/* * Vulkan Example - Shadow mapping for directional light sources * * Copyright (C) 2016-2023 by Sascha Willems - www.saschawillems.de * * This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT) */ #include "vulkanexamplebase.h" #include "VulkanglTFModel.h" #define ENABLE_VALIDATION false // 16 bits of depth is enough for such a small scene #define DEPTH_FORMAT VK_FORMAT_D16_UNORM // Shadowmap properties #if defined(__ANDROID__) #define SHADOWMAP_DIM 1024 #else #define SHADOWMAP_DIM 2048 #endif #define DEFAULT_SHADOWMAP_FILTER VK_FILTER_LINEAR class VulkanExample : public VulkanExampleBase { public: bool displayShadowMap = false; bool filterPCF = true; // Keep depth range as small as possible // for better shadow map precision float zNear = 1.0f; float zFar = 96.0f; // Depth bias (and slope) are used to avoid shadowing artifacts // Constant depth bias factor (always applied) float depthBiasConstant = 1.25f; // Slope depth bias factor, applied depending on polygon's slope float depthBiasSlope = 1.75f; glm::vec3 lightPos = glm::vec3(); float lightFOV = 45.0f; std::vector scenes; std::vector sceneNames; int32_t sceneIndex = 0; struct { vks::Buffer scene; vks::Buffer offscreen; } uniformBuffers; struct { glm::mat4 projection; glm::mat4 view; glm::mat4 model; glm::mat4 depthBiasMVP; glm::vec4 lightPos; // Used for depth map visualization float zNear; float zFar; } uboVSscene; struct { glm::mat4 depthMVP; } uboOffscreenVS; struct { VkPipeline offscreen; VkPipeline sceneShadow; VkPipeline sceneShadowPCF; VkPipeline debug; } pipelines; VkPipelineLayout pipelineLayout; struct { VkDescriptorSet offscreen; VkDescriptorSet scene; VkDescriptorSet debug; } descriptorSets; VkDescriptorSetLayout descriptorSetLayout; // Framebuffer for offscreen rendering struct FrameBufferAttachment { VkImage image; VkDeviceMemory mem; VkImageView view; }; struct OffscreenPass { int32_t width, height; VkFramebuffer frameBuffer; FrameBufferAttachment depth; VkRenderPass renderPass; VkSampler depthSampler; VkDescriptorImageInfo descriptor; } offscreenPass; VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION) { title = "Projected shadow mapping"; camera.type = Camera::CameraType::lookat; camera.setPosition(glm::vec3(0.0f, -0.0f, -20.0f)); camera.setRotation(glm::vec3(-15.0f, -390.0f, 0.0f)); camera.setPerspective(60.0f, (float)width / (float)height, 1.0f, 256.0f); timerSpeed *= 0.5f; } ~VulkanExample() { // Clean up used Vulkan resources // Note : Inherited destructor cleans up resources stored in base class // Frame buffer vkDestroySampler(device, offscreenPass.depthSampler, nullptr); // Depth attachment vkDestroyImageView(device, offscreenPass.depth.view, nullptr); vkDestroyImage(device, offscreenPass.depth.image, nullptr); vkFreeMemory(device, offscreenPass.depth.mem, nullptr); vkDestroyFramebuffer(device, offscreenPass.frameBuffer, nullptr); vkDestroyRenderPass(device, offscreenPass.renderPass, nullptr); vkDestroyPipeline(device, pipelines.debug, nullptr); vkDestroyPipeline(device, pipelines.offscreen, nullptr); vkDestroyPipeline(device, pipelines.sceneShadow, nullptr); vkDestroyPipeline(device, pipelines.sceneShadowPCF, nullptr); vkDestroyPipelineLayout(device, pipelineLayout, nullptr); vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr); // Uniform buffers uniformBuffers.offscreen.destroy(); uniformBuffers.scene.destroy(); } // Set up a separate render pass for the offscreen frame buffer // This is necessary as the offscreen frame buffer attachments use formats different to those from the example render pass void prepareOffscreenRenderpass() { VkAttachmentDescription attachmentDescription{}; attachmentDescription.format = DEPTH_FORMAT; attachmentDescription.samples = VK_SAMPLE_COUNT_1_BIT; attachmentDescription.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; // Clear depth at beginning of the render pass attachmentDescription.storeOp = VK_ATTACHMENT_STORE_OP_STORE; // We will read from depth, so it's important to store the depth attachment results attachmentDescription.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; attachmentDescription.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; attachmentDescription.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; // We don't care about initial layout of the attachment attachmentDescription.finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL;// Attachment will be transitioned to shader read at render pass end VkAttachmentReference depthReference = {}; depthReference.attachment = 0; depthReference.