/* * Vulkan Example - Instanced mesh rendering, uses a separate vertex buffer for instanced data * * Copyright (C) 2016 by Sascha Willems - www.saschawillems.de * * This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT) */ #include #include #include #include #include #include #include #define GLM_FORCE_RADIANS #define GLM_FORCE_DEPTH_ZERO_TO_ONE #include #include #include #include "vulkanexamplebase.h" #define VERTEX_BUFFER_BIND_ID 0 #define INSTANCE_BUFFER_BIND_ID 1 #define ENABLE_VALIDATION false #define INSTANCE_COUNT 2048 // Vertex layout for this example std::vector vertexLayout = { vkMeshLoader::VERTEX_LAYOUT_POSITION, vkMeshLoader::VERTEX_LAYOUT_NORMAL, vkMeshLoader::VERTEX_LAYOUT_UV, vkMeshLoader::VERTEX_LAYOUT_COLOR }; class VulkanExample : public VulkanExampleBase { public: struct { VkPipelineVertexInputStateCreateInfo inputState; std::vector bindingDescriptions; std::vector attributeDescriptions; } vertices; struct { vkMeshLoader::MeshBuffer example; } meshes; struct { vkTools::VulkanTexture colorMap; } textures; // Per-instance data block struct InstanceData { glm::vec3 pos; glm::vec3 rot; float scale; uint32_t texIndex; }; // Contains the instanced data struct { VkBuffer buffer = VK_NULL_HANDLE; VkDeviceMemory memory = VK_NULL_HANDLE; size_t size = 0; VkDescriptorBufferInfo descriptor; } instanceBuffer; struct { glm::mat4 projection; glm::mat4 view; float time = 0.0f; } uboVS; struct { vkTools::UniformData vsScene; } uniformData; struct { VkPipeline solid; } pipelines; VkPipelineLayout pipelineLayout; VkDescriptorSet descriptorSet; VkDescriptorSetLayout descriptorSetLayout; VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION) { zoom = -12.0f; rotationSpeed = 0.25f; enableTextOverlay = true; title = "Vulkan Example - Instanced mesh rendering"; srand(time(NULL)); } ~VulkanExample() { vkDestroyPipeline(device, pipelines.solid, nullptr); vkDestroyPipelineLayout(device, pipelineLayout, nullptr); vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr); vkDestroyBuffer(device, instanceBuffer.buffer, nullptr); vkFreeMemory(device, instanceBuffer.memory, nullptr); vkMeshLoader::freeMeshBufferResources(device, &meshes.example); vkTools::destroyUniformData(device, &uniformData.vsScene); textureLoader->destroyTexture(textures.colorMap); } void buildCommandBuffers() { VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo(); VkClearValue clearValues[2]; clearValues[0].color = { { 0.0f, 0.0f, 0.0f, 0.0f } }; clearValues[1].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo(); renderPassBeginInfo.renderPass = renderPass; renderPassBeginInfo.renderArea.extent.width = width; renderPassBeginInfo.renderArea.extent.height = height; renderPassBeginInfo.clearValueCount = 2; renderPassBeginInfo.pClearValues = clearValues; for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) { // Set target frame buffer renderPassBeginInfo.framebuffer = frameBuffers[i]; VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo)); vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); VkViewport viewport = vkTools::initializers::viewport((float)width, (float)height, 0.0f, 1.0f); vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); VkRect2D scissor = vkTools::initializers::rect2D(width, height, 0, 0); vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor); vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.solid); VkDeviceSize offsets[1] = { 0 }; // Binding point 0 : Mesh vertex buffer vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &meshes.example.vertices.buf, offsets); // Binding point 1 : Instance data buffer vkCmdBindVertexBuffers(drawCmdBuffers[i], INSTANCE_BUFFER_BIND_ID, 1, &instanceBuffer.buffer, offsets); vkCmdBindIndexBuffer(drawCmdBuffers[i], meshes.example.indices.buf, 0, VK_INDEX_TYPE_UINT32); // Render instances vkCmdDrawIndexed(drawCmdBuffers[i], meshes.example.indexCount, INSTANCE_COUNT, 0, 0, 0); vkCmdEndRenderPass(drawCmdBuffers[i]); VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i])); } } void loadMeshes() { loadMesh(getAssetPath() + "models/rock01.dae", &meshes.example, vertexLayout, 0.1f); } void loadTextures() { textureLoader->loadTextureArray( getAssetPath() + "textures/texturearray_rocks_bc3.ktx", VK_FORMAT_BC3_UNORM_BLOCK, &textures.colorMap); } void