/* * Vulkan Example - Texture loading (and display) example (including mip maps) * * Copyright (C) 2016 by Sascha Willems - www.saschawillems.de * * This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT) */ #include #include #include #include #include #define GLM_FORCE_RADIANS #define GLM_FORCE_DEPTH_ZERO_TO_ONE #include #include #include #include "vulkanexamplebase.h" #define VERTEX_BUFFER_BIND_ID 0 #define ENABLE_VALIDATION false // Vertex layout for this example struct Vertex { float pos[3]; float uv[2]; }; class VulkanExample : public VulkanExampleBase { public: // Contains all Vulkan objects that are required to store and use a texture // Note that this repository contains a texture loader (vulkantextureloader.h) // that encapsulates texture loading functionality in a class that is used // in subsequent demos struct Texture { VkSampler sampler; VkImage image; VkImageLayout imageLayout; VkDeviceMemory deviceMemory; VkImageView view; uint32_t width, height; uint32_t mipLevels; } texture; struct { VkBuffer buf; VkDeviceMemory mem; VkPipelineVertexInputStateCreateInfo inputState; std::vector bindingDescriptions; std::vector attributeDescriptions; } vertices; struct { int count; VkBuffer buf; VkDeviceMemory mem; } indices; vkTools::UniformData uniformDataVS; struct { glm::mat4 projection; glm::mat4 model; float lodBias = 0.0f; } uboVS; struct { VkPipeline solid; } pipelines; VkPipelineLayout pipelineLayout; VkDescriptorSet descriptorSet; VkDescriptorSetLayout descriptorSetLayout; VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION) { zoom = -2.5f; rotation = { 45.0f, 0.0f, 0.0f }; title = "Vulkan Example - Texturing"; } ~VulkanExample() { // Clean up used Vulkan resources // Note : Inherited destructor cleans up resources stored in base class // Clean up texture resources vkDestroyImageView(device, texture.view, nullptr); vkDestroyImage(device, texture.image, nullptr); vkDestroySampler(device, texture.sampler, nullptr); vkFreeMemory(device, texture.deviceMemory, nullptr); vkDestroyPipeline(device, pipelines.solid, nullptr); vkDestroyPipelineLayout(device, pipelineLayout, nullptr); vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr); vkDestroyBuffer(device, vertices.buf, nullptr); vkFreeMemory(device, vertices.mem, nullptr); vkDestroyBuffer(device, indices.buf, nullptr); vkFreeMemory(device, indices.mem, nullptr); vkDestroyBuffer(device, uniformDataVS.buffer, nullptr); vkFreeMemory(device, uniformDataVS.memory, nullptr); } // Create an image memory barrier for changing the layout of // an image and put it into an active command buffer void setImageLayout(VkImage image, VkImageAspectFlags aspectMask, VkImageLayout oldImageLayout, VkImageLayout newImageLayout, uint32_t mipLevel, uint32_t mipLevelCount) { // Create an image barrier object VkImageMemoryBarrier imageMemoryBarrier = vkTools::initializers::imageMemoryBarrier();; imageMemoryBarrier.oldLayout = oldImageLayout; imageMemoryBarrier.newLayout = newImageLayout; imageMemoryBarrier.image = image; imageMemoryBarrier.subresourceRange.aspectMask = aspectMask; imageMemoryBarrier.subresourceRange.baseMipLevel = mipLevel; imageMemoryBarrier.subresourceRange.levelCount = mipLevelCount; imageMemoryBarrier.subresourceRange.layerCount = 1; // Only sets masks for layouts used in this example // For a more complete version that can be used with // other layouts see vkTools::setImageLayout // Source layouts (new) if (oldImageLayout == VK_IMAGE_LAYOUT_PREINITIALIZED) { imageMemoryBarrier.srcAccessMask = VK_ACCESS_HOST_WRITE_BIT | VK_ACCESS_TRANSFER_WRITE_BIT; } // Target layouts (new) // New layout is transfer destination (copy, blit) // Make sure any reads from and writes to the image have been finished if (newImageLayout == VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL) { imageMemoryBarrier.dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT | VK_ACCESS_HOST_WRITE_BIT | VK_ACCESS_TRANSFER_WRITE_BIT; } // New layout is shader read (sampler, input attachment) // Make sure any writes to the image have been finished if (newImageLayout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL) { imageMemoryBarrier.srcAccessMask = VK_ACCESS_HOST_WRITE_BIT | VK_ACCESS_TRANSFER_WRITE_BIT; imageMemoryBarrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT; } // New layout is transfer source (copy, blit) // Make sure any reads from and writes to the image have been finished if (newImageLayout == VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL) { imageMemoryBarrier.dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT | VK_ACCESS_HOST_WRITE_BIT | VK_ACCESS_TRANSFER_WRITE_BIT; } // Put barrier on top VkPipelineStageFlags srcStageFlags = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT; VkPipelineStageFlags destStageFlags = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT; // Put barrier inside setup command buffer vkCmdPipelineBarrier( setupCmdBuffer, srcStageFlags, destStageFlags, VK_FLAGS_NONE, 0, nullptr, 0, nullptr, 1, &imageMemoryBarrier); } void loadTexture(const char* fileName, VkFormat format, bool forceLinearTiling) { VkFormatProperties formatProperties; VkResult err; gli::texture2D tex2D(gli::load(fileName)); assert(!tex2D.empty()); texture.width = tex2D[0].dimensions().x; texture.height = tex2D[0].dimensions().y; texture.mipLevels = tex2D.levels(); // Get device properites for the requested texture format vkGetPhysicalDeviceFormatProperties(physicalDevice, format, &formatProperties); // Only use linear tiling if requested (and supported by the device) // Support for linear tiling is mostly limited, so prefer to use // optimal tiling instead // On most implementations linear tiling will only support a very // limited amount of formats and features (mip maps, cubemaps, arrays, etc.) VkBool32 useStaging = true; // Only use linear tiling if forced if (forceLinearTiling) { // Don't use linear if format is not supported for (linear) shader sampling useStaging = !(formatProperties.linearTilingFeatures & VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT); } VkImageCreateInfo imageCreateInfo = vkTools::initializers::imageCreateInfo(); imageCreateInfo.imageType = VK_IMAGE_TYPE_2D; imageCreateInfo.format = format; imageCreateInfo.mipLevels = 1; imageCreateInfo.arrayLayers = 1; imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT; imageCreateInfo.tiling = VK_IMAGE_TILING_LINEAR; imageCreateInfo.usage = (useStaging) ? VK_IMAGE_USAGE_TRANSFER_SRC_BIT : VK_IMAGE_USAGE_SAMPLED_BIT; imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_PREINITIALIZED; imageCreateInfo.flags = 0; imageCreateInfo.extent = { texture.width, texture.height, 1 }; VkMemoryAllocateInfo memAllocInfo = vkTools::initializers::memoryAllocateInfo(); VkMemoryRequirements memReqs; if (useStaging) { // Load all available mip levels into linear textures // and copy to optimal tiling target struct MipLevel { VkImage image; VkDeviceMemory memory; }; std::vector mipLevels; mipLevels.resize(texture.mipLevels); // Load mip levels into linear textures that are used to copy from for (uint32_t level = 0; level < texture.mipLevels; level++) { imageCreateInfo.extent.width = tex2D[level].dimensions().x; imageCreateInfo.extent.height = tex2D[level].dimensions().y; imageCreateInfo.extent.depth = 1; err = vkCreateImage(device, &imageCreateInfo, nullptr, &mipLevels[level].image); assert(!err); vkGetImageMemoryRequirements(device, mipLevels[level].image, &memReqs); memAllocInfo.allocationSize = memReqs.size; getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &memAllocInfo.memoryTypeIndex); err = vkAllocateMemory(device, &memAllocInfo, nullptr, &mipLevels[level].memory); assert(!err); err = vkBindImageMemory(device, mipLevels[level].image, mipLevels[level].memory, 0); assert(!err); VkImageSubresource subRes = {}; subRes.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; VkSubresourceLayout subResLayout; void *data; vkGetImageSubresourceLayout(device, mipLevels[level].image, &subRes, &subResLayout); assert(!err); err = vkMapMemory(device, mipLevels[level].memory, 0, memReqs.size, 0, &data); assert(!err); memcpy(data, tex2D[level].data(), tex2D[level].size()); vkUnmapMemory(device, mipLevels[level].memory); // Image barrier for linear image (base) // Linear image will be used as a source for the copy setImageLayout( mipLevels[level].image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_PREINITIALIZED, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, 0, 1); } // Setup texture as blit target with optimal tiling imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL; imageCreateInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT; imageCreateInfo.mipLevels = texture.mipLevels; imageCreateInfo.extent = { texture.width, texture.height, 1 }; err = vkCreateImage(device, &imageCreateInfo, nullptr, &texture.image); assert(!err); vkGetImageMemoryRequirements(device, texture.image, &memReqs); memAllocInfo.allocationSize = memReqs.size; getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &memAllocInfo.memoryTypeIndex); err = vkAllocateMemory(device, &memAllocInfo, nullptr, &texture.deviceMemory); assert(!err); err = vkBindImageMemory(device, texture.image, texture.deviceMemory, 0); assert(!err); // Image barrier for optimal image (target) // Optimal image will be used as destination for the copy // Set initial layout for all mip levels of the optimal (target) tiled texture setImageLayout( texture.image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_PREINITIALIZED, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 0, texture.mipLevels); // Copy mip levels one by one for (uint32_t level = 0; level < texture.mipLevels; ++level) { // Copy region for image blit VkImageCopy copyRegion = {}; copyRegion.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; copyRegion.srcSubresource.baseArrayLayer = 0; copyRegion.srcSubresource.mipLevel = 0; copyRegion.srcSubresource.layerCount = 1; copyRegion.srcOffset = { 0, 0, 0 }; copyRegion.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; copyRegion.dstSubresource.baseArrayLayer = 0; // Set mip level to copy the linear image to copyRegion.dstSubresource.mipLevel = level; copyRegion.dstSubresource.layerCount = 1; copyRegion.dstOffset = { 0, 0, 0 }; copyRegion.extent.width = tex2D[level].dimensions().x; copyRegion.extent.height = tex2D[level].dimensions().y; copyRegion.extent.depth = 1; // Put image copy into command buffer vkCmdCopyImage( setupCmdBuffer, mipLevels[level].image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, texture.image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, ©Region); } // Change texture image layout to shader read after all mip levels have been copied texture.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; setImageLayout( texture.image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, texture.imageLayout, 0, texture.mipLevels); flushSetupCommandBuffer(); createSetupCommandBuffer(); // Clean up linear images // No longer required after mip levels // have been transformed over to optimal tiling for (auto& level : mipLevels) { vkDestroyImage(device, level.image, nullptr); vkFreeMemory(device, level.memory, nullptr); } } else { // Prefer using optimal tiling, as linear tiling // may support only a small set of features // depending on implementation (e.g. no mip maps, only one layer, etc.) VkImage mappableImage; VkDeviceMemory mappableMemory; // Load mip map level 0 to linear tiling image err = vkCreateImage(device, &imageCreateInfo, nullptr, &mappableImage); assert(!err); // Get memory requirements for this image // like size and alignment vkGetImageMemoryRequirements(device, mappableImage, &memReqs); // Set memory allocation size to required memory size memAllocInfo.allocationSize = memReqs.size; // Get memory type that can be mapped to host memory getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &memAllocInfo.memoryTypeIndex); // Allocate host memory err = vkAllocateMemory(device, &memAllocInfo, nullptr, &mappableMemory); assert(!err); // Bind allocated image for use err = vkBindImageMemory(device, mappableImage, mappableMemory, 0); assert(!err); // Get sub resource layout // Mip map count, array layer, etc. VkImageSubresource subRes = {}; subRes.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; VkSubresourceLayout subResLayout; void *data; // Get sub resources layout // Includes row pitch, size offsets, etc. vkGetImageSubresourceLayout(device, mappableImage, &subRes, &subResLayout); assert(!err); // Map image memory err = vkMapMemory(device, mappableMemory, 0, memReqs.size, 0, &data); assert(!err); // Copy image data into memory memcpy(data, tex2D[subRes.mipLevel].data(), tex2D[subRes.mipLevel].size()); vkUnmapMemory(device, mappableMemory); // Linear tiled images don't need to be staged // and can be directly used as textures texture.image = mappableImage; texture.deviceMemory = mappableMemory; texture.