/* * Vulkan Example - Sparse texture residency example * * Copyright (C) 2016-2021 by Sascha Willems - www.saschawillems.de * * This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT) */ /* * Note : This sample is work-in-progress and works basically, but it's not yet finished */ #include "texturesparseresidency.h" /* Virtual texture page Contains all functions and objects for a single page of a virtual texture */ VirtualTexturePage::VirtualTexturePage() { // Pages are initially not backed up by memory (non-resident) imageMemoryBind.memory = VK_NULL_HANDLE; } bool VirtualTexturePage::resident() { return (imageMemoryBind.memory != VK_NULL_HANDLE); } // Allocate Vulkan memory for the virtual page bool VirtualTexturePage::allocate(VkDevice device, uint32_t memoryTypeIndex) { if (imageMemoryBind.memory != VK_NULL_HANDLE) { return false; }; imageMemoryBind = {}; VkMemoryAllocateInfo allocInfo = vks::initializers::memoryAllocateInfo(); allocInfo.allocationSize = size; allocInfo.memoryTypeIndex = memoryTypeIndex; VK_CHECK_RESULT(vkAllocateMemory(device, &allocInfo, nullptr, &imageMemoryBind.memory)); VkImageSubresource subResource{}; subResource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; subResource.mipLevel = mipLevel; subResource.arrayLayer = layer; // Sparse image memory binding imageMemoryBind.subresource = subResource; imageMemoryBind.extent = extent; imageMemoryBind.offset = offset; return true; } // Release Vulkan memory allocated for this page bool VirtualTexturePage::release(VkDevice device) { del= false; if (imageMemoryBind.memory != VK_NULL_HANDLE) { vkFreeMemory(device, imageMemoryBind.memory, nullptr); imageMemoryBind.memory = VK_NULL_HANDLE; return true; } return false; } /* Virtual texture Contains the virtual pages and memory binding information for a whole virtual texture */ VirtualTexturePage* VirtualTexture::addPage(VkOffset3D offset, VkExtent3D extent, const VkDeviceSize size, const uint32_t mipLevel, uint32_t layer) { VirtualTexturePage newPage{}; newPage.offset = offset; newPage.extent = extent; newPage.size = size; newPage.mipLevel = mipLevel; newPage.layer = layer; newPage.index = static_cast(pages.size()); newPage.imageMemoryBind = {}; newPage.imageMemoryBind.offset = offset; newPage.imageMemoryBind.extent = extent; newPage.del = false; pages.push_back(newPage); return &pages.back(); } // Call before sparse binding to update memory bind list etc. void VirtualTexture::updateSparseBindInfo(std::vector &bindingChangedPages, bool del) { // Update list of memory-backed sparse image memory binds //sparseImageMemoryBinds.resize(pages.size()); sparseImageMemoryBinds.clear(); for (auto page : bindingChangedPages) { sparseImageMemoryBinds.push_back(page.imageMemoryBind); if (del) { sparseImageMemoryBinds[sparseImageMemoryBinds.size() - 1].memory = VK_NULL_HANDLE; } } // Update sparse bind info bindSparseInfo = vks::initializers::bindSparseInfo(); // todo: Semaphore for queue submission // bindSparseInfo.signalSemaphoreCount = 1; // bindSparseInfo.pSignalSemaphores = &bindSparseSemaphore; // Image memory binds imageMemoryBindInfo = {}; imageMemoryBindInfo.image = image; imageMemoryBindInfo.bindCount = static_cast(sparseImageMemoryBinds.size()); imageMemoryBindInfo.pBinds = sparseImageMemoryBinds.data(); bindSparseInfo.imageBindCount = (imageMemoryBindInfo.bindCount > 0) ? 1 : 0; bindSparseInfo.pImageBinds = &imageMemoryBindInfo; // Opaque image memory binds for the mip tail opaqueMemoryBindInfo.image = image; opaqueMemoryBindInfo.bindCount = static_cast(opaqueMemoryBinds.size()); opaqueMemoryBindInfo.pBinds = opaqueMemoryBinds.data(); bindSparseInfo.imageOpaqueBindCount = (opaqueMemoryBindInfo.bindCount > 0) ? 