setupVertexDescriptions() { // Binding description vertices.bindingDescriptions.resize(2); // Mesh vertex buffer (description) at binding point 0 vertices.bindingDescriptions[0] = vkTools::initializers::vertexInputBindingDescription( VERTEX_BUFFER_BIND_ID, vkMeshLoader::vertexSize(vertexLayout), // Input rate for the data passed to shader // Step for each vertex rendered VK_VERTEX_INPUT_RATE_VERTEX); vertices.bindingDescriptions[1] = vkTools::initializers::vertexInputBindingDescription( INSTANCE_BUFFER_BIND_ID, sizeof(InstanceData), // Input rate for the data passed to shader // Step for each instance rendered VK_VERTEX_INPUT_RATE_INSTANCE); // Attribute descriptions // Describes memory layout and shader positions vertices.attributeDescriptions.clear(); // Per-Vertex attributes // Location 0 : Position vertices.attributeDescriptions.push_back( vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 0, VK_FORMAT_R32G32B32_SFLOAT, 0) ); // Location 1 : Normal vertices.attributeDescriptions.push_back( vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 1, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 3) ); // Location 2 : Texture coordinates vertices.attributeDescriptions.push_back( vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 2, VK_FORMAT_R32G32_SFLOAT, sizeof(float) * 6) ); // Location 3 : Color vertices.attributeDescriptions.push_back( vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 3, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 8) ); // Instanced attributes // Location 4 : Position vertices.attributeDescriptions.push_back( vkTools::initializers::vertexInputAttributeDescription( INSTANCE_BUFFER_BIND_ID, 5, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 3) ); // Location 5 : Rotation vertices.attributeDescriptions.push_back( vkTools::initializers::vertexInputAttributeDescription( INSTANCE_BUFFER_BIND_ID, 4, VK_FORMAT_R32G32B32_SFLOAT, 0) ); // Location 6 : Scale vertices.attributeDescriptions.push_back( vkTools::initializers::vertexInputAttributeDescription( INSTANCE_BUFFER_BIND_ID, 6, VK_FORMAT_R32_SFLOAT, sizeof(float) * 6) ); // Location 7 : Texture array layer index vertices.attributeDescriptions.push_back( vkTools::initializers::vertexInputAttributeDescription( INSTANCE_BUFFER_BIND_ID, 7, VK_FORMAT_R32_SINT, sizeof(float) * 7) ); vertices.inputState = vkTools::initializers::pipelineVertexInputStateCreateInfo(); vertices.inputState.vertexBindingDescriptionCount = vertices.bindingDescriptions.size(); vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data(); vertices.inputState.vertexAttributeDescriptionCount = vertices.attributeDescriptions.size(); vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data(); } void setupDescriptorPool() { // Example uses one ubo std::vector poolSizes = { vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1), vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1), }; VkDescriptorPoolCreateInfo descriptorPoolInfo = vkTools::initializers::descriptorPoolCreateInfo( poolSizes.size(), poolSizes.data(), 2); VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool)); } void setupDescriptorSetLayout() { std::vector setLayoutBindings = { // Binding 0 : Vertex shader uniform buffer vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0), // Binding 1 : Fragment shader combined sampler vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1), }; VkDescriptorSetLayoutCreateInfo descriptorLayout = vkTools::initializers::descriptorSetLayoutCreateInfo( setLayoutBindings.data(), setLayoutBindings.size()); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout)); VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = vkTools::initializers::pipelineLayoutCreateInfo( &descriptorSetLayout, 1); VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout)); } void setupDescriptorSet() { VkDescriptorSetAllocateInfo allocInfo = vkTools::initializers::descriptorSetAllocateInfo( descriptorPool, &descriptorSetLayout, 1); VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet)); VkDescriptorImageInfo texDescriptor = vkTools::initializers::descriptorImageInfo( textures.colorMap.sampler, textures.colorMap.view, VK_IMAGE_LAYOUT_GENERAL); std::vector