/* * Vulkan Example - Rendering a scene with multiple meshes and materials * * Copyright (C) 2016 by Sascha Willems - www.saschawillems.de * * This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT) */ #include #include #include #include #include #define GLM_FORCE_RADIANS #define GLM_FORCE_DEPTH_ZERO_TO_ONE #include #include #include #include #include "vulkanexamplebase.h" #define VERTEX_BUFFER_BIND_ID 0 #define ENABLE_VALIDATION false // Vertex layout used in this example struct Vertex { glm::vec3 pos; glm::vec3 normal; glm::vec2 uv; glm::vec3 color; }; // Scene related structs // Stores info on the materials used in the scene struct SceneMaterial { std::string name; // Properties struct { glm::vec3 diffuse; glm::vec3 specular; } colors; // The example only uses a diffuse channel vkTools::VulkanTexture diffuse; // The material's descriptor contains the material descriptors VkDescriptorSet descriptorSet; // Pointer to the pipeline used by this material VkPipeline *pipeline; }; // Stores per-mesh Vulkan resources struct SceneMesh { VkBuffer vertexBuffer; VkDeviceMemory vertexMemory; VkBuffer indexBuffer; VkDeviceMemory indexMemory; uint32_t indexCount; //VkDescriptorSet descriptorSet; // Pointer to the material used by this mesh SceneMaterial *material; }; // Class for loading the scene and generating all Vulkan resources class Scene { private: VkDevice device; VkQueue queue; // todo vkTools::UniformData *defaultUBO; VkDescriptorPool descriptorPool; VkDescriptorSetLayout descriptorSetLayout; vkTools::VulkanTextureLoader *textureLoader; const aiScene* aScene; VkPhysicalDeviceMemoryProperties deviceMemProps; uint32_t getMemoryTypeIndex(uint32_t typeBits, VkFlags properties) { for (int i = 0; i < 32; i++) { if ((typeBits & 1) == 1) { if ((deviceMemProps.memoryTypes[i].propertyFlags & properties) == properties) { return i; } } typeBits >>= 1; } return 0; } // Get materials from the assimp scene and map to our scene structures void loadMaterials() { materials.resize(aScene->mNumMaterials); for (size_t i = 0; i < materials.size(); i++) { materials[i] = {}; aiString name; aScene->mMaterials[i]->Get(AI_MATKEY_NAME, name); // Properties aiColor3D color; aScene->mMaterials[i]->Get(AI_MATKEY_COLOR_DIFFUSE, color); materials[i].colors.diffuse = glm::make_vec3(&color.r); aScene->mMaterials[i]->Get(AI_MATKEY_COLOR_SPECULAR, color); materials[i].colors.specular = glm::make_vec3(&color.r); // todo : alpha blended materials // illum 4 in mtl (e.g. window), not accessible via assimp? materials[i].name = name.C_Str(); std::cout << "Material \"" << materials[i].name << "\"" << std::endl; // Textures aiString texturefile; // Diffuse aScene->mMaterials[i]->GetTexture(aiTextureType_DIFFUSE, 0, &texturefile); if (aScene->mMaterials[i]->GetTextureCount(aiTextureType_DIFFUSE) > 0) { std::cout << " Diffuse: \"" << texturefile.C_Str() << "\"" << std::endl; std::string fileName = std::string(texturefile.C_Str()); std::replace(fileName.begin(), fileName.end(), '\\', '/'); textureLoader->loadTexture(assetPath + fileName, VK_FORMAT_BC3_UNORM_BLOCK, &materials[i].diffuse); } else { std::cout << " Material has no diffuse, using dummy texture!" << std::endl; // todo : separate pipeline and layout textureLoader->loadTexture(assetPath + "dummy.ktx", VK_FORMAT_BC2_UNORM_BLOCK, &materials[i].diffuse); } // For scenes with multiple textures per material we would need to check for additional texture types, e.g.: // aiTextureType_HEIGHT, aiTextureType_OPACITY, aiTextureType_SPECULAR, etc. } // Generate descriptor sets for the materials // Descriptor pool std::vector poolSizes; poolSizes.push_back(vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, static_cast(materials.size()))); poolSizes.push_back(vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, static_cast(materials.size()))); VkDescriptorPoolCreateInfo