1 : 0; bindSparseInfo.pImageOpaqueBinds = &opaqueMemoryBindInfo; } // Release all Vulkan resources void VirtualTexture::destroy() { for (auto page : pages) { page.release(device); } for (auto bind : opaqueMemoryBinds) { vkFreeMemory(device, bind.memory, nullptr); } // Clean up mip tail if (mipTailimageMemoryBind.memory != VK_NULL_HANDLE) { vkFreeMemory(device, mipTailimageMemoryBind.memory, nullptr); } } /* Vulkan Example class */ VulkanExample::VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION) { title = "Sparse texture residency"; std::cout.imbue(std::locale("")); camera.type = Camera::CameraType::lookat; camera.setPosition(glm::vec3(0.0f, 0.0f, -12.0f)); camera.setRotation(glm::vec3(-90.0f, 0.0f, 0.0f)); camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 256.0f); } VulkanExample::~VulkanExample() { // Clean up used Vulkan resources // Note : Inherited destructor cleans up resources stored in base class destroyTextureImage(texture); vkDestroySemaphore(device, bindSparseSemaphore, nullptr); vkDestroyPipeline(device, pipeline, nullptr); vkDestroyPipelineLayout(device, pipelineLayout, nullptr); vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr); uniformBufferVS.destroy(); } void VulkanExample::getEnabledFeatures() { if (deviceFeatures.sparseBinding && deviceFeatures.sparseResidencyImage2D) { enabledFeatures.shaderResourceResidency = VK_TRUE; enabledFeatures.sparseBinding = VK_TRUE; enabledFeatures.sparseResidencyImage2D = VK_TRUE; } else { std::cout << "Sparse binding not supported" << std::endl; } } glm::uvec3 VulkanExample::alignedDivision(const VkExtent3D& extent, const VkExtent3D& granularity) { glm::uvec3 res; res.x = extent.width / granularity.width + ((extent.width % granularity.width) ? 1u : 0u); res.y = extent.height / granularity.height + ((extent.height % granularity.height) ? 1u : 0u); res.z = extent.depth / granularity.depth + ((extent.depth % granularity.depth) ? 1u : 0u); return res; } void VulkanExample::prepareSparseTexture(uint32_t width, uint32_t height, uint32_t layerCount, VkFormat format) { texture.device = vulkanDevice->logicalDevice; texture.width = width; texture.height = height; texture.mipLevels = static_cast(floor(log2(std::max(width, height))) + 1); texture.layerCount = layerCount; texture.format = format; texture.subRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, texture.mipLevels, 0, 1 }; // Get device properties for the requested texture format VkFormatProperties formatProperties; vkGetPhysicalDeviceFormatProperties(physicalDevice, format, &formatProperties); const VkImageType imageType = VK_IMAGE_TYPE_2D; const VkSampleCountFlagBits sampleCount = VK_SAMPLE_COUNT_1_BIT; const VkImageUsageFlags imageUsage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT; const VkImageTiling imageTiling = VK_IMAGE_TILING_OPTIMAL; // Get sparse image properties std::vector sparseProperties; // Sparse properties count for the desired format uint32_t sparsePropertiesCount; vkGetPhysicalDeviceSparseImageFormatProperties(physicalDevice, format, imageType, sampleCount, imageUsage, imageTiling, &sparsePropertiesCount, nullptr); // Check if sparse is supported for this format if (sparsePropertiesCount == 0) { std::cout << "Error: Requested format does not support sparse features!" << std::endl; return; } // Get actual image format properties sparseProperties.resize(sparsePropertiesCount); vkGetPhysicalDeviceSparseImageFormatProperties(physicalDevice, format, imageType, sampleCount, imageUsage, imageTiling, &sparsePropertiesCount, sparseProperties.data()); std::cout << "Sparse image format properties: " << sparsePropertiesCount << std::endl; for (auto props : sparseProperties) { std::cout << "\t Image granularity: w = " << props.imageGranularity.width << " h = " << props.imageGranularity.height << " d = " << props.imageGranularity.depth << std::endl; std::cout << "\t Aspect mask: " << props.aspectMask << std::endl; std::cout << "\t Flags: " << props.flags << std::endl; } // Create sparse image VkImageCreateInfo sparseImageCreateInfo = vks::initializers::imageCreateInfo(); sparseImageCreateInfo.imageType = imageType; sparseImageCreateInfo.format = texture.format; sparseImageCreateInfo.mipLevels = texture.mipLevels; sparseImageCreateInfo.arrayLayers = texture.layerCount; sparseImageCreateInfo.samples = sampleCount; sparseImageCreateInfo.tiling = imageTiling; sparseImageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; sparseImageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; sparseImageCreateInfo.extent = { texture.width, texture.height, 1 }; sparseImageCreateInfo.usage = imageUsage; sparseImageCreateInfo.flags = VK_IMAGE_CREATE_SPARSE_BINDING_BIT | VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT; VK_CHECK_RESULT(vkCreateImage(device, &sparseImageCreateInfo, nullptr, &texture.image)); VkCommandBuffer copyCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true); vks::tools::setImageLayout(copyCmd, texture.image, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, texture.subRange); vulkanDevice->flushCommandBuffer(copyCmd, queue); // Get memory requirements VkMemoryRequirements sparseImageMemoryReqs; // Sparse image memory requirement counts vkGetImageMemoryRequirements(device, texture.image, &sparseImageMemoryReqs); std::cout << "Image memory requirements:" << std::endl; std::cout << "\t Size: " << sparseImageMemoryReqs.size << std::endl; std::cout << "\t Alignment: " << sparseImageMemoryReqs.alignment << std::endl; // Check requested image size against hardware sparse limit if (sparseImageMemoryReqs.size > vulkanDevice->properties.limits.sparseAddressSpaceSize) { std::cout << "Error: Requested sparse image size exceeds supports sparse address space size!" << std::endl; return; }; // Get sparse memory requirements // Count uint32_t sparseMemoryReqsCount = 32; std::vector sparseMemoryReqs(sparseMemoryReqsCount); vkGetImageSparseMemoryRequirements(device, texture.image, &sparseMemoryReqsCount, sparseMemoryReqs.data()); if (sparseMemoryReqsCount == 0) { std::cout << "Error: No memory requirements for the sparse image!" << std::endl; return; } sparseMemoryReqs.resize(sparseMemoryReqsCount); // Get actual requirements vkGetImageSparseMemoryRequirements(device, texture.image, &sparseMemoryReqsCount, sparseMemoryReqs.data()); std::cout << "Sparse image memory requirements: " << sparseMemoryReqsCount << std::endl; for (auto reqs : sparseMemoryReqs) { std::cout << "\t Image granularity: w = " << reqs.formatProperties.imageGranularity.width << " h = " << reqs.formatProperties.imageGranularity.height << " d = " << reqs.formatProperties.imageGranularity.depth << std::endl; std::cout << "\t Mip tail first LOD: " << reqs.imageMipTailFirstLod << std::endl; std::cout << "\t Mip tail size: " << reqs.imageMipTailSize << std::endl; std::cout << "\t Mip tail offset: " << reqs.imageMipTailOffset << std::endl; std::cout << "\t Mip tail stride: " << reqs.imageMipTailStride << std::endl; //todo:multiple reqs texture.mipTailStart = reqs.imageMipTailFirstLod; } // Get sparse image requirements for the color aspect VkSparseImageMemoryRequirements