writeDescriptorSets = { // Binding 0 : Vertex shader uniform buffer vkTools::initializers::writeDescriptorSet( descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformData.vsScene.descriptor), // Binding 1 : Color map vkTools::initializers::writeDescriptorSet( descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &texDescriptor) }; vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL); } void preparePipelines() { VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vkTools::initializers::pipelineInputAssemblyStateCreateInfo( VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE); VkPipelineRasterizationStateCreateInfo rasterizationState = vkTools::initializers::pipelineRasterizationStateCreateInfo( VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_CLOCKWISE, 0); VkPipelineColorBlendAttachmentState blendAttachmentState = vkTools::initializers::pipelineColorBlendAttachmentState( 0xf, VK_FALSE); VkPipelineColorBlendStateCreateInfo colorBlendState = vkTools::initializers::pipelineColorBlendStateCreateInfo( 1, &blendAttachmentState); VkPipelineDepthStencilStateCreateInfo depthStencilState = vkTools::initializers::pipelineDepthStencilStateCreateInfo( VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL); VkPipelineViewportStateCreateInfo viewportState = vkTools::initializers::pipelineViewportStateCreateInfo(1, 1, 0); VkPipelineMultisampleStateCreateInfo multisampleState = vkTools::initializers::pipelineMultisampleStateCreateInfo( VK_SAMPLE_COUNT_1_BIT, 0); std::vector dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR }; VkPipelineDynamicStateCreateInfo dynamicState = vkTools::initializers::pipelineDynamicStateCreateInfo( dynamicStateEnables.data(), dynamicStateEnables.size(), 0); // Instacing pipeline // Load shaders std::array shaderStages; shaderStages[0] = loadShader(getAssetPath() + "shaders/instancing/instancing.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getAssetPath() + "shaders/instancing/instancing.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); VkGraphicsPipelineCreateInfo pipelineCreateInfo = vkTools::initializers::pipelineCreateInfo( pipelineLayout, renderPass, 0); pipelineCreateInfo.pVertexInputState = &vertices.inputState; pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState; pipelineCreateInfo.pRasterizationState = &rasterizationState; pipelineCreateInfo.pColorBlendState = &colorBlendState; pipelineCreateInfo.pMultisampleState = &multisampleState; pipelineCreateInfo.pViewportState = &viewportState; pipelineCreateInfo.pDepthStencilState = &depthStencilState; pipelineCreateInfo.pDynamicState = &dynamicState; pipelineCreateInfo.stageCount = shaderStages.size(); pipelineCreateInfo.pStages = shaderStages.data(); VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.solid)); } float rnd(float range) { return range * (rand() / double(RAND_MAX)); } void prepareInstanceData() { std::vector instanceData; instanceData.resize(INSTANCE_COUNT); std::mt19937 rndGenerator(time(NULL)); std::uniform_real_distribution uniformDist(0.0, 1.0); for (auto i = 0; i < INSTANCE_COUNT; i++) { instanceData[i].rot = glm::vec3(M_PI * uniformDist(rndGenerator), M_PI * uniformDist(rndGenerator), M_PI * uniformDist(rndGenerator)); float theta = 2 * M_PI * uniformDist(rndGenerator); float phi = acos(1 - 2 * uniformDist(rndGenerator)); glm::vec3 pos; instanceData[i].pos = glm::vec3(sin(phi) * cos(theta), sin(theta) * uniformDist(rndGenerator) / 1500.0f, cos(phi)) * 7.5f; instanceData[i].scale = 1.0f + uniformDist(rndGenerator) * 2.0f; instanceData[i].texIndex = rnd(textures.colorMap.layerCount); } instanceBuffer.size = instanceData.size() * sizeof(InstanceData); // Staging // Instanced data is static, copy to device local memory // This results in better performance struct { VkDeviceMemory memory; VkBuffer buffer; } stagingBuffer; VulkanExampleBase::createBuffer( VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, instanceBuffer.size, instanceData.data(), &stagingBuffer.buffer, &stagingBuffer.memory); VulkanExampleBase::createBuffer( VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, instanceBuffer.size, nullptr, &instanceBuffer.buffer, &instanceBuffer.memory); // Copy