/* * Vulkan Example - Compute shader sloth simulation * * Updated compute shader by Lukas Bergdoll (https://github.com/Voultapher) * * Copyright (C) 2016-2017 by Sascha Willems - www.saschawillems.de * * This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT) */ #include #include #include #include #include #include #define GLM_FORCE_RADIANS #define GLM_FORCE_DEPTH_ZERO_TO_ONE #include #include #include #include "vulkanexamplebase.h" #include "VulkanTexture.hpp" #include "VulkanModel.hpp" #define ENABLE_VALIDATION false class VulkanExample : public VulkanExampleBase { public: uint32_t sceneSetup = 1; uint32_t readSet = 0; uint32_t indexCount; vks::Texture2D textureCloth; vks::VertexLayout vertexLayout = vks::VertexLayout({ vks::VERTEX_COMPONENT_POSITION, vks::VERTEX_COMPONENT_UV, vks::VERTEX_COMPONENT_NORMAL, }); vks::Model modelSphere; // Resources for the graphics part of the example struct { VkDescriptorSetLayout descriptorSetLayout; VkDescriptorSet descriptorSet; VkPipelineLayout pipelineLayout; struct Pipelines { VkPipeline cloth; VkPipeline sphere; } pipelines; vks::Buffer indices; vks::Buffer uniformBuffer; struct graphicsUBO { glm::mat4 projection; glm::mat4 view; glm::vec4 lightPos = glm::vec4(-1.0f, 2.0f, -1.0f, 1.0f); } ubo; } graphics; // Resources for the compute part of the example struct { struct StorageBuffers { vks::Buffer input; vks::Buffer output; } storageBuffers; vks::Buffer uniformBuffer; VkQueue queue; VkCommandPool commandPool; std::array commandBuffers; VkFence fence; VkDescriptorSetLayout descriptorSetLayout; std::array descriptorSets; VkPipelineLayout pipelineLayout; VkPipeline pipeline; struct computeUBO { float deltaT = 0.0f; float particleMass = 0.1f; float springStiffness = 2000.0f; float damping = 0.25f; float restDistH; float restDistV; float restDistD; float sphereRadius = 0.5f; glm::vec4 spherePos = glm::vec4(0.0f, 0.0f, 0.0f, 0.0f); glm::vec4 gravity = glm::vec4(0.0f, 9.8f, 0.0f, 0.0f); glm::ivec2 particleCount; } ubo; } compute; // SSBO cloth grid particle declaration struct Particle { glm::vec4 pos; glm::vec4 vel; glm::vec4 uv; glm::vec4 normal; float pinned; glm::vec3 _pad0; }; struct Cloth { glm::uvec2 gridsize = glm::uvec2(60, 60); glm::vec2 size = glm::vec2(2.5f, 2.5f); } cloth; VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION) { enableTextOverlay = true; title = "Vulkan Example - Compute shader cloth simulation"; camera.type = Camera::CameraType::lookat; camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 512.0f); camera.setRotation(glm::vec3(-30.0f, -45.0f, 0.0f)); camera.setTranslation(glm::vec3(0.0f, 0.0f, -3.5f)); paused = true; } ~VulkanExample() { // Graphics graphics.uniformBuffer.destroy(); vkDestroyPipeline(device, graphics.pipelines.cloth, nullptr); vkDestroyPipeline(device, graphics.pipelines.sphere, nullptr); vkDestroyPipelineLayout(device, graphics.pipelineLayout, nullptr); vkDestroyDescriptorSetLayout(device, graphics.descriptorSetLayout, nullptr); textureCloth.destroy(); modelSphere.destroy(); // Compute compute.storageBuffers.input.destroy(); compute.storageBuffers.output.destroy(); compute.uniformBuffer.destroy(); vkDestroyPipelineLayout(device, compute.pipelineLayout, nullptr); vkDestroyDescriptorSetLayout(device, compute.descriptorSetLayout, nullptr); vkDestroyPipeline(device, compute.pipeline, nullptr); vkDestroyFence(device, compute.fence, nullptr); vkDestroyCommandPool(device, compute.commandPool, nullptr); } // Enable physical device features required for this example virtual void getEnabledFeatures() { if (deviceFeatures.samplerAnisotropy) { enabledFeatures.samplerAnisotropy = VK_TRUE; } }; void loadAssets() { textureCloth.loadFromFile(getAssetPath() + "textures/vulkan_cloth_rgba.ktx", VK_FORMAT_R8G8B8A8_UNORM, vulkanDevice, queue); modelSphere.loadFromFile(ASSET_PATH "models/geosphere.obj", vertexLayout, compute.ubo.sphereRadius * 0.05f, vulkanDevice, queue); } void buildCommandBuffers() { // Destroy command buffers if already present if (!checkCommandBuffers()) { destroyCommandBuffers(); createCommandBuffers(); } VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo(); VkClearValue clearValues[2]; clearValues[0].color = { { 0.0f, 0.0f, 0.0f, 1.0f } };; clearValues[1].