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; // Attachment will be used as depth/stencil during render pass VkSubpassDescription subpass = {}; subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS; subpass.colorAttachmentCount = 0; // No color attachments subpass.pDepthStencilAttachment = &depthReference; // Reference to our depth attachment // Use subpass dependencies for layout transitions std::array dependencies; dependencies[0].srcSubpass = VK_SUBPASS_EXTERNAL; dependencies[0].dstSubpass = 0; dependencies[0].srcStageMask = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT; dependencies[0].dstStageMask = VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT; dependencies[0].srcAccessMask = VK_ACCESS_SHADER_READ_BIT; dependencies[0].dstAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT; dependencies[0].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT; dependencies[1].srcSubpass = 0; dependencies[1].dstSubpass = VK_SUBPASS_EXTERNAL; dependencies[1].srcStageMask = VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT; dependencies[1].dstStageMask = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT; dependencies[1].srcAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT; dependencies[1].dstAccessMask = VK_ACCESS_SHADER_READ_BIT; dependencies[1].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT; VkRenderPassCreateInfo renderPassCreateInfo = vks::initializers::renderPassCreateInfo(); renderPassCreateInfo.attachmentCount = 1; renderPassCreateInfo.pAttachments = &attachmentDescription; renderPassCreateInfo.subpassCount = 1; renderPassCreateInfo.pSubpasses = &subpass; renderPassCreateInfo.dependencyCount = static_cast(dependencies.size()); renderPassCreateInfo.pDependencies = dependencies.data(); VK_CHECK_RESULT(vkCreateRenderPass(device, &renderPassCreateInfo, nullptr, &offscreenPass.renderPass)); } // Setup the offscreen framebuffer for rendering the scene from light's point-of-view to // The depth attachment of this framebuffer will then be used to sample from in the fragment shader of the shadowing pass void prepareOffscreenFramebuffer() { offscreenPass.width = SHADOWMAP_DIM; offscreenPass.height = SHADOWMAP_DIM; // For shadow mapping we only need a depth attachment VkImageCreateInfo image = vks::initializers::imageCreateInfo(); image.imageType = VK_IMAGE_TYPE_2D; image.extent.width = offscreenPass.width; image.extent.height = offscreenPass.height; image.extent.depth = 1; image.mipLevels = 1; image.arrayLayers = 1; image.samples = VK_SAMPLE_COUNT_1_BIT; image.tiling = VK_IMAGE_TILING_OPTIMAL; image.format = DEPTH_FORMAT; // Depth stencil attachment image.usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | VK_IMAGE_USAGE_SAMPLED_BIT; // We will sample directly from the depth attachment for the shadow mapping VK_CHECK_RESULT(vkCreateImage(device, &image, nullptr, &offscreenPass.depth.image)); VkMemoryAllocateInfo memAlloc = vks::initializers::memoryAllocateInfo(); VkMemoryRequirements memReqs; vkGetImageMemoryRequirements(device, offscreenPass.depth.image, &memReqs); memAlloc.allocationSize = memReqs.size; memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &offscreenPass.depth.mem)); VK_CHECK_RESULT(vkBindImageMemory(device, offscreenPass.depth.image, offscreenPass.depth.mem, 0)); VkImageViewCreateInfo depthStencilView = vks::initializers::imageViewCreateInfo(); depthStencilView.viewType = VK_IMAGE_VIEW_TYPE_2D; depthStencilView.format = DEPTH_FORMAT; depthStencilView.subresourceRange = {}; depthStencilView.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT; depthStencilView.subresourceRange.baseMipLevel = 0; depthStencilView.subresourceRange.levelCount = 1; depthStencilView.subresourceRange.baseArrayLayer = 0; depthStencilView.subresourceRange.layerCount = 1; depthStencilView.image = offscreenPass.depth.image; VK_CHECK_RESULT(vkCreateImageView(device, &depthStencilView, nullptr, &offscreenPass.depth.view)); // Create sampler to sample from to depth attachment // Used to sample in the fragment shader for shadowed rendering VkFilter shadowmap_filter = vks::tools::formatIsFilterable(physicalDevice, DEPTH_FORMAT, VK_IMAGE_TILING_OPTIMAL) ? DEFAULT_SHADOWMAP_FILTER : VK_FILTER_NEAREST; VkSamplerCreateInfo sampler = vks::initializers::samplerCreateInfo(); sampler.magFilter = shadowmap_filter; sampler.minFilter = shadowmap_filter; sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR; sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE; sampler.addressModeV = sampler.addressModeU; sampler.addressModeW = sampler.addressModeU; sampler.mipLodBias = 0.0f; sampler.maxAnisotropy = 1.0f; sampler.minLod = 0.0f; sampler.maxLod = 1.0f; sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE; VK_CHECK_RESULT(vkCreateSampler(device, &sampler, nullptr, &offscreenPass.depthSampler)); prepareOffscreenRenderpass(); // Create frame buffer VkFramebufferCreateInfo fbufCreateInfo = vks::initializers::framebufferCreateInfo(); fbufCreateInfo.renderPass = offscreenPass.renderPass; fbufCreateInfo.attachmentCount = 1; fbufCreateInfo.pAttachments = &offscreenPass.depth.view; fbufCreateInfo.width = offscreenPass.width; fbufCreateInfo.height = offscreenPass.height; fbufCreateInfo.layers = 1; VK_CHECK_RESULT(vkCreateFramebuffer(device, &fbufCreateInfo, nullptr, &offscreenPass.frameBuffer)); } void buildCommandBuffers() { VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo(); VkClearValue clearValues[2]; VkViewport viewport; VkRect2D scissor; for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) { VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo)); /* First render pass: Generate shadow map by rendering the scene from light's POV */ { clearValues[0].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo(); renderPassBeginInfo.renderPass = offscreenPass.renderPass; renderPassBeginInfo.framebuffer = offscreenPass.frameBuffer; renderPassBeginInfo.renderArea.extent.width = offscreenPass.width; renderPassBeginInfo.renderArea.extent.height = offscreenPass.height; renderPassBeginInfo.clearValueCount = 1; renderPassBeginInfo.pClearValues = clearValues; vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); viewport = vks::initializers::viewport((float)offscreenPass.width, (float)offscreenPass.height, 0.0f, 1.0f); vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); scissor = vks::initializers::rect2D(offscreenPass.width, offscreenPass.height, 0, 0); vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor); // Set depth bias (aka "Polygon offset") // Required to avoid shadow mapping artifacts vkCmdSetDepthBias( drawCmdBuffers[i], depthBiasConstant, 0.0f, depthBiasSlope); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.offscreen); vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets.offscreen, 0, nullptr); scenes[sceneIndex].draw(drawCmdBuffers[i]); vkCmdEndRenderPass(drawCmdBuffers[i]); } /* Note: Explicit synchronization is not required between the render pass, as this is done implicit via sub pass dependencies */ /* Second pass: Scene rendering with applied shadow map */ { clearValues[0].color = defaultClearColor; clearValues[1].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo(); renderPassBeginInfo.renderPass = renderPass; renderPassBeginInfo.framebuffer = frameBuffers[i]; renderPassBeginInfo.renderArea.extent.width = width; renderPassBeginInfo.renderArea.extent.height = height; renderPassBeginInfo.clearValueCount = 2; renderPassBeginInfo.pClearValues = clearValues; vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f); vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); scissor = vks::initializers::rect2D(width, height, 0, 0); vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor); // Visualize shadow map if (displayShadowMap) { vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets.debug, 0, nullptr); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.debug); vkCmdDraw(drawCmdBuffers[i], 3, 1, 0, 0); } else { // Render the shadows scene vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets.scene, 0, nullptr); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, (filterPCF) ? pipelines.sceneShadowPCF : pipelines.sceneShadow); scenes[sceneIndex].draw(drawCmdBuffers[i]); } drawUI(drawCmdBuffers[i]); vkCmdEndRenderPass(drawCmdBuffers[i]); } VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i])); } } void loadAssets() { const uint32_t glTFLoadingFlags = vkglTF::FileLoadingFlags::PreTransformVertices | vkglTF::FileLoadingFlags::PreMultiplyVertexColors | vkglTF::FileLoadingFlags::FlipY; scenes.resize(2); scenes[0].loadFromFile(getAssetPath() + "models/vulkanscene_shadow.gltf", vulkanDevice, queue, glTFLoadingFlags); scenes[1].loadFromFile(getAssetPath() + "models/samplescene.gltf", vulkanDevice, queue, glTFLoadingFlags); sceneNames = {"Vulkan scene", "Teapots and pillars" }; } void setupDescriptorPool() { std::vector poolSizes = { vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 3), vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 3) }; VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, 3); VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool)); } void setupDescriptorSetLayout() { // Shared pipeline layout for all pipelines used in this sample std::vector