to staging buffer VkCommandBuffer copyCmd = VulkanExampleBase::createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true); VkBufferCopy copyRegion = { }; copyRegion.size = instanceBuffer.size; vkCmdCopyBuffer( copyCmd, stagingBuffer.buffer, instanceBuffer.buffer, 1, ©Region); VulkanExampleBase::flushCommandBuffer(copyCmd, queue, true); instanceBuffer.descriptor.range = instanceBuffer.size; instanceBuffer.descriptor.buffer = instanceBuffer.buffer; instanceBuffer.descriptor.offset = 0; // Destroy staging resources vkDestroyBuffer(device, stagingBuffer.buffer, nullptr); vkFreeMemory(device, stagingBuffer.memory, nullptr); } void prepareUniformBuffers() { createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, sizeof(uboVS), nullptr, &uniformData.vsScene.buffer, &uniformData.vsScene.memory, &uniformData.vsScene.descriptor); // Map for host access VK_CHECK_RESULT(vkMapMemory(device, uniformData.vsScene.memory, 0, sizeof(uboVS), 0, (void **)&uniformData.vsScene.mapped)); updateUniformBuffer(true); } void updateUniformBuffer(bool viewChanged) { if (viewChanged) { uboVS.projection = glm::perspective(glm::radians(60.0f), (float)width / (float)height, 0.001f, 256.0f); uboVS.view = glm::translate(glm::mat4(), cameraPos + glm::vec3(0.0f, 0.0f, zoom)); uboVS.view = glm::rotate(uboVS.view, glm::radians(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f)); uboVS.view = glm::rotate(uboVS.view, glm::radians(rotation.y), glm::vec3(0.0f, 1.0f, 0.0f)); uboVS.view = glm::rotate(uboVS.view, glm::radians(rotation.z), glm::vec3(0.0f, 0.0f, 1.0f)); } if (!paused) { uboVS.time += frameTimer * 0.05f; } memcpy(uniformData.vsScene.mapped, &uboVS, sizeof(uboVS)); } void draw() { VulkanExampleBase::prepareFrame(); // Command buffer to be sumitted to the queue submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer]; // Submit to queue VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE)); VulkanExampleBase::submitFrame(); } void prepare() { VulkanExampleBase::prepare(); loadTextures(); loadMeshes(); prepareInstanceData(); setupVertexDescriptions(); prepareUniformBuffers(); setupDescriptorSetLayout(); preparePipelines(); setupDescriptorPool(); setupDescriptorSet(); buildCommandBuffers(); prepared = true; } virtual void render() { if (!prepared) { return; } draw(); if (!paused) { updateUniformBuffer(false); } } virtual void viewChanged() { updateUniformBuffer(true); } virtual void getOverlayText(VulkanTextOverlay *textOverlay) { textOverlay->addText("Rendering " + std::to_string(INSTANCE_COUNT) + " instances", 5.0f, 85.0f, VulkanTextOverlay::alignLeft); } }; VulkanExample *vulkanExample; #if defined(_WIN32) LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam) { if (vulkanExample != NULL) { vulkanExample->handleMessages(hWnd, uMsg, wParam, lParam); } return (DefWindowProc(hWnd, uMsg, wParam, lParam)); } #elif defined(__linux__) && !defined(__ANDROID__) && !defined(_DIRECT2DISPLAY) static void handleEvent(const xcb_generic_event_t *event) { if (vulkanExample != NULL) { vulkanExample->handleEvent(event); } } #endif // Main entry point #if defined(_WIN32) // Windows entry point int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR pCmdLine, int nCmdShow) #elif defined(__ANDROID__) // Android entry point void android_main(android_app* state) #elif defined(__linux__) // Linux entry point int main(const int argc, const char *argv[]) #endif { #if defined(__ANDROID__) // Removing this may cause the compiler to omit the main entry point // which would make the application crash at start app_dummy(); #endif vulkanExample = new VulkanExample(); #if defined(_WIN32) vulkanExample->setupWindow(hInstance, WndProc); #elif defined(__ANDROID__) // Attach vulkan example to global android application state state->userData = vulkanExample; state->onAppCmd = VulkanExample::handleAppCommand; state->onInputEvent = VulkanExample::handleAppInput; vulkanExample->androidApp = state; #elif defined(__linux__) && !defined(_DIRECT2DISPLAY) vulkanExample->setupWindow(); #endif #if !defined(__ANDROID__) vulkanExample->initSwapchain(); vulkanExample->prepare(); #endif vulkanExample->renderLoop(); delete(vulkanExample); #if !defined(__ANDROID__) return 0; #endif }