descriptorPoolInfo = vkTools::initializers::descriptorPoolCreateInfo( static_cast(poolSizes.size()), poolSizes.data(), static_cast(materials.size())); VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool)); // Shared descriptor set and pipeline layout std::vector setLayoutBindings; // Binding 0 : UBO setLayoutBindings.push_back(vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0)); // Binding 1 : Diffuse setLayoutBindings.push_back(vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1)); VkDescriptorSetLayoutCreateInfo descriptorLayout = vkTools::initializers::descriptorSetLayoutCreateInfo( setLayoutBindings.data(), static_cast(setLayoutBindings.size())); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout)); VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo = vkTools::initializers::pipelineLayoutCreateInfo(&descriptorSetLayout, 1); // We will be using a push constant block to pass material properties to the fragment shaders VkPushConstantRange pushConstantRange = vkTools::initializers::pushConstantRange(VK_SHADER_STAGE_FRAGMENT_BIT, sizeof(glm::vec4) * 2, 0); pipelineLayoutCreateInfo.pushConstantRangeCount = 1; pipelineLayoutCreateInfo.pPushConstantRanges = &pushConstantRange; VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &pipelineLayout)); // Descriptor sets for (size_t i = 0; i < materials.size(); i++) { // Descriptor set VkDescriptorSetAllocateInfo allocInfo = vkTools::initializers::descriptorSetAllocateInfo( descriptorPool, &descriptorSetLayout, 1); VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &materials[i].descriptorSet)); VkDescriptorImageInfo texDescriptor = vkTools::initializers::descriptorImageInfo( materials[i].diffuse.sampler, materials[i].diffuse.view, VK_IMAGE_LAYOUT_GENERAL); std::vector writeDescriptorSets; // todo : only use image sampler descriptor set and use one scene ubo for matrices // Binding 0 : Vertex shader uniform buffer writeDescriptorSets.push_back(vkTools::initializers::writeDescriptorSet( materials[i].descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &defaultUBO->descriptor)); // Binding 1 : Diffuse texture writeDescriptorSets.push_back(vkTools::initializers::writeDescriptorSet( materials[i].descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &texDescriptor)); vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL); } } // Load all meshes from the scene and generate the Vulkan resources // for rendering them void loadMeshes(VkCommandBuffer copyCmd) { meshes.resize(aScene->mNumMeshes); for (uint32_t i = 0; i < meshes.size(); i++) { aiMesh *aMesh = aScene->mMeshes[i]; std::cout << "Mesh \"" << aMesh->mName.C_Str() << "\"" << std::endl; std::cout << " Material: \"" << materials[aMesh->mMaterialIndex].name << "\"" << std::endl; std::cout << " Faces: " << aMesh->mNumFaces << std::endl; meshes[i].material = &materials[aMesh->mMaterialIndex]; // Vertices std::vector vertices; vertices.resize(aMesh->mNumVertices); bool hasUV = aMesh->HasTextureCoords(0); bool hasColor = aMesh->HasVertexColors(0); bool hasNormals = aMesh->HasNormals(); for (uint32_t i = 0; i < aMesh->mNumVertices; i++) { vertices[i].pos = glm::make_vec3(&aMesh->mVertices[i].x); vertices[i].pos.y = -vertices[i].pos.y; vertices[i].uv = hasUV ? glm::make_vec2(&aMesh->mTextureCoords[0][i].x) : glm::vec2(0.0f); vertices[i].normal = hasNormals ? glm::make_vec3(&aMesh->mNormals[i].x) : glm::vec3(0.0f); vertices[i].normal.y = -vertices[i].normal.y; vertices[i].color = hasColor ? glm::make_vec3(&aMesh->mColors[0][i].r) : glm::vec3(1.0f); } // Indices std::vector indices; meshes[i].indexCount = aMesh->mNumFaces * 3; indices.resize(aMesh->mNumFaces * 3); for (uint32_t i = 0; i < aMesh->mNumFaces; i++) { memcpy(&indices[i*3], &aMesh->mFaces[i].mIndices[0], sizeof(uint32_t) * 