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; // Setup image memory barrier setImageLayout( texture.image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_UNDEFINED, texture.imageLayout, 0, 1); } // Create sampler // In Vulkan textures are accessed by samplers // This separates all the sampling information from the // texture data // This means you could have multiple sampler objects // for the same texture with different settings // Similar to the samplers available with OpenGL 3.3 VkSamplerCreateInfo sampler = vkTools::initializers::samplerCreateInfo(); sampler.magFilter = VK_FILTER_LINEAR; sampler.minFilter = VK_FILTER_LINEAR; sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR; sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT; sampler.addressModeV = VK_SAMPLER_ADDRESS_MODE_REPEAT; sampler.addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT; sampler.mipLodBias = 0.0f; sampler.compareOp = VK_COMPARE_OP_NEVER; sampler.minLod = 0.0f; // Max level-of-detail should match mip level count sampler.maxLod = (useStaging) ? (float)texture.mipLevels : 0.0f; // Enable anisotropic filtering sampler.maxAnisotropy = 8; sampler.anisotropyEnable = VK_TRUE; sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE; err = vkCreateSampler(device, &sampler, nullptr, &texture.sampler); assert(!err); // Create image view // Textures are not directly accessed by the shaders and // are abstracted by image views containing additional // information and sub resource ranges VkImageViewCreateInfo view = vkTools::initializers::imageViewCreateInfo(); view.image = VK_NULL_HANDLE; view.viewType = VK_IMAGE_VIEW_TYPE_2D; view.format = format; view.components = { VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A }; view.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; view.subresourceRange.baseMipLevel = 0; view.subresourceRange.baseArrayLayer = 0; view.subresourceRange.layerCount = 1; // Linear tiling usually won't support mip maps // Only set mip map count if optimal tiling is used view.subresourceRange.levelCount = (useStaging) ? texture.mipLevels : 1; view.image = texture.image; err = vkCreateImageView(device, &view, nullptr, &texture.view); assert(!err); } // Free staging resources used while creating a texture void destroyTextureImage(Texture texture) { vkDestroyImage(device, texture.image, nullptr); vkFreeMemory(device, texture.deviceMemory, nullptr); } void buildCommandBuffers() { VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo(); VkClearValue clearValues[2]; clearValues[0].color = defaultClearColor; clearValues[1].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo(); renderPassBeginInfo.renderPass = renderPass; renderPassBeginInfo.renderArea.offset.x = 0; renderPassBeginInfo.renderArea.offset.y = 0; renderPassBeginInfo.renderArea.extent.width = width; renderPassBeginInfo.renderArea.extent.height = height; renderPassBeginInfo.clearValueCount = 2; renderPassBeginInfo.pClearValues = clearValues; VkResult err; for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) { // Set target frame buffer renderPassBeginInfo.framebuffer = frameBuffers[i]; err = vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo); assert(!err); vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); VkViewport viewport = vkTools::initializers::viewport( (float)width, (float)height, 0.0f, 1.0f); vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); VkRect2D scissor = vkTools::initializers::rect2D( width, height, 0, 0); vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor); vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.solid); VkDeviceSize offsets[1] = { 0 }; vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &vertices.buf, offsets); vkCmdBindIndexBuffer(drawCmdBuffers[i], indices.buf, 0, VK_INDEX_TYPE_UINT32); vkCmdDrawIndexed(drawCmdBuffers[i], indices.count, 1, 0, 0, 0); vkCmdEndRenderPass(drawCmdBuffers[i]); err = vkEndCommandBuffer(drawCmdBuffers[i]); assert(!err); } } void draw() { VkResult err; // Get next image in the swap chain (back/front buffer) err = swapChain.acquireNextImage(semaphores.presentComplete, ¤tBuffer); assert(!err); submitPostPresentBarrier(swapChain.buffers[currentBuffer].image); // Command buffer to be sumitted to the queue submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer]; // Submit to queue err = vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE); assert(!err); submitPrePresentBarrier(swapChain.buffers[currentBuffer].image); err = swapChain.queuePresent(queue, currentBuffer, semaphores.renderComplete); assert(!err); err = vkQueueWaitIdle(queue); assert(!err); } void generateQuad() { // Setup vertices for a single uv-mapped quad #define dim 1.0f std::vector vertexBuffer = { { { dim, dim, 0.0f },{ 1.0f, 1.0f } }, { { -dim, dim, 0.0f },{ 