/* * Vulkan Example - Displacement mapping with tessellation shaders * * Copyright (C) 2016 by Sascha Willems - www.saschawillems.de * * This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT) */ #include #include #include #include #include #define GLM_FORCE_RADIANS #define GLM_FORCE_DEPTH_ZERO_TO_ONE #include #include #include #include #include "vulkanexamplebase.h" #include "vulkanMeshLoader.hpp" #define VERTEX_BUFFER_BIND_ID 0 #define ENABLE_VALIDATION false // Vertex layout for this example std::vector vertexLayout = { vkMeshLoader::VERTEX_LAYOUT_POSITION, vkMeshLoader::VERTEX_LAYOUT_NORMAL, vkMeshLoader::VERTEX_LAYOUT_UV }; class VulkanExample : public VulkanExampleBase { private: struct { vkTools::VulkanTexture colorMap; vkTools::VulkanTexture heightMap; } textures; public: bool splitScreen = true; struct { VkPipelineVertexInputStateCreateInfo inputState; std::vector bindingDescriptions; std::vector attributeDescriptions; } vertices; struct { vkMeshLoader::MeshBuffer object; } meshes; vkTools::UniformData uniformDataTC, uniformDataTE; struct { float tessLevel = 8.0; } uboTC; struct { glm::mat4 projection; glm::mat4 model; glm::vec4 lightPos = glm::vec4(0.0, -25.0, 0.0, 0.0); float tessAlpha = 1.0; float tessStrength = 1.0; } uboTE; struct { VkPipeline solid; VkPipeline wire; VkPipeline solidPassThrough; VkPipeline wirePassThrough; } pipelines; VkPipeline *pipelineLeft = &pipelines.solidPassThrough; VkPipeline *pipelineRight = &pipelines.solid; VkPipelineLayout pipelineLayout; VkDescriptorSet descriptorSet; VkDescriptorSetLayout descriptorSetLayout; VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION) { zoom = -35; rotation = glm::vec3(-35.0, 0.0, 0); title = "Vulkan Example - Tessellation shader displacement mapping"; // Support for tessellation shaders is optional, so check first if (!deviceFeatures.tessellationShader) { vkTools::exitFatal("Selected GPU does not support tessellation shaders!", "Feature not supported"); } } ~VulkanExample() { // Clean up used Vulkan resources // Note : Inherited destructor cleans up resources stored in base class vkDestroyPipeline(device, pipelines.solid, nullptr); vkDestroyPipeline(device, pipelines.wire, nullptr); vkDestroyPipeline(device, pipelines.solidPassThrough, nullptr); vkDestroyPipeline(device, pipelines.wirePassThrough, nullptr); vkDestroyPipelineLayout(device, pipelineLayout, nullptr); vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr); vkMeshLoader::freeMeshBufferResources(device, &meshes.object); vkDestroyBuffer(device, uniformDataTC.buffer, nullptr); vkFreeMemory(device, uniformDataTC.memory, nullptr); vkDestroyBuffer(device, uniformDataTE.buffer, nullptr); vkFreeMemory(device, uniformDataTE.memory, nullptr); textureLoader->destroyTexture(textures.colorMap); textureLoader->destroyTexture(textures.heightMap); } void loadTextures() { textureLoader->loadTexture( getAssetPath() + "textures/stonewall_colormap_bc3.dds", VK_FORMAT_BC3_UNORM_BLOCK, &textures.colorMap); textureLoader->loadTexture( getAssetPath() + "textures/stonewall_heightmap_rgba.dds", VK_FORMAT_R8G8B8A8_UNORM, &textures.heightMap); } void reBuildCommandBuffers() { if (!checkCommandBuffers()) { destroyCommandBuffers(); createCommandBuffers(); } buildCommandBuffers(); } void buildCommandBuffers() { VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo(); VkClearValue clearValues[2]; clearValues[0].color = defaultClearColor; clearValues[1].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo(); renderPassBeginInfo.renderPass = renderPass; renderPassBeginInfo.renderArea.offset.x = 0; renderPassBeginInfo.renderArea.offset.y = 0; renderPassBeginInfo.renderArea.extent.width = width; renderPassBeginInfo.renderArea.extent.height = height; renderPassBeginInfo.clearValueCount = 2; renderPassBeginInfo.pClearValues = clearValues; VkResult err; for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) { // Set target frame buffer renderPassBeginInfo.framebuffer = frameBuffers[i]; err = vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo); assert(!err); vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); VkViewport viewport = vkTools::initializers::viewport( splitScreen ? (float)width / 2.0f : (float)width, (float)height, 0.0f, 1.0f ); vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); VkRect2D scissor = vkTools::initializers::rect2D( width, height, 0, 0 ); vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor); vkCmdSetLineWidth(drawCmdBuffers[i], 1.0f); vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL); VkDeviceSize offsets[1] = { 0 }; vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &meshes.object.vertices.buf, offsets); vkCmdBindIndexBuffer(drawCmdBuffers[i], meshes.object.indices.buf, 0, VK_INDEX_TYPE_UINT32); if (splitScreen) { vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, *pipelineLeft); vkCmdDrawIndexed(drawCmdBuffers[i], meshes.object.indexCount, 1, 0, 0, 0); viewport.x = float(width) / 2; } vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, *pipelineRight); vkCmdDrawIndexed(drawCmdBuffers[i], meshes.object.indexCount, 1, 0, 0, 0); vkCmdEndRenderPass(drawCmdBuffers[i]); err = vkEndCommandBuffer(drawCmdBuffers[i]); assert(!err); } } void draw() { VkResult err; // Get next image in the swap chain (back/front buffer) err = swapChain.acquireNextImage(semaphores.presentComplete, ¤tBuffer); assert(!err); submitPostPresentBarrier(swapChain.buffers[currentBuffer].image); // Command buffer to be sumitted to the queue submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer]; // Submit to queue err = vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE); assert(!err); submitPrePresentBarrier(swapChain.buffers[currentBuffer].image); err = swapChain.queuePresent(queue, currentBuffer, semaphores.renderComplete); assert(!err); err = vkQueueWaitIdle(queue); assert(!err); } void loadMeshes() { loadMesh(getAssetPath() + "models/torus.obj", &meshes.object, vertexLayout, 0.25f); } void setupVertexDescriptions() { // Binding description vertices.bindingDescriptions.resize(1); vertices.bindingDescriptions[0] = vkTools::initializers::vertexInputBindingDescription( VERTEX_BUFFER_BIND_ID, vkMeshLoader::vertexSize(vertexLayout), VK_VERTEX_INPUT_RATE_VERTEX); // Attribute descriptions // Describes memory layout and shader positions vertices.attributeDescriptions.resize(3); // Location 0 : Position vertices.attributeDescriptions[0] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 0, VK_FORMAT_R32G32B32_SFLOAT, 0); // Location 1 : Normals vertices.attributeDescriptions[1] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 1, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 3); // Location 2 : Texture coordinates vertices.attributeDescriptions[2] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 2, VK_FORMAT_R32G32_SFLOAT, sizeof(float) * 6); vertices.inputState = vkTools::initializers::pipelineVertexInputStateCreateInfo(); vertices.inputState.vertexBindingDescriptionCount = vertices.bindingDescriptions.size(); vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data(); vertices.inputState.vertexAttributeDescriptionCount = vertices.attributeDescriptions.size(); vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data(); } void setupDescriptorPool() { // Example uses two ubos and two image samplers std::vector poolSizes = { vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2), vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2) }; VkDescriptorPoolCreateInfo descriptorPoolInfo = vkTools::initializers::descriptorPoolCreateInfo( poolSizes.size(), poolSizes.data(), 2); VkResult vkRes = vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool); assert(!vkRes); } void setupDescriptorSetLayout() { std::vector setLayoutBindings = { // Binding 0 : Tessellation control shader ubo vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT, 0), // Binding 1 : Tessellation evaluation shader ubo vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT, 1), // Binding 2 : Tessellation evaluation shader displacement map image sampler vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT, 2), // Binding 3 : Fragment shader color map image sampler vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 3), }; VkDescriptorSetLayoutCreateInfo descriptorLayout = vkTools::initializers::descriptorSetLayoutCreateInfo( setLayoutBindings.data(), setLayoutBindings.size()); VkResult err = vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout); assert(!err); VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = vkTools::initializers::pipelineLayoutCreateInfo( &descriptorSetLayout, 1); err = vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout); assert(!err); } void setupDescriptorSet() { VkDescriptorSetAllocateInfo allocInfo = vkTools::initializers::descriptorSetAllocateInfo( descriptorPool, &descriptorSetLayout, 1); VkResult vkRes = vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet); assert(!vkRes); // Displacement map image descriptor VkDescriptorImageInfo texDescriptorDisplacementMap = vkTools::initializers::descriptorImageInfo( textures.heightMap.sampler, textures.heightMap.view, VK_IMAGE_LAYOUT_GENERAL); // Color map image descriptor VkDescriptorImageInfo texDescriptorColorMap = vkTools::initializers::descriptorImageInfo( textures.colorMap.sampler, textures.colorMap.view, VK_IMAGE_LAYOUT_GENERAL); std::vector writeDescriptorSets = { // Binding 0 : Tessellation control shader ubo vkTools::initializers::writeDescriptorSet( descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformDataTC.descriptor), // Binding 1 : Tessellation evaluation shader ubo vkTools::initializers::writeDescriptorSet( descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1, &uniformDataTE.descriptor), // Binding 2 : Displacement map vkTools::initializers::writeDescriptorSet( descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2, &texDescriptorDisplacementMap), // Binding 3 : Color map vkTools::initializers::writeDescriptorSet( descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 3, &texDescriptorColorMap), }; vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL); } void preparePipelines() { VkResult err; VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vkTools::initializers::pipelineInputAssemblyStateCreateInfo( VK_PRIMITIVE_TOPOLOGY_PATCH_LIST, 0, VK_FALSE); VkPipelineRasterizationStateCreateInfo rasterizationState = vkTools::initializers::pipelineRasterizationStateCreateInfo( VK_POLYGON_MODE_FILL, VK_CULL_MODE_NONE, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0); VkPipelineColorBlendAttachmentState blendAttachmentState = vkTools::initializers::pipelineColorBlendAttachmentState( 0xf, VK_FALSE); VkPipelineColorBlendStateCreateInfo colorBlendState = vkTools::initializers::pipelineColorBlendStateCreateInfo( 1, &blendAttachmentState); VkPipelineDepthStencilStateCreateInfo depthStencilState = vkTools::initializers::pipelineDepthStencilStateCreateInfo( VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL); VkPipelineViewportStateCreateInfo viewportState = vkTools::initializers::pipelineViewportStateCreateInfo(1, 1, 0); VkPipelineMultisampleStateCreateInfo multisampleState = vkTools::initializers::pipelineMultisampleStateCreateInfo( VK_SAMPLE_COUNT_1_BIT, 0); std::vector dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR, VK_DYNAMIC_STATE_LINE_WIDTH }; VkPipelineDynamicStateCreateInfo dynamicState = vkTools::initializers::pipelineDynamicStateCreateInfo( dynamicStateEnables.data(), dynamicStateEnables.size(), 0); VkPipelineTessellationStateCreateInfo tessellationState = vkTools::initializers::pipelineTessellationStateCreateInfo(3); // Tessellation pipeline // Load shaders std::array shaderStages; shaderStages[0] = loadShader(getAssetPath() + "shaders/displacement/base.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getAssetPath() + "shaders/displacement/base.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); shaderStages[2] = loadShader(getAssetPath() + "shaders/displacement/displacement.tesc.spv", VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT); shaderStages[3] = loadShader(getAssetPath() + "shaders/displacement/displacement.tese.spv", VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT); VkGraphicsPipelineCreateInfo pipelineCreateInfo = vkTools::initializers::pipelineCreateInfo( pipelineLayout, renderPass, 0); pipelineCreateInfo.pVertexInputState = &vertices.inputState; pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState; pipelineCreateInfo.pRasterizationState = &rasterizationState; pipelineCreateInfo.pColorBlendState = &colorBlendState; pipelineCreateInfo.pMultisampleState = &multisampleState; pipelineCreateInfo.pViewportState = &viewportState; pipelineCreateInfo.pDepthStencilState = &depthStencilState; pipelineCreateInfo.pDynamicState = &dynamicState; pipelineCreateInfo.pTessellationState = &tessellationState; pipelineCreateInfo.stageCount = shaderStages.size(); pipelineCreateInfo.pStages = shaderStages.data(); pipelineCreateInfo.renderPass = renderPass; // Solid pipeline err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.solid); assert(!err); // Wireframe pipeline rasterizationState.polygonMode = VK_POLYGON_MODE_LINE; err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.wire); assert(!err); // Pass through pipelines // Load pass through tessellation shaders (Vert and frag are reused) shaderStages[2] = loadShader(getAssetPath() + "shaders/displacement/passthrough.tesc.spv", VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT); shaderStages[3] = loadShader(getAssetPath() + "shaders/displacement/passthrough.tese.spv", VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT); // Solid rasterizationState.polygonMode = VK_POLYGON_MODE_FILL; err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.solidPassThrough); assert(!err); // Wireframe rasterizationState.polygonMode = VK_POLYGON_MODE_LINE; err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.wirePassThrough); assert(!err); } // Prepare and initialize uniform buffer containing shader uniforms void prepareUniformBuffers() { // Tessellation evaluation shader uniform buffer createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, sizeof(uboTE), &uboTE, &uniformDataTE.buffer, &uniformDataTE.memory, &uniformDataTE.descriptor); // Tessellation control shader uniform buffer createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, sizeof(uboTC), &uboTC, &uniformDataTC.buffer, &uniformDataTC.memory, &uniformDataTC.descriptor); updateUniformBuffers(); } void updateUniformBuffers() { // Tessellation eval glm::mat4 viewMatrix = glm::mat4(); uboTE.projection = glm::perspective(glm::radians(45.0f), (float)(width* ((splitScreen) ? 0.5f : 1.0f)) / (float)height, 0.1f, 256.0f); viewMatrix = glm::translate(viewMatrix, glm::vec3(0.0f, 0.0f, zoom)); float offset = 0.5f; int uboIndex = 1; uboTE.model = glm::mat4(); uboTE.model = viewMatrix * glm::translate(uboTE.model, glm::vec3(0, 0, 0)); uboTE.model = glm::rotate(uboTE.model, glm::radians(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f)); uboTE.model = glm::rotate(uboTE.model, glm::radians(rotation.y), glm::vec3(0.0f, 1.0f, 0.0f)); uboTE.model = glm::rotate(uboTE.model, glm::radians(rotation.z), glm::vec3(0.0f, 0.0f, 1.0f)); uint8_t *pData; VkResult err = vkMapMemory(device, uniformDataTE.memory, 0, sizeof(uboTE), 0, (void **)&pData); assert(!err); memcpy(pData, &uboTE, sizeof(uboTE)); vkUnmapMemory(device, uniformDataTE.memory); // Tessellation control err = vkMapMemory(device, uniformDataTC.memory, 0, sizeof(uboTC), 0, (void **)&pData); assert(!err); memcpy(pData, &uboTC, sizeof(uboTC)); vkUnmapMemory(device, uniformDataTC.memory); } void prepare() { VulkanExampleBase::prepare(); loadMeshes(); loadTextures(); setupVertexDescriptions(); prepareUniformBuffers(); setupDescriptorSetLayout(); preparePipelines(); setupDescriptorPool(); setupDescriptorSet(); buildCommandBuffers(); prepared = true; } virtual void render() { if (!prepared) return; vkDeviceWaitIdle(device); draw(); vkDeviceWaitIdle(device); } virtual void viewChanged() { updateUniformBuffers(); } void changeTessellationLevel(float delta) { uboTC.tessLevel += delta; // Clamp uboTC.tessLevel = fmax(1.0, fmin(uboTC.tessLevel, 32.0)); updateUniformBuffers(); } void togglePipelines() { if (pipelineRight == &pipelines.solid) { pipelineRight = &pipelines.wire; pipelineLeft = &pipelines.wirePassThrough; } else { pipelineRight = &pipelines.solid; pipelineLeft = &pipelines.solidPassThrough; } reBuildCommandBuffers(); } void toggleSplitScreen() { splitScreen = !splitScreen; reBuildCommandBuffers(); updateUniformBuffers(); } }; VulkanExample *vulkanExample; #if defined(_WIN32) LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam) { if (vulkanExample != NULL) { vulkanExample->handleMessages(hWnd, uMsg, wParam, lParam); if (uMsg == WM_KEYDOWN) { switch (wParam) { case VK_ADD: vulkanExample->changeTessellationLevel(0.25); break; case VK_SUBTRACT: vulkanExample->changeTessellationLevel(-0.25); break; case 0x57: vulkanExample->togglePipelines(); break; case 0x53: vulkanExample->toggleSplitScreen(); break; } } } return (DefWindowProc(hWnd, uMsg, wParam, lParam)); } #elif defined(__linux__) && !defined(__ANDROID__) static void handleEvent(const xcb_generic_event_t *event) { if (vulkanExample != NULL) { vulkanExample->handleEvent(event); } } #endif // Main entry point #if defined(_WIN32) // Windows entry point int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR pCmdLine, int nCmdShow) #elif defined(__ANDROID__) // Android entry point void android_main(android_app* state) #elif defined(__linux__) // Linux entry point int main(const int argc, const char *argv[]) #endif { #if defined(__ANDROID__) // Removing this may cause the compiler to omit the main entry point // which would make the application crash at start app_dummy(); #endif vulkanExample = new VulkanExample(); #if defined(_WIN32) vulkanExample->setupWindow(hInstance, WndProc); #elif defined(__ANDROID__) // Attach vulkan example to global android application state state->userData = vulkanExample; state->onAppCmd = VulkanExample::handleAppCommand; state->onInputEvent = VulkanExample::handleAppInput; vulkanExample->androidApp = state; #elif defined(__linux__) vulkanExample->setupWindow(); #endif #if !defined(__ANDROID__) vulkanExample->initSwapchain(); vulkanExample->prepare(); #endif vulkanExample->renderLoop(); delete(vulkanExample); #if !defined(__ANDROID__) return 0; #endif }