3); } // Create buffers // todo : only one memory allocation uint32_t vertexDataSize = vertices.size() * sizeof(Vertex); uint32_t indexDataSize = indices.size() * sizeof(uint32_t); VkMemoryAllocateInfo memAlloc = vkTools::initializers::memoryAllocateInfo(); VkMemoryRequirements memReqs; VkResult err; void *data; struct { struct { VkDeviceMemory memory; VkBuffer buffer; } vBuffer; struct { VkDeviceMemory memory; VkBuffer buffer; } iBuffer; } staging; // Generate vertex buffer VkBufferCreateInfo vBufferInfo; // Staging buffer vBufferInfo = vkTools::initializers::bufferCreateInfo(VK_BUFFER_USAGE_TRANSFER_SRC_BIT, vertexDataSize); VK_CHECK_RESULT(vkCreateBuffer(device, &vBufferInfo, nullptr, &staging.vBuffer.buffer)); vkGetBufferMemoryRequirements(device, staging.vBuffer.buffer, &memReqs); memAlloc.allocationSize = memReqs.size; memAlloc.memoryTypeIndex = getMemoryTypeIndex(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT); VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &staging.vBuffer.memory)); VK_CHECK_RESULT(vkMapMemory(device, staging.vBuffer.memory, 0, VK_WHOLE_SIZE, 0, &data)); memcpy(data, vertices.data(), vertexDataSize); vkUnmapMemory(device, staging.vBuffer.memory); VK_CHECK_RESULT(vkBindBufferMemory(device, staging.vBuffer.buffer, staging.vBuffer.memory, 0)); // Target vBufferInfo = vkTools::initializers::bufferCreateInfo(VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT, vertexDataSize); VK_CHECK_RESULT(vkCreateBuffer(device, &vBufferInfo, nullptr, &meshes[i].vertexBuffer)); vkGetBufferMemoryRequirements(device, meshes[i].vertexBuffer, &memReqs); memAlloc.allocationSize = memReqs.size; memAlloc.memoryTypeIndex = getMemoryTypeIndex(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &meshes[i].vertexMemory)); VK_CHECK_RESULT(vkBindBufferMemory(device, meshes[i].vertexBuffer, meshes[i].vertexMemory, 0)); // Generate index buffer VkBufferCreateInfo iBufferInfo; // Staging buffer iBufferInfo = vkTools::initializers::bufferCreateInfo(VK_BUFFER_USAGE_TRANSFER_SRC_BIT, indexDataSize); VK_CHECK_RESULT(vkCreateBuffer(device, &iBufferInfo, nullptr, &staging.iBuffer.buffer)); vkGetBufferMemoryRequirements(device, staging.iBuffer.buffer, &memReqs); memAlloc.allocationSize = memReqs.size; memAlloc.memoryTypeIndex = getMemoryTypeIndex(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT); VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &staging.iBuffer.memory)); VK_CHECK_RESULT(vkMapMemory(device, staging.iBuffer.memory, 0, VK_WHOLE_SIZE, 0, &data)); memcpy(data, indices.data(), indexDataSize); vkUnmapMemory(device, staging.iBuffer.memory); VK_CHECK_RESULT(vkBindBufferMemory(device, staging.iBuffer.buffer, staging.iBuffer.memory, 0)); // Target iBufferInfo = vkTools::initializers::bufferCreateInfo(VK_BUFFER_USAGE_INDEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT, indexDataSize); VK_CHECK_RESULT(vkCreateBuffer(device, &iBufferInfo, nullptr, &meshes[i].indexBuffer)); vkGetBufferMemoryRequirements(device, meshes[i].indexBuffer, &memReqs); memAlloc.allocationSize = memReqs.size; memAlloc.memoryTypeIndex = getMemoryTypeIndex(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &meshes[i].indexMemory)); VK_CHECK_RESULT(vkBindBufferMemory(device, meshes[i].indexBuffer, meshes[i].indexMemory, 0)); // Copy VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo(); VK_CHECK_RESULT(vkBeginCommandBuffer(copyCmd, &cmdBufInfo)); VkBufferCopy copyRegion = {}; copyRegion.size = vertexDataSize; vkCmdCopyBuffer( copyCmd, staging.vBuffer.buffer, meshes[i].vertexBuffer, 1, ©Region); copyRegion.size = indexDataSize; vkCmdCopyBuffer( copyCmd, staging.iBuffer.buffer, meshes[i].indexBuffer, 1, ©Region); VK_CHECK_RESULT(vkEndCommandBuffer(copyCmd)); VkSubmitInfo submitInfo = {}; submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = ©Cmd; VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE)); VK_CHECK_RESULT(vkQueueWaitIdle(queue)); vkDestroyBuffer(device, staging.vBuffer.buffer, nullptr); vkFreeMemory(device, staging.vBuffer.memory, nullptr); vkDestroyBuffer(device, staging.iBuffer.buffer, nullptr); vkFreeMemory(device, staging.iBuffer.memory, nullptr); } } public: #if defined(__ANDROID__) AAssetManager* assetManager = nullptr; #endif std::string assetPath = ""; std::vector materials; std::vector meshes; // Same for all meshes in the scene VkPipelineLayout pipelineLayout; // For displaying only a single part of the scene bool renderSingleScenePart = false; uint32_t scenePartIndex = 0; Scene(VkDevice device, VkQueue queue, VkPhysicalDeviceMemoryProperties memprops, vkTools::VulkanTextureLoader *textureloader, vkTools::UniformData *defaultUBO) { this->device = device; this->queue = queue; this->deviceMemProps = memprops; this->textureLoader = textureloader; this->defaultUBO = defaultUBO; } ~Scene() { for (auto mesh : meshes) { vkDestroyBuffer(device, mesh.vertexBuffer, nullptr); vkFreeMemory(device, mesh.vertexMemory, nullptr); vkDestroyBuffer(device, mesh.indexBuffer, nullptr); vkFreeMemory(device, mesh.indexMemory, nullptr); } for (auto material : materials) { textureLoader->destroyTexture(material.diffuse); } vkDestroyPipelineLayout(device, pipelineLayout, nullptr); vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr); vkDestroyDescriptorPool(device, descriptorPool, nullptr); } void load(std::string filename, VkCommandBuffer copyCmd) { Assimp::Importer Importer; int flags = aiProcess_PreTransformVertices | aiProcess_Triangulate | aiProcess_GenNormals | aiProcess_FixInfacingNormals; #if defined(__ANDROID__) AAsset* asset = AAssetManager_open(assetManager, filename.c_str(), AASSET_MODE_STREAMING); assert(asset); size_t size = AAsset_getLength(asset); assert(size > 0); void *meshData = malloc(size); AAsset_read(asset, meshData, size); AAsset_close(asset); aScene = Importer.ReadFileFromMemory(meshData, size, flags); free(meshData); #else aScene = Importer.ReadFile(filename.c_str(), flags); #endif if (aScene) { loadMaterials(); loadMeshes(copyCmd); } else { printf("Error parsing '%s': '%s'\n", filename.c_str(), Importer.GetErrorString()); #if defined(__ANDROID__) LOGE("Error parsing '%s': '%s'", filename.c_str(), Importer.GetErrorString()); #endif } } // Renders the scene into an active command buffer // In a real world application we would do some visibility culling in here void render(VkCommandBuffer cmdBuffer) { VkDeviceSize offsets[1] = { 0 }; for (size_t i = 0; i < meshes.size(); i++) { if ((renderSingleScenePart) && (i != scenePartIndex)) continue; // todo : per material pipelines // vkCmdBindPipeline(cmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, *mesh.material->pipeline); // todo : ds for mesh at 0, ds for mat at 1 (update shaders!) vkCmdBindDescriptorSets(cmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &meshes[i].material->descriptorSet, 0, NULL); // Pass material properies via push constants struct { glm::vec4 diffuse; glm::vec4 specular; } materialProps; materialProps.diffuse = glm::vec4(meshes[i].material->colors.diffuse, 1.0f); materialProps.specular = glm::vec4(meshes[i].material->colors.specular, 1.0f); vkCmdPushConstants( cmdBuffer, pipelineLayout, VK_SHADER_STAGE_FRAGMENT_BIT, 0, sizeof(materialProps), &materialProps); vkCmdBindVertexBuffers(cmdBuffer, 0, 1, &meshes[i].vertexBuffer, offsets); vkCmdBindIndexBuffer(cmdBuffer, meshes[i].indexBuffer, 0, VK_INDEX_TYPE_UINT32); vkCmdDrawIndexed(cmdBuffer, meshes[i].indexCount, 1, 0, 0, 0); } } }; class VulkanExample : public VulkanExampleBase { public: bool wireframe = false; bool attachLight = false; Scene *scene = nullptr; struct { VkPipelineVertexInputStateCreateInfo