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo(); renderPassBeginInfo.renderPass = renderPass; renderPassBeginInfo.renderArea.offset.x = 0; renderPassBeginInfo.renderArea.offset.y = 0; renderPassBeginInfo.renderArea.extent.width = width; renderPassBeginInfo.renderArea.extent.height = height; renderPassBeginInfo.clearValueCount = 2; renderPassBeginInfo.pClearValues = clearValues; for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) { // Set target frame buffer renderPassBeginInfo.framebuffer = frameBuffers[i]; VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo)); // Draw the particle system using the update vertex buffer vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f); vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0); vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor); VkDeviceSize offsets[1] = { 0 }; // Render sphere if (sceneSetup == 0) { vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, graphics.pipelines.sphere); vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, graphics.pipelineLayout, 0, 1, &graphics.descriptorSet, 0, NULL); vkCmdBindIndexBuffer(drawCmdBuffers[i], modelSphere.indices.buffer, 0, VK_INDEX_TYPE_UINT32); vkCmdBindVertexBuffers(drawCmdBuffers[i], 0, 1, &modelSphere.vertices.buffer, offsets); vkCmdDrawIndexed(drawCmdBuffers[i], modelSphere.indexCount, 1, 0, 0, 0); } // Render cloth vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, graphics.pipelines.cloth); vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, graphics.pipelineLayout, 0, 1, &graphics.descriptorSet, 0, NULL); vkCmdBindIndexBuffer(drawCmdBuffers[i], graphics.indices.buffer, 0, VK_INDEX_TYPE_UINT32); vkCmdBindVertexBuffers(drawCmdBuffers[i], 0, 1, &compute.storageBuffers.output.buffer, offsets); vkCmdDrawIndexed(drawCmdBuffers[i], indexCount, 1, 0, 0, 0); vkCmdEndRenderPass(drawCmdBuffers[i]); VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i])); } } // todo: check barriers (validation, separate compute queue) void buildComputeCommandBuffer() { VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo(); for (uint32_t i = 0; i < 2; i++) { VK_CHECK_RESULT(vkBeginCommandBuffer(compute.commandBuffers[i], &cmdBufInfo)); VkBufferMemoryBarrier bufferBarrier = vks::initializers::bufferMemoryBarrier(); bufferBarrier.srcAccessMask = VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT; bufferBarrier.dstAccessMask = VK_ACCESS_SHADER_WRITE_BIT; bufferBarrier.srcQueueFamilyIndex = vulkanDevice->queueFamilyIndices.graphics; bufferBarrier.dstQueueFamilyIndex = vulkanDevice->queueFamilyIndices.compute; bufferBarrier.size = VK_WHOLE_SIZE; std::vector bufferBarriers; bufferBarrier.buffer = compute.storageBuffers.input.buffer; bufferBarriers.push_back(bufferBarrier); bufferBarrier.buffer = compute.storageBuffers.output.buffer; bufferBarriers.push_back(bufferBarrier); vkCmdPipelineBarrier(compute.commandBuffers[i], VK_PIPELINE_STAGE_VERTEX_SHADER_BIT, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, VK_FLAGS_NONE, 0, nullptr, static_cast(bufferBarriers.size()), bufferBarriers.data(), 0, nullptr); vkCmdBindPipeline(compute.commandBuffers[i], VK_PIPELINE_BIND_POINT_COMPUTE, compute.pipeline); // Dispatch the compute job for (uint32_t j = 0; j < 64; j++) { readSet = 1 - readSet; vkCmdBindDescriptorSets(compute.commandBuffers[i], VK_PIPELINE_BIND_POINT_COMPUTE, compute.pipelineLayout, 0, 1, &compute.descriptorSets[readSet], 0, 0); vkCmdDispatch(compute.commandBuffers[i], cloth.gridsize.x / 10, cloth.gridsize.y / 10, 1); for (auto &barrier : bufferBarriers) { barrier.srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT; barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT; barrier.srcQueueFamilyIndex = vulkanDevice->queueFamilyIndices.compute; barrier.dstQueueFamilyIndex = vulkanDevice->queueFamilyIndices.graphics; } vkCmdPipelineBarrier( compute.commandBuffers[i], VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, VK_FLAGS_NONE, 0, nullptr, static_cast(bufferBarriers.size()), bufferBarriers.data(), 0, nullptr); } for (auto &barrier : bufferBarriers) { barrier.srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT; barrier.dstAccessMask = VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT; barrier.srcQueueFamilyIndex = vulkanDevice->queueFamilyIndices.compute; barrier.dstQueueFamilyIndex = vulkanDevice->queueFamilyIndices.graphics; } vkCmdPipelineBarrier( compute.commandBuffers[i], VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, VK_PIPELINE_STAGE_VERTEX_SHADER_BIT, VK_FLAGS_NONE, 0, nullptr, static_cast(bufferBarriers.size()), bufferBarriers.data(), 0, nullptr); vkEndCommandBuffer(compute.commandBuffers[i]); } } // Setup and fill the compute shader storage buffers containing the particles void prepareStorageBuffers() { std::vector particleBuffer(cloth.gridsize.x * cloth.gridsize.y); float dx = cloth.size.x / (cloth.gridsize.x - 1); float dy = cloth.size.y / (cloth.gridsize.y - 1); float du = 1.0f / (cloth.gridsize.x - 1); float dv = 1.0f / (cloth.gridsize.y - 1); switch (sceneSetup) { case 0 : { // Horz. cloth falls onto sphere glm::mat4 transM = glm::translate(glm::mat4(), glm::vec3(- cloth.size.x / 2.0f, -2.0f, - cloth.size.y / 2.0f)); for (uint32_t i = 0; i < cloth.gridsize.y; i++) { for (uint32_t j = 0; j < cloth.gridsize.x; j++) { particleBuffer[i + j * cloth.gridsize.y].pos = transM * glm::vec4(dx * j, 0.0f, dy * i, 1.0f); particleBuffer[i + j * cloth.gridsize.y].vel = glm::vec4(0.0f); particleBuffer[i + j * cloth.gridsize.y].uv = glm::vec4(1.0f - du * i, dv * j, 0.0f, 0.0f); } } break; } case 1: { // Vert. Pinned cloth glm::mat4 transM = glm::translate(glm::mat4(), glm::vec3(- cloth.size.x / 2.0f, - cloth.size.y / 2.0f, 0.0f)); for (uint32_t i = 0; i < cloth.gridsize.y; i++) { for (uint32_t j = 0; j < cloth.gridsize.x; j++) { particleBuffer[i + j * cloth.gridsize.y].pos = transM * glm::vec4(dx * j, dy * i, 0.0f, 1.0f); particleBuffer[i + j * cloth.gridsize.y].vel = glm::vec4(0.0f); particleBuffer[i + j * cloth.gridsize.y].uv = glm::vec4(du * j, dv * i, 0.0f, 0.0f); // Pin some particles particleBuffer[i + j * cloth.gridsize.y].pinned = (i == 0) && ((j == 0) || (j == cloth.gridsize.x / 3) || (j == cloth.gridsize.x - cloth.gridsize.x / 3) || (j == cloth.gridsize.x - 1)); // Remove sphere compute.ubo.spherePos.z = -10.0f; } } break; } } VkDeviceSize storageBufferSize = particleBuffer.size() * sizeof(Particle); // Staging // SSBO won't be changed on the host after upload so copy to device local memory vks::Buffer stagingBuffer; vulkanDevice->createBuffer( VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &stagingBuffer, storageBufferSize, particleBuffer.data()); vulkanDevice->createBuffer( VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &compute.storageBuffers.input, storageBufferSize); vulkanDevice->createBuffer( VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &compute.storageBuffers.output, storageBufferSize); // Copy from staging buffer VkCommandBuffer copyCmd = VulkanExampleBase::createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true); VkBufferCopy copyRegion = {}; copyRegion.size = storageBufferSize; vkCmdCopyBuffer(copyCmd, stagingBuffer.buffer, compute.storageBuffers.input.buffer, 1, ©Region); vkCmdCopyBuffer(copyCmd, stagingBuffer.buffer, compute.storageBuffers.output.buffer, 1, ©Region); VulkanExampleBase::flushCommandBuffer(copyCmd, queue, true); stagingBuffer.destroy(); // Indices std::vector indices; for (uint32_t y = 0; y < cloth.gridsize.y - 1; y++) { for (uint32_t x = 0; x < cloth.gridsize.x; x++) { indices.push_back((y + 1) * cloth.gridsize.x + x); indices.push_back((y)* cloth.gridsize.x + x); } // Primitive restart (signlaed by special value 0xFFFFFFFF) indices.push_back(0xFFFFFFFF); } uint32_t indexBufferSize = static_cast(indices.size()) * sizeof(uint32_t); indexCount = static_cast(indices.size()); vulkanDevice->createBuffer( VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &stagingBuffer, indexBufferSize, indices.data()); vulkanDevice->createBuffer( VK_BUFFER_USAGE_INDEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &graphics.indices, indexBufferSize); // Copy from staging buffer copyCmd = VulkanExampleBase::createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true); copyRegion = {}; copyRegion.size = indexBufferSize; vkCmdCopyBuffer(copyCmd, stagingBuffer.buffer, graphics.indices.buffer, 1, ©Region); VulkanExampleBase::flushCommandBuffer(copyCmd, queue, true); stagingBuffer.destroy(); } void setupDescriptorPool() { std::vector poolSizes = { vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 3), vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 4), vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2) }; VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, 3); VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool)); } void setupLayoutsAndDescriptors() { // Set layout std::vector setLayoutBindings = { vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0), vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1) }; VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &graphics.descriptorSetLayout)); VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&graphics.descriptorSetLayout, 1); VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &graphics.pipelineLayout)); // Set VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &graphics.descriptorSetLayout, 1); VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &graphics.descriptorSet)); std::vector writeDescriptorSets = { vks::initializers::writeDescriptorSet(graphics.descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &graphics.uniformBuffer.descriptor), vks::initializers::writeDescriptorSet(graphics.descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &textureCloth.descriptor) }; vkUpdateDescriptorSets(device, static_cast(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL); } void preparePipelines() { VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP, 0, VK_TRUE); VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_NONE, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0); VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE); VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState); VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL); VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0); VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0); std::vector dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR }; VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables, 0); // Rendering pipeline std::array shaderStages; shaderStages[0] = loadShader(getAssetPath() + "shaders/computecloth/cloth.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getAssetPath() + "shaders/computecloth/cloth.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); VkGraphicsPipelineCreateInfo pipelineCreateInfo = vks::initializers::pipelineCreateInfo( graphics.pipelineLayout, renderPass, 0); // Input attributes // Binding description std::vector inputBindings = { vks::initializers::vertexInputBindingDescription(0, sizeof(Particle), VK_VERTEX_INPUT_RATE_VERTEX) }; // Attribute descriptions std::vector inputAttributes = { vks::initializers::vertexInputAttributeDescription(0, 0, VK_FORMAT_R32G32B32_SFLOAT, offsetof(Particle, pos)), vks::initializers::vertexInputAttributeDescription(0, 1, VK_FORMAT_R32G32_SFLOAT, offsetof(Particle, uv)), vks::initializers::vertexInputAttributeDescription(0, 2, VK_FORMAT_R32G32B32_SFLOAT, offsetof(Particle, normal)) }; // Assign to vertex buffer VkPipelineVertexInputStateCreateInfo inputState = vks::initializers::pipelineVertexInputStateCreateInfo(); inputState.vertexBindingDescriptionCount = static_cast(inputBindings.size()); inputState.pVertexBindingDescriptions = inputBindings.data(); inputState.vertexAttributeDescriptionCount = static_cast(inputAttributes.size()); inputState.pVertexAttributeDescriptions = inputAttributes.data(); pipelineCreateInfo.pVertexInputState = &inputState; pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState; pipelineCreateInfo.pRasterizationState = &rasterizationState; pipelineCreateInfo.pColorBlendState = &colorBlendState; pipelineCreateInfo.pMultisampleState = &multisampleState; pipelineCreateInfo.pViewportState = &viewportState; pipelineCreateInfo.pDepthStencilState = &depthStencilState; pipelineCreateInfo.pDynamicState = &dynamicState; pipelineCreateInfo.stageCount = static_cast(shaderStages.size()); pipelineCreateInfo.pStages = shaderStages.data(); pipelineCreateInfo.renderPass = renderPass; VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &graphics.pipelines.cloth)); // Sphere rendering pipeline inputBindings = { vks::initializers::vertexInputBindingDescription(0, vertexLayout.stride(), VK_VERTEX_INPUT_RATE_VERTEX) }; inputAttributes = { vks::initializers::vertexInputAttributeDescription(0, 0, VK_FORMAT_R32G32B32_SFLOAT, 0), vks::initializers::vertexInputAttributeDescription(0, 1, VK_FORMAT_R32G32_SFLOAT, sizeof(float) * 3), vks::initializers::vertexInputAttributeDescription(0, 2, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 5) }; inputState.vertexAttributeDescriptionCount = static_cast(inputAttributes.size()); inputAssemblyState.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST; rasterizationState.polygonMode = VK_POLYGON_MODE_FILL; shaderStages[0] = loadShader(getAssetPath() + "shaders/computecloth/sphere.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getAssetPath() + "shaders/computecloth/sphere.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &graphics.pipelines.sphere)); } void prepareCompute() { // Create a compute capable device queue vkGetDeviceQueue(device, vulkanDevice->queueFamilyIndices.compute, 0, &compute.queue); // Create compute pipeline std::vector setLayoutBindings = { vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, VK_SHADER_STAGE_COMPUTE_BIT, 0), vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, VK_SHADER_STAGE_COMPUTE_BIT, 1), vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_COMPUTE_BIT, 2), }; VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo( setLayoutBindings.data(), static_cast(setLayoutBindings.size())); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &compute.descriptorSetLayout)); VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo( &compute.descriptorSetLayout, 1); VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &compute.pipelineLayout)); VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo( descriptorPool, &compute.descriptorSetLayout, 1); // Create two descriptor sets with input and output buffers switched VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &compute.descriptorSets[0])); VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &compute.descriptorSets[1])); std::vector computeWriteDescriptorSets = { vks::initializers::writeDescriptorSet(compute.descriptorSets[0], VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 0, &compute.storageBuffers.input.descriptor), vks::initializers::writeDescriptorSet(compute.descriptorSets[0], VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1, &compute.storageBuffers.output.descriptor), vks::initializers::writeDescriptorSet(compute.descriptorSets[0], VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2, &compute.uniformBuffer.descriptor), vks::initializers::writeDescriptorSet(compute.descriptorSets[1], VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 0, &compute.storageBuffers.output.descriptor), vks::initializers::writeDescriptorSet(compute.descriptorSets[1], VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1, &compute.storageBuffers.input.descriptor), vks::initializers::writeDescriptorSet(compute.descriptorSets[1], VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2, &compute.uniformBuffer.descriptor) }; vkUpdateDescriptorSets(device, static_cast(computeWriteDescriptorSets.size()), computeWriteDescriptorSets.data(), 