sparseMemoryReq; bool colorAspectFound = false; for (auto reqs : sparseMemoryReqs) { if (reqs.formatProperties.aspectMask & VK_IMAGE_ASPECT_COLOR_BIT) { sparseMemoryReq = reqs; colorAspectFound = true; break; } } if (!colorAspectFound) { std::cout << "Error: Could not find sparse image memory requirements for color aspect bit!" << std::endl; return; } // @todo: proper comment // Calculate number of required sparse memory bindings by alignment assert((sparseImageMemoryReqs.size % sparseImageMemoryReqs.alignment) == 0); texture.memoryTypeIndex = vulkanDevice->getMemoryType(sparseImageMemoryReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); // Get sparse bindings uint32_t sparseBindsCount = static_cast(sparseImageMemoryReqs.size / sparseImageMemoryReqs.alignment); std::vector sparseMemoryBinds(sparseBindsCount); texture.sparseImageMemoryRequirements = sparseMemoryReq; // The mip tail contains all mip levels > sparseMemoryReq.imageMipTailFirstLod // Check if the format has a single mip tail for all layers or one mip tail for each layer // @todo: Comment texture.mipTailInfo.singleMipTail = sparseMemoryReq.formatProperties.flags & VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT; texture.mipTailInfo.alingedMipSize = sparseMemoryReq.formatProperties.flags & VK_SPARSE_IMAGE_FORMAT_ALIGNED_MIP_SIZE_BIT; // Sparse bindings for each mip level of all layers outside of the mip tail for (uint32_t layer = 0; layer < texture.layerCount; layer++) { // sparseMemoryReq.imageMipTailFirstLod is the first mip level that's stored inside the mip tail for (uint32_t mipLevel = 0; mipLevel < sparseMemoryReq.imageMipTailFirstLod; mipLevel++) { VkExtent3D extent; extent.width = std::max(sparseImageCreateInfo.extent.width >> mipLevel, 1u); extent.height = std::max(sparseImageCreateInfo.extent.height >> mipLevel, 1u); extent.depth = std::max(sparseImageCreateInfo.extent.depth >> mipLevel, 1u); VkImageSubresource subResource{}; subResource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; subResource.mipLevel = mipLevel; subResource.arrayLayer = layer; // Aligned sizes by image granularity VkExtent3D imageGranularity = sparseMemoryReq.formatProperties.imageGranularity; glm::uvec3 sparseBindCounts = alignedDivision(extent, imageGranularity); glm::uvec3 lastBlockExtent; lastBlockExtent.x = (extent.width % imageGranularity.width) ? extent.width % imageGranularity.width : imageGranularity.width; lastBlockExtent.y = (extent.height % imageGranularity.height) ? extent.height % imageGranularity.height : imageGranularity.height; lastBlockExtent.z = (extent.depth % imageGranularity.depth) ? extent.depth % imageGranularity.depth : imageGranularity.depth; // @todo: Comment uint32_t index = 0; for (uint32_t z = 0; z < sparseBindCounts.z; z++) { for (uint32_t y = 0; y < sparseBindCounts.y; y++) { for (uint32_t x = 0; x < sparseBindCounts.x; x++) { // Offset VkOffset3D offset; offset.x = x * imageGranularity.width; offset.y = y * imageGranularity.height; offset.z = z * imageGranularity.depth; // Size of the page VkExtent3D extent; extent.width = (x == sparseBindCounts.x - 1) ? lastBlockExtent.x : imageGranularity.width; extent.height = (y == sparseBindCounts.y - 1) ? lastBlockExtent.y : imageGranularity.height; extent.depth = (z == sparseBindCounts.z - 1) ? lastBlockExtent.z : imageGranularity.depth; // Add new virtual page VirtualTexturePage* newPage = texture.addPage(offset, extent, sparseImageMemoryReqs.alignment, mipLevel, layer); newPage->imageMemoryBind.subresource = subResource; index++; } } } } // @todo: proper comment // @todo: store in mip tail and