inputState; std::vector bindingDescriptions; std::vector attributeDescriptions; } vertices; struct { vkTools::UniformData vsScene; } uniformData; struct { glm::mat4 projection; glm::mat4 view; glm::mat4 model; glm::vec4 lightPos = glm::vec4(8.15f, -1.8f, -0.0f, 0.0f); } uboVS; struct { VkPipeline solid; VkPipeline wireframe; } pipelines; VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION) { rotationSpeed = 0.5f; enableTextOverlay = true; camera.type = Camera::CameraType::firtsperson; camera.movementSpeed = 7.5f; camera.position = { 15.0f, -13.5f, 0.0f }; camera.setRotation(glm::vec3(5.0f, 90.0f, 0.0f)); camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 256.0f); title = "Vulkan Example - Scene rendering"; } ~VulkanExample() { // Clean up used Vulkan resources // Note : Inherited destructor cleans up resources stored in base class vkDestroyPipeline(device, pipelines.solid, nullptr); vkTools::destroyUniformData(device, &uniformData.vsScene); delete(scene); } void reBuildCommandBuffers() { if (!checkCommandBuffers()) { destroyCommandBuffers(); createCommandBuffers(); } buildCommandBuffers(); } void buildCommandBuffers() { VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo(); VkClearValue clearValues[2]; clearValues[0].color = defaultClearColor; clearValues[0].color = { { 0.25f, 0.25f, 0.25f, 1.0f} }; clearValues[1].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo(); renderPassBeginInfo.renderPass = renderPass; renderPassBeginInfo.renderArea.offset.x = 0; renderPassBeginInfo.renderArea.offset.y = 0; renderPassBeginInfo.renderArea.extent.width = width; renderPassBeginInfo.renderArea.extent.height = height; renderPassBeginInfo.clearValueCount = 2; renderPassBeginInfo.pClearValues = clearValues; for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) { // Set target frame buffer renderPassBeginInfo.framebuffer = frameBuffers[i]; VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo)); vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); VkViewport viewport = vkTools::initializers::viewport((float)width, (float)height, 0.0f, 1.0f); vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); VkRect2D scissor = vkTools::initializers::rect2D(width, height, 0, 0); vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, wireframe ? pipelines.wireframe : pipelines.solid); scene->render(drawCmdBuffers[i]); vkCmdEndRenderPass(drawCmdBuffers[i]); VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i])); } } void setupVertexDescriptions() { // Binding description vertices.bindingDescriptions.resize(1); vertices.bindingDescriptions[0] = vkTools::initializers::vertexInputBindingDescription( VERTEX_BUFFER_BIND_ID, sizeof(Vertex), VK_VERTEX_INPUT_RATE_VERTEX); // Attribute descriptions // Describes memory layout and shader positions vertices.attributeDescriptions.resize(4); // Location 0 : Position vertices.attributeDescriptions[0] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 0, VK_FORMAT_R32G32B32_SFLOAT, 0); // Location 1 : Normal vertices.attributeDescriptions[1] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 1, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 3); // Location 2 : Texture coordinates vertices.attributeDescriptions[2] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 2, VK_FORMAT_R32G32_SFLOAT, sizeof(float) * 6); // Location 3 : Color vertices.attributeDescriptions[3] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 3, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 8); vertices.inputState = vkTools::initializers::pipelineVertexInputStateCreateInfo(); vertices.inputState.vertexBindingDescriptionCount = vertices.bindingDescriptions.size(); vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data(); vertices.inputState.vertexAttributeDescriptionCount = vertices.attributeDescriptions.size(); vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data(); } void setupDescriptorPool() { // Example uses one ubo and one combined image sampler std::vector poolSizes = { vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1), vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1), }; VkDescriptorPoolCreateInfo descriptorPoolInfo = vkTools::initializers::descriptorPoolCreateInfo( poolSizes.size(), poolSizes.data(), 1); VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool)); } void preparePipelines() { VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vkTools::initializers::pipelineInputAssemblyStateCreateInfo( VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE); VkPipelineRasterizationStateCreateInfo rasterizationState = vkTools::initializers::pipelineRasterizationStateCreateInfo( VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0); VkPipelineColorBlendAttachmentState blendAttachmentState = vkTools::initializers::pipelineColorBlendAttachmentState( 0xf, VK_FALSE); VkPipelineColorBlendStateCreateInfo colorBlendState = vkTools::initializers::pipelineColorBlendStateCreateInfo( 1, &blendAttachmentState); VkPipelineDepthStencilStateCreateInfo depthStencilState = vkTools::initializers::pipelineDepthStencilStateCreateInfo( VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL); VkPipelineViewportStateCreateInfo viewportState = vkTools::initializers::pipelineViewportStateCreateInfo(1, 1, 0); VkPipelineMultisampleStateCreateInfo multisampleState = vkTools::initializers::pipelineMultisampleStateCreateInfo( VK_SAMPLE_COUNT_1_BIT, 0); std::vector dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR }; VkPipelineDynamicStateCreateInfo dynamicState = vkTools::initializers::pipelineDynamicStateCreateInfo( dynamicStateEnables.data(), dynamicStateEnables.size(), 0); // Solid rendering pipeline // Load shaders std::array shaderStages; shaderStages[0] = loadShader(getAssetPath() + "shaders/scenerendering/scene.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getAssetPath() + "shaders/scenerendering/scene.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); VkGraphicsPipelineCreateInfo pipelineCreateInfo = vkTools::initializers::pipelineCreateInfo( scene->pipelineLayout, renderPass, 0); pipelineCreateInfo.pVertexInputState = &vertices.inputState; pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState; pipelineCreateInfo.pRasterizationState = &rasterizationState; pipelineCreateInfo.pColorBlendState = &colorBlendState; pipelineCreateInfo.pMultisampleState = &multisampleState; pipelineCreateInfo.pViewportState = &viewportState; pipelineCreateInfo.pDepthStencilState = &depthStencilState; pipelineCreateInfo.pDynamicState = &dynamicState; pipelineCreateInfo.stageCount = shaderStages.size(); pipelineCreateInfo.pStages = shaderStages.data(); VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.solid)); // Wire frame rendering pipeline rasterizationState.polygonMode = VK_POLYGON_MODE_LINE; rasterizationState.lineWidth = 1.0f; VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.wireframe)); } // Prepare and initialize uniform buffer containing shader uniforms void prepareUniformBuffers() { // Vertex shader uniform buffer block createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, sizeof(uboVS), nullptr, &uniformData.vsScene.buffer, &uniformData.vsScene.memory, &uniformData.vsScene.descriptor); updateUniformBuffers(); } void updateUniformBuffers() { if (attachLight) { uboVS.lightPos = glm::vec4(-camera.position, 1.0f); } uboVS.projection = camera.matrices.perspective; uboVS.view = camera.matrices.view; uboVS.model = glm::mat4(); uint8_t *pData; VK_CHECK_RESULT(vkMapMemory(device, uniformData.vsScene.memory, 0, sizeof(uboVS), 0, (void **)&pData)); memcpy(pData, &uboVS, sizeof(uboVS)); vkUnmapMemory(device, uniformData.vsScene.memory); } void