0.0f, 1.0f } }, { { -dim, -dim, 0.0f },{ 0.0f, 0.0f } }, { { dim, -dim, 0.0f },{ 1.0f, 0.0f } } }; #undef dim createBuffer( VK_BUFFER_USAGE_VERTEX_BUFFER_BIT, vertexBuffer.size() * sizeof(Vertex), vertexBuffer.data(), &vertices.buf, &vertices.mem); // Setup indices std::vector indexBuffer = { 0,1,2, 2,3,0 }; indices.count = indexBuffer.size(); createBuffer( VK_BUFFER_USAGE_INDEX_BUFFER_BIT, indexBuffer.size() * sizeof(uint32_t), indexBuffer.data(), &indices.buf, &indices.mem); } void setupVertexDescriptions() { // Binding description vertices.bindingDescriptions.resize(1); vertices.bindingDescriptions[0] = vkTools::initializers::vertexInputBindingDescription( VERTEX_BUFFER_BIND_ID, sizeof(Vertex), VK_VERTEX_INPUT_RATE_VERTEX); // Attribute descriptions // Describes memory layout and shader positions vertices.attributeDescriptions.resize(2); // Location 0 : Position vertices.attributeDescriptions[0] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 0, VK_FORMAT_R32G32B32_SFLOAT, 0); // Location 1 : Texture coordinates vertices.attributeDescriptions[1] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 1, VK_FORMAT_R32G32_SFLOAT, sizeof(float) * 3); vertices.inputState = vkTools::initializers::pipelineVertexInputStateCreateInfo(); vertices.inputState.vertexBindingDescriptionCount = vertices.bindingDescriptions.size(); vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data(); vertices.inputState.vertexAttributeDescriptionCount = vertices.attributeDescriptions.size(); vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data(); } void setupDescriptorPool() { // Example uses one ubo and one image sampler std::vector poolSizes = { vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1), vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1) }; VkDescriptorPoolCreateInfo descriptorPoolInfo = vkTools::initializers::descriptorPoolCreateInfo( poolSizes.size(), poolSizes.data(), 2); VkResult vkRes = vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool); assert(!vkRes); } void setupDescriptorSetLayout() { std::vector setLayoutBindings = { // Binding 0 : Vertex shader uniform buffer vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0), // Binding 1 : Fragment shader image sampler vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1) }; VkDescriptorSetLayoutCreateInfo descriptorLayout = vkTools::initializers::descriptorSetLayoutCreateInfo( setLayoutBindings.data(), setLayoutBindings.size()); VkResult err = vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout); assert(!err); VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = vkTools::initializers::pipelineLayoutCreateInfo( &descriptorSetLayout, 1); err = vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout); assert(!err); } void setupDescriptorSet() { VkDescriptorSetAllocateInfo allocInfo = vkTools::initializers::descriptorSetAllocateInfo( descriptorPool, &descriptorSetLayout, 1); VkResult vkRes = vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet); assert(!vkRes); // Image descriptor for the color map texture VkDescriptorImageInfo texDescriptor = vkTools::initializers::descriptorImageInfo( texture.sampler, texture.view, VK_IMAGE_LAYOUT_GENERAL); std::vector writeDescriptorSets = { // Binding 0 : Vertex shader uniform buffer vkTools::initializers::writeDescriptorSet( descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformDataVS.descriptor), // Binding 1 : Fragment shader texture sampler vkTools::initializers::writeDescriptorSet( descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &texDescriptor) }; vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL); } void preparePipelines() { VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vkTools::initializers::pipelineInputAssemblyStateCreateInfo( VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE); VkPipelineRasterizationStateCreateInfo rasterizationState = vkTools::initializers::pipelineRasterizationStateCreateInfo( VK_POLYGON_MODE_FILL, VK_CULL_MODE_NONE, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0); VkPipelineColorBlendAttachmentState blendAttachmentState = vkTools::initializers::pipelineColorBlendAttachmentState( 0xf, VK_FALSE); VkPipelineColorBlendStateCreateInfo colorBlendState = vkTools::initializers::pipelineColorBlendStateCreateInfo( 1, &blendAttachmentState); VkPipelineDepthStencilStateCreateInfo depthStencilState = vkTools::initializers::pipelineDepthStencilStateCreateInfo( VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL); VkPipelineViewportStateCreateInfo viewportState = vkTools::initializers::pipelineViewportStateCreateInfo(1, 1, 0); VkPipelineMultisampleStateCreateInfo multisampleState = vkTools::initializers::pipelineMultisampleStateCreateInfo( VK_SAMPLE_COUNT_1_BIT, 0); std::vector dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR }; VkPipelineDynamicStateCreateInfo dynamicState = vkTools::initializers::pipelineDynamicStateCreateInfo( dynamicStateEnables.data(), dynamicStateEnables.size(), 0); // Load shaders std::array shaderStages; shaderStages[0] = loadShader("./../data/shaders/texture.