setLayoutBindings = { // Binding 0 : Vertex shader uniform buffer vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, 0), // Binding 1 : Fragment shader image sampler (shadow map) vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1) }; VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout)); VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayout, 1); VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout)); } void setupDescriptorSets() { std::vector writeDescriptorSets; // Image descriptor for the shadow map attachment VkDescriptorImageInfo shadowMapDescriptor = vks::initializers::descriptorImageInfo( offscreenPass.depthSampler, offscreenPass.depth.view, VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL); // Debug display VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1); VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.debug)); writeDescriptorSets = { // Binding 0 : Parameters uniform buffer vks::initializers::writeDescriptorSet(descriptorSets.debug, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.scene.descriptor), // Binding 1 : Fragment shader texture sampler vks::initializers::writeDescriptorSet(descriptorSets.debug, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &shadowMapDescriptor) }; vkUpdateDescriptorSets(device, static_cast(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, nullptr); // Offscreen shadow map generation VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.offscreen)); writeDescriptorSets = { // Binding 0 : Vertex shader uniform buffer vks::initializers::writeDescriptorSet(descriptorSets.offscreen, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.offscreen.descriptor), }; vkUpdateDescriptorSets(device, static_cast(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, nullptr); // Scene rendering with shadow map applied VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.scene)); writeDescriptorSets = { // Binding 0 : Vertex shader uniform buffer vks::initializers::writeDescriptorSet(descriptorSets.scene, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.scene.descriptor), // Binding 1 : Fragment shader shadow sampler vks::initializers::writeDescriptorSet(descriptorSets.scene, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &shadowMapDescriptor) }; vkUpdateDescriptorSets(device, static_cast(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, nullptr); } void preparePipelines() { VkPipelineInputAssemblyStateCreateInfo inputAssemblyStateCI = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE); VkPipelineRasterizationStateCreateInfo rasterizationStateCI = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0); VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE); VkPipelineColorBlendStateCreateInfo colorBlendStateCI = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState); VkPipelineDepthStencilStateCreateInfo depthStencilStateCI = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL); VkPipelineViewportStateCreateInfo viewportStateCI = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0); VkPipelineMultisampleStateCreateInfo multisampleStateCI = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0); std::vector dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR }; VkPipelineDynamicStateCreateInfo dynamicStateCI = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables); std::array shaderStages; VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass, 0); pipelineCI.pInputAssemblyState = &inputAssemblyStateCI; pipelineCI.pRasterizationState = &rasterizationStateCI; pipelineCI.pColorBlendState = &colorBlendStateCI; pipelineCI.pMultisampleState = &multisampleStateCI; pipelineCI.pViewportState = &viewportStateCI; pipelineCI.pDepthStencilState = &depthStencilStateCI; pipelineCI.pDynamicState = &dynamicStateCI; pipelineCI.stageCount = static_cast(shaderStages.size()); pipelineCI.pStages = shaderStages.data(); // Shadow mapping debug quad display rasterizationStateCI.cullMode = VK_CULL_MODE_NONE; shaderStages[0] = loadShader(getShadersPath() + "shadowmapping/quad.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getShadersPath() + "shadowmapping/quad.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); // Empty vertex input state VkPipelineVertexInputStateCreateInfo emptyInputState = vks::initializers::pipelineVertexInputStateCreateInfo(); pipelineCI.pVertexInputState = &emptyInputState; VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.debug)); // Scene rendering with shadows applied pipelineCI.pVertexInputState = vkglTF::Vertex::getPipelineVertexInputState({vkglTF::VertexComponent::Position, vkglTF::VertexComponent::UV, vkglTF::VertexComponent::Color, vkglTF::VertexComponent::Normal}); rasterizationStateCI.cullMode = VK_CULL_MODE_BACK_BIT; shaderStages[0] = loadShader(getShadersPath() + "shadowmapping/scene.