draw() { VulkanExampleBase::prepareFrame(); // Command buffer to be sumitted to the queue submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer]; // Submit to queue VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE)); VulkanExampleBase::submitFrame(); } void loadScene() { VkCommandBuffer copyCmd = VulkanExampleBase::createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, false); scene = new Scene(device, queue, deviceMemoryProperties, textureLoader, &uniformData.vsScene); #if defined(__ANDROID__) scene->assetManager = androidApp->activity->assetManager; #endif scene->assetPath = getAssetPath() + "models/sibenik/"; scene->load(getAssetPath() + "models/sibenik/sibenik.obj", copyCmd); vkFreeCommandBuffers(device, cmdPool, 1, ©Cmd); } void prepare() { VulkanExampleBase::prepare(); setupVertexDescriptions(); prepareUniformBuffers(); loadScene(); preparePipelines(); setupDescriptorPool(); buildCommandBuffers(); prepared = true; } virtual void render() { if (!prepared) return; draw(); } virtual void viewChanged() { updateUniformBuffers(); } virtual void keyPressed(uint32_t keyCode) { switch (keyCode) { case 0x20: case GAMEPAD_BUTTON_A: wireframe = !wireframe; reBuildCommandBuffers(); break; case 0x6B: if (scene->renderSingleScenePart) { scene->scenePartIndex++; if (scene->scenePartIndex >= scene->meshes.size()) { scene->scenePartIndex = 0; scene->renderSingleScenePart = false; } } else { scene->renderSingleScenePart = true; } reBuildCommandBuffers(); break; case 0x4C: attachLight = !attachLight; updateUniformBuffers(); break; } } virtual void getOverlayText(VulkanTextOverlay *textOverlay) { #if defined(__ANDROID__) textOverlay->addText("Press \"Button A\" to toggle wireframe", 5.0f, 85.0f, VulkanTextOverlay::alignLeft); #else // textOverlay->addText("Press \"w\" to toggle wireframe", 5.0f, 85.0f, VulkanTextOverlay::alignLeft); #endif if ((scene) && (scene->renderSingleScenePart)) { textOverlay->addText("Rendering mesh " + std::to_string(scene->scenePartIndex) + " of " + std::to_string(static_cast(scene->meshes.size())), 5.0f, 85.0f, VulkanTextOverlay::alignLeft); } else { textOverlay->addText("Rendering whole scene", 5.0f, 85.0f, VulkanTextOverlay::alignLeft); } } }; VulkanExample *vulkanExample; #if defined(_WIN32) LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam) { if (vulkanExample != NULL) { vulkanExample->handleMessages(hWnd, uMsg, wParam, lParam); } return (DefWindowProc(hWnd, uMsg, wParam, lParam)); } #elif defined(__linux__) && !defined(__ANDROID__) static void handleEvent(const xcb_generic_event_t *event) { if (vulkanExample != NULL) { vulkanExample->handleEvent(event); } } #endif // Main entry point #if defined(_WIN32) // Windows entry point int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR pCmdLine, int nCmdShow) #elif defined(__ANDROID__) // Android entry point void android_main(android_app* state) #elif defined(__linux__) // Linux entry point int main(const int argc, const char *argv[]) #endif { #if defined(__ANDROID__) // Removing this may cause the compiler to omit the main entry point // which would make the application crash at start app_dummy(); #endif vulkanExample = new VulkanExample(); #if defined(_WIN32) vulkanExample->setupWindow(hInstance, WndProc); #elif defined(__ANDROID__) // Attach vulkan example to global android application state state->userData = vulkanExample; state->onAppCmd = VulkanExample::handleAppCommand; state->onInputEvent = VulkanExample::handleAppInput; vulkanExample->androidApp = state; #elif defined(__linux__) vulkanExample->setupWindow(); #endif #if !defined(__ANDROID__) vulkanExample->initSwapchain(); vulkanExample->prepare(); #endif vulkanExample->renderLoop(); delete(vulkanExample); #if !defined(__ANDROID__) return 0; #endif }