0, NULL); // Create pipeline VkComputePipelineCreateInfo computePipelineCreateInfo = vks::initializers::computePipelineCreateInfo(compute.pipelineLayout, 0); computePipelineCreateInfo.stage = loadShader(getAssetPath() + "shaders/computecloth/cloth.comp.spv", VK_SHADER_STAGE_COMPUTE_BIT); VK_CHECK_RESULT(vkCreateComputePipelines(device, pipelineCache, 1, &computePipelineCreateInfo, nullptr, &compute.pipeline)); // Separate command pool as queue family for compute may be different than graphics VkCommandPoolCreateInfo cmdPoolInfo = {}; cmdPoolInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO; cmdPoolInfo.queueFamilyIndex = vulkanDevice->queueFamilyIndices.compute; cmdPoolInfo.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT; VK_CHECK_RESULT(vkCreateCommandPool(device, &cmdPoolInfo, nullptr, &compute.commandPool)); // Create a command buffer for compute operations VkCommandBufferAllocateInfo cmdBufAllocateInfo = vks::initializers::commandBufferAllocateInfo(compute.commandPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY, 2); VK_CHECK_RESULT(vkAllocateCommandBuffers(device, &cmdBufAllocateInfo, &compute.commandBuffers[0])); // Fence for compute CB sync VkFenceCreateInfo fenceCreateInfo = vks::initializers::fenceCreateInfo(VK_FENCE_CREATE_SIGNALED_BIT); VK_CHECK_RESULT(vkCreateFence(device, &fenceCreateInfo, nullptr, &compute.fence)); // Build a single command buffer containing the compute dispatch commands buildComputeCommandBuffer(); } // Prepare and initialize uniform buffer containing shader uniforms void prepareUniformBuffers() { // Compute shader uniform buffer block vulkanDevice->createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &compute.uniformBuffer, sizeof(compute.ubo)); VK_CHECK_RESULT(compute.uniformBuffer.map()); // Initial values float dx = cloth.size.x / (cloth.gridsize.x - 1); float dy = cloth.size.y / (cloth.gridsize.y - 1); compute.ubo.restDistH = dx; compute.ubo.restDistV = dy; compute.ubo.restDistD = sqrtf(dx * dx + dy * dy); compute.ubo.particleCount = cloth.gridsize; updateComputeUBO(); // Vertex shader uniform buffer block vulkanDevice->createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &graphics.uniformBuffer, sizeof(graphics.ubo)); VK_CHECK_RESULT(graphics.uniformBuffer.map()); updateGraphicsUBO(); } void updateComputeUBO() { if (!paused) { compute.ubo.deltaT = 0.000005f; // todo: base on frametime //compute.ubo.deltaT = frameTimer * 0.0075f; } else { compute.ubo.deltaT = 0.0f; } memcpy(compute.uniformBuffer.mapped, &compute.ubo, sizeof(compute.ubo)); } void updateGraphicsUBO() { graphics.ubo.projection = camera.matrices.perspective; graphics.ubo.view = camera.matrices.view; memcpy(graphics.uniformBuffer.mapped, &graphics.ubo, sizeof(graphics.ubo)); } void draw() { // Submit graphics commands VulkanExampleBase::prepareFrame(); submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer]; VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE)); VulkanExampleBase::submitFrame(); vkWaitForFences(device, 1, &compute.fence, VK_TRUE, UINT64_MAX); vkResetFences(device, 1, &compute.fence); VkSubmitInfo computeSubmitInfo = vks::initializers::submitInfo(); computeSubmitInfo.commandBufferCount = 1; computeSubmitInfo.pCommandBuffers = &compute.commandBuffers[readSet]; VK_CHECK_RESULT(vkQueueSubmit(compute.queue, 1, &computeSubmitInfo, compute.fence)); } void prepare() { VulkanExampleBase::prepare(); loadAssets(); prepareStorageBuffers(); prepareUniformBuffers(); setupDescriptorPool(); setupLayoutsAndDescriptors(); preparePipelines(); prepareCompute(); buildCommandBuffers(); prepared = true; } virtual void render() { if (!prepared) return; draw(); updateComputeUBO(); } virtual void viewChanged() { updateGraphicsUBO(); } virtual void getOverlayText(VulkanTextOverlay *textOverlay) { textOverlay->addText(std::to_string(frameTimer * 0.0075f), 5.0f, 85.0f, VulkanTextOverlay::alignLeft); } }; VULKAN_EXAMPLE_MAIN()