sizeof(SceneMaterialProperties), &meshes[i].material->properties); // Render from the global scene vertex buffer using the mesh index offset vkCmdDrawIndexed(cmdBuffer, meshes[i].indexCount, 1, 0, meshes[i].indexBase, 0); } } }; class VulkanExample : public VulkanExampleBase { public: bool wireframe = false; bool attachLight = false; Scene *scene = nullptr; struct { VkPipelineVertexInputStateCreateInfo inputState; std::vector bindingDescriptions; std::vector attributeDescriptions; } vertices; VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION) { title = "Multi-part scene rendering"; rotationSpeed = 0.5f; camera.type = Camera::CameraType::firstperson; camera.movementSpeed = 7.5f; camera.position = { 15.0f, -13.5f, 0.0f }; camera.setRotation(glm::vec3(5.0f, 90.0f, 0.0f)); camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 256.0f); settings.overlay = true; } ~VulkanExample() { delete(scene); } // Enable physical device features required for this example virtual void getEnabledFeatures() { // Fill mode non solid is required for wireframe display if (deviceFeatures.fillModeNonSolid) { enabledFeatures.fillModeNonSolid = VK_TRUE; }; } void buildCommandBuffers() { VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo(); VkClearValue clearValues[2]; clearValues[0].color = defaultClearColor; clearValues[0].color = { { 0.25f, 0.25f, 0.25f, 1.0f} }; clearValues[1].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo(); renderPassBeginInfo.renderPass = renderPass; renderPassBeginInfo.renderArea.offset.x = 0; renderPassBeginInfo.renderArea.offset.y = 0; renderPassBeginInfo.renderArea.extent.width = width; renderPassBeginInfo.renderArea.extent.height = height; renderPassBeginInfo.clearValueCount = 2; renderPassBeginInfo.pClearValues = clearValues; for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) { renderPassBeginInfo.framebuffer = frameBuffers[i]; VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo)); vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f); vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0); vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor); scene->render(drawCmdBuffers[i], wireframe); vkCmdEndRenderPass(drawCmdBuffers[i]); VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i])); } } void setupVertexDescriptions() { // Binding description vertices.bindingDescriptions.resize(1); vertices.bindingDescriptions[0] = vks::initializers::vertexInputBindingDescription( VERTEX_BUFFER_BIND_ID, sizeof(Vertex), VK_VERTEX_INPUT_RATE_VERTEX); // Attribute descriptions // Describes memory layout and shader positions vertices.attributeDescriptions.resize(4); // Location 0 : Position vertices.attributeDescriptions[0] = vks::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 0, VK_FORMAT_R32G32B32_SFLOAT, 0); // Location 1 : Normal vertices.attributeDescriptions[1] = vks::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 1, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 3); // Location 2 : Texture coordinates vertices.attributeDescriptions[2] = vks::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 2, VK_FORMAT_R32G32_SFLOAT, sizeof(float) * 6); // Location 3 : Color vertices.attributeDescriptions[3] = vks::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 3, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 8); vertices.inputState = vks::initializers::pipelineVertexInputStateCreateInfo(); vertices.inputState.vertexBindingDescriptionCount = static_cast(vertices.bindingDescriptions.size()); vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data(); vertices.inputState.vertexAttributeDescriptionCount = static_cast(vertices.attributeDescriptions.size()); vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data(); } void preparePipelines() { VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo( VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE); VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo( VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0); VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState( 0xf, VK_FALSE); VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo( 1, &blendAttachmentState); VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo( VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL); VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0); VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo( VK_SAMPLE_COUNT_1_BIT, 0); std::vector dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR }; VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo( dynamicStateEnables.data(), static_cast(dynamicStateEnables.size()), 0); std::array shaderStages; // Solid rendering pipeline shaderStages[0] = loadShader(getAssetPath() + "shaders/scenerendering/scene.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getAssetPath() + "shaders/scenerendering/scene.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); VkGraphicsPipelineCreateInfo pipelineCreateInfo = vks::initializers::pipelineCreateInfo( scene->pipelineLayout, renderPass, 0); pipelineCreateInfo.pVertexInputState = &vertices.inputState; pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState; pipelineCreateInfo.pRasterizationState = &rasterizationState; pipelineCreateInfo.pColorBlendState = &colorBlendState; pipelineCreateInfo.pMultisampleState = &multisampleState; pipelineCreateInfo.pViewportState = &viewportState; pipelineCreateInfo.pDepthStencilState = &depthStencilState; pipelineCreateInfo.pDynamicState = &dynamicState; pipelineCreateInfo.stageCount = static_cast(shaderStages.size()); pipelineCreateInfo.pStages = shaderStages.data(); VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &scene->pipelines.solid)); // Alpha blended pipeline rasterizationState.cullMode = VK_CULL_MODE_NONE; blendAttachmentState.blendEnable = VK_TRUE; blendAttachmentState.colorBlendOp = VK_BLEND_OP_ADD; blendAttachmentState.srcColorBlendFactor = VK_BLEND_FACTOR_SRC_COLOR; blendAttachmentState.dstColorBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR; VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &scene->pipelines.blending)); // Wire frame rendering pipeline if (deviceFeatures.fillModeNonSolid) { rasterizationState.cullMode = VK_CULL_MODE_BACK_BIT; blendAttachmentState.blendEnable = VK_FALSE; rasterizationState.polygonMode = VK_POLYGON_MODE_LINE; rasterizationState.lineWidth = 1.0f; VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &scene->pipelines.wireframe)); } } void updateUniformBuffers() { if (attachLight) { scene->uniformData.lightPos = glm::vec4(-camera.position, 1.0f); } scene->uniformData.projection = camera.matrices.perspective; scene->uniformData.view = camera.matrices.view; scene->uniformData.model = glm::mat4(1.0f); memcpy(scene->uniformBuffer.mapped, &scene->uniformData, sizeof(scene->uniformData)); } void draw() { VulkanExampleBase::prepareFrame(); // Command buffer to be sumitted to the queue submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer]; // Submit to queue VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE)); VulkanExampleBase::submitFrame(); } void loadScene() { VkCommandBuffer copyCmd = VulkanExampleBase::createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, false); scene = new Scene(vulkanDevice, queue); #if defined(__ANDROID__) scene->assetManager = androidApp->activity->assetManager; #endif scene->assetPath = getAssetPath() + "models/sibenik/"; scene->load(getAssetPath() + "models/sibenik/sibenik.dae", copyCmd); vkFreeCommandBuffers(device, cmdPool, 1, ©Cmd); updateUniformBuffers(); } void prepare() { VulkanExampleBase::prepare(); setupVertexDescriptions(); loadScene(); preparePipelines(); buildCommandBuffers(); prepared = true; } virtual void render() { if (!prepared) return; draw(); } virtual void viewChanged() { updateUniformBuffers(); } virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay) { if (overlay->header("Settings")) { if (deviceFeatures.fillModeNonSolid) { if (overlay->checkBox("Wireframe", &wireframe)) { buildCommandBuffers(); } } if (scene) { if (overlay->checkBox("Attach light to camera", &attachLight)) { updateUniformBuffers(); } if (overlay->checkBox("Render single part", &scene->renderSingleScenePart)) { buildCommandBuffers(); } if (scene->renderSingleScenePart) { if (overlay->sliderInt("Part to render", &scene->scenePartIndex, 0, static_cast(scene->meshes.size()))) { buildCommandBuffers(); } } } } } }; VULKAN_EXAMPLE_MAIN()