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader("./../data/shaders/texture.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); VkGraphicsPipelineCreateInfo pipelineCreateInfo = vkTools::initializers::pipelineCreateInfo( pipelineLayout, renderPass, 0); pipelineCreateInfo.pVertexInputState = &vertices.inputState; pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState; pipelineCreateInfo.pRasterizationState = &rasterizationState; pipelineCreateInfo.pColorBlendState = &colorBlendState; pipelineCreateInfo.pMultisampleState = &multisampleState; pipelineCreateInfo.pViewportState = &viewportState; pipelineCreateInfo.pDepthStencilState = &depthStencilState; pipelineCreateInfo.pDynamicState = &dynamicState; pipelineCreateInfo.stageCount = shaderStages.size(); pipelineCreateInfo.pStages = shaderStages.data(); VkResult err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.solid); assert(!err); } // Prepare and initialize uniform buffer containing shader uniforms void prepareUniformBuffers() { // Vertex shader uniform buffer block createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, sizeof(uboVS), &uboVS, &uniformDataVS.buffer, &uniformDataVS.memory, &uniformDataVS.descriptor); updateUniformBuffers(); } void updateUniformBuffers() { // Vertex shader glm::mat4 viewMatrix = glm::mat4(); uboVS.projection = glm::perspective(glm::radians(60.0f), (float)width / (float)height, 0.001f, 256.0f); viewMatrix = glm::translate(viewMatrix, glm::vec3(0.0f, 0.0f, zoom)); uboVS.model = glm::mat4(); uboVS.model = viewMatrix * glm::translate(uboVS.model, glm::vec3(0, 0, 0)); uboVS.model = glm::rotate(uboVS.model, glm::radians(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f)); uboVS.model = glm::rotate(uboVS.model, glm::radians(rotation.y), glm::vec3(0.0f, 1.0f, 0.0f)); uboVS.model = glm::rotate(uboVS.model, glm::radians(rotation.z), glm::vec3(0.0f, 0.0f, 1.0f)); uint8_t *pData; VkResult err = vkMapMemory(device, uniformDataVS.memory, 0, sizeof(uboVS), 0, (void **)&pData); assert(!err); memcpy(pData, &uboVS, sizeof(uboVS)); vkUnmapMemory(device, uniformDataVS.memory); } void prepare() { VulkanExampleBase::prepare(); generateQuad(); setupVertexDescriptions(); prepareUniformBuffers(); loadTexture( "./../data/textures/igor_and_pal_bc3.ktx", VK_FORMAT_BC3_UNORM_BLOCK, false); setupDescriptorSetLayout(); preparePipelines(); setupDescriptorPool(); setupDescriptorSet(); buildCommandBuffers(); prepared = true; } virtual void render() { if (!prepared) return; vkDeviceWaitIdle(device); draw(); vkDeviceWaitIdle(device); } virtual void viewChanged() { updateUniformBuffers(); } void changeLodBias(float delta) { uboVS.lodBias += delta; if (uboVS.lodBias < 0.0f) { uboVS.lodBias = 0.0f; } if (uboVS.lodBias > 8.0f) { uboVS.lodBias = 8.0f; } updateUniformBuffers(); } }; VulkanExample *vulkanExample; #ifdef _WIN32 LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam) { if (vulkanExample != NULL) { vulkanExample->handleMessages(hWnd, uMsg, wParam, lParam); if (uMsg == WM_KEYDOWN) { switch (wParam) { case VK_ADD: vulkanExample->changeLodBias(0.1f); break; case VK_SUBTRACT: vulkanExample->changeLodBias(-0.1f); break; } } } return (DefWindowProc(hWnd, uMsg, wParam, lParam)); } #else static void handleEvent(const xcb_generic_event_t *event) { if (vulkanExample != NULL) { vulkanExample->handleEvent(event); } } #endif #ifdef _WIN32 int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR pCmdLine, int nCmdShow) #else int main(const int argc, const char *argv[]) #endif { vulkanExample = new VulkanExample(); #ifdef _WIN32 vulkanExample->setupWindow(hInstance, WndProc); #else vulkanExample->setupWindow(); #endif vulkanExample->initSwapchain(); vulkanExample->prepare(); vulkanExample->renderLoop(); delete(vulkanExample); return 0; }