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getShadersPath() + "shadowmapping/scene.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); // Use specialization constants to select between horizontal and vertical blur uint32_t enablePCF = 0; VkSpecializationMapEntry specializationMapEntry = vks::initializers::specializationMapEntry(0, 0, sizeof(uint32_t)); VkSpecializationInfo specializationInfo = vks::initializers::specializationInfo(1, &specializationMapEntry, sizeof(uint32_t), &enablePCF); shaderStages[1].pSpecializationInfo = &specializationInfo; // No filtering VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.sceneShadow)); // PCF filtering enablePCF = 1; VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.sceneShadowPCF)); // Offscreen pipeline (vertex shader only) shaderStages[0] = loadShader(getShadersPath() + "shadowmapping/offscreen.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); pipelineCI.stageCount = 1; // No blend attachment states (no color attachments used) colorBlendStateCI.attachmentCount = 0; // Disable culling, so all faces contribute to shadows rasterizationStateCI.cullMode = VK_CULL_MODE_NONE; depthStencilStateCI.depthCompareOp = VK_COMPARE_OP_LESS_OR_EQUAL; // Enable depth bias rasterizationStateCI.depthBiasEnable = VK_TRUE; // Add depth bias to dynamic state, so we can change it at runtime dynamicStateEnables.push_back(VK_DYNAMIC_STATE_DEPTH_BIAS); dynamicStateCI = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables); pipelineCI.renderPass = offscreenPass.renderPass; VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.offscreen)); } // Prepare and initialize uniform buffer containing shader uniforms void prepareUniformBuffers() { // Offscreen vertex shader uniform buffer block VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBuffers.offscreen, sizeof(uboOffscreenVS))); // Scene vertex shader uniform buffer block VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBuffers.scene, sizeof(uboVSscene))); // Map persistent VK_CHECK_RESULT(uniformBuffers.offscreen.map()); VK_CHECK_RESULT(uniformBuffers.scene.map()); updateLight(); updateUniformBufferOffscreen(); updateUniformBuffers(); } void updateLight() { // Animate the light source lightPos.x = cos(glm::radians(timer * 360.0f)) * 40.0f; lightPos.y = -50.0f + sin(glm::radians(timer * 360.0f)) * 20.0f; lightPos.z = 25.0f + sin(glm::radians(timer * 360.0f)) * 5.0f; } void updateUniformBuffers() { uboVSscene.projection = camera.matrices.perspective; uboVSscene.view = camera.matrices.view; uboVSscene.model = glm::mat4(1.0f); uboVSscene.lightPos = glm::vec4(lightPos, 1.0f); uboVSscene.depthBiasMVP = uboOffscreenVS.depthMVP; uboVSscene.zNear = zNear; uboVSscene.zFar = zFar; memcpy(uniformBuffers.scene.mapped, &uboVSscene, sizeof(uboVSscene)); } void updateUniformBufferOffscreen() { // Matrix from light's point of view glm::mat4 depthProjectionMatrix = glm::perspective(glm::radians(lightFOV), 1.0f, zNear, zFar); glm::mat4 depthViewMatrix = glm::lookAt(lightPos, glm::vec3(0.0f), glm::vec3(0, 1, 0)); glm::mat4 depthModelMatrix = glm::mat4(1.0f); uboOffscreenVS.depthMVP = depthProjectionMatrix * depthViewMatrix * depthModelMatrix; memcpy(uniformBuffers.offscreen.mapped, &uboOffscreenVS, sizeof(uboOffscreenVS)); } void draw() { VulkanExampleBase::prepareFrame(); // Command buffer to be submitted to the queue submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer]; // Submit to queue VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE)); VulkanExampleBase::submitFrame(); } void prepare() { VulkanExampleBase::prepare(); loadAssets(); prepareOffscreenFramebuffer(); prepareUniformBuffers(); setupDescriptorSetLayout(); preparePipelines(); setupDescriptorPool(); setupDescriptorSets(); buildCommandBuffers(); prepared = true; } virtual void render() { if (!prepared) return; draw(); if (!paused || camera.updated) { updateLight(); updateUniformBufferOffscreen(); updateUniformBuffers(); } } virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay) { if (overlay->header("Settings")) { if (overlay->comboBox("Scenes", &sceneIndex, sceneNames)) { buildCommandBuffers(); } if (overlay->checkBox("Display shadow render target", &displayShadowMap)) { buildCommandBuffers(); } if (overlay->checkBox("PCF filtering", &filterPCF)) { buildCommandBuffers(); } } } }; VULKAN_EXAMPLE_MAIN()