properly release // @todo: Only one block for single mip tail if ((!texture.mipTailInfo.singleMipTail) && (sparseMemoryReq.imageMipTailFirstLod < texture.mipLevels)) { // Allocate memory for the mip tail VkMemoryAllocateInfo allocInfo = vks::initializers::memoryAllocateInfo(); allocInfo.allocationSize = sparseMemoryReq.imageMipTailSize; allocInfo.memoryTypeIndex = texture.memoryTypeIndex; VkDeviceMemory deviceMemory; VK_CHECK_RESULT(vkAllocateMemory(device, &allocInfo, nullptr, &deviceMemory)); // (Opaque) sparse memory binding VkSparseMemoryBind sparseMemoryBind{}; sparseMemoryBind.resourceOffset = sparseMemoryReq.imageMipTailOffset + layer * sparseMemoryReq.imageMipTailStride; sparseMemoryBind.size = sparseMemoryReq.imageMipTailSize; sparseMemoryBind.memory = deviceMemory; texture.opaqueMemoryBinds.push_back(sparseMemoryBind); } } // end layers and mips std::cout << "Texture info:" << std::endl; std::cout << "\tDim: " << texture.width << " x " << texture.height << std::endl; std::cout << "\tVirtual pages: " << texture.pages.size() << std::endl; // Check if format has one mip tail for all layers if ((sparseMemoryReq.formatProperties.flags & VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT) && (sparseMemoryReq.imageMipTailFirstLod < texture.mipLevels)) { // Allocate memory for the mip tail VkMemoryAllocateInfo allocInfo = vks::initializers::memoryAllocateInfo(); allocInfo.allocationSize = sparseMemoryReq.imageMipTailSize; allocInfo.memoryTypeIndex = texture.memoryTypeIndex; VkDeviceMemory deviceMemory; VK_CHECK_RESULT(vkAllocateMemory(device, &allocInfo, nullptr, &deviceMemory)); // (Opaque) sparse memory binding VkSparseMemoryBind sparseMemoryBind{}; sparseMemoryBind.resourceOffset = sparseMemoryReq.imageMipTailOffset; sparseMemoryBind.size = sparseMemoryReq.imageMipTailSize; sparseMemoryBind.memory = deviceMemory; texture.opaqueMemoryBinds.push_back(sparseMemoryBind); } // Create signal semaphore for sparse binding VkSemaphoreCreateInfo semaphoreCreateInfo = vks::initializers::semaphoreCreateInfo(); VK_CHECK_RESULT(vkCreateSemaphore(device, &semaphoreCreateInfo, nullptr, &bindSparseSemaphore)); // Prepare bind sparse info for reuse in queue submission texture.updateSparseBindInfo(texture.pages); // Bind to queue // todo: in draw? vkQueueBindSparse(queue, 1, &texture.bindSparseInfo, VK_NULL_HANDLE); //todo: use sparse bind semaphore vkQueueWaitIdle(queue); // Create sampler VkSamplerCreateInfo sampler = vks::initializers::samplerCreateInfo(); sampler.magFilter = VK_FILTER_LINEAR; sampler.minFilter = VK_FILTER_LINEAR; sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_NEAREST; sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE; sampler.addressModeV = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE; sampler.addressModeW = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE; sampler.mipLodBias = 0.0f; sampler.compareOp = VK_COMPARE_OP_NEVER; sampler.minLod = 0.0f; sampler.maxLod = static_cast(texture.mipLevels); sampler.maxAnisotropy = vulkanDevice->features.samplerAnisotropy ? vulkanDevice->properties.limits.maxSamplerAnisotropy : 1.0f; sampler.anisotropyEnable = false; sampler.borderColor = VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK; VK_CHECK_RESULT(vkCreateSampler(device, &sampler, nullptr, &texture.sampler)); // Create image view VkImageViewCreateInfo view = vks::initializers::imageViewCreateInfo(); view.image = VK_NULL_HANDLE; view.viewType = VK_IMAGE_VIEW_TYPE_2D; view.format = format; view.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; view.subresourceRange.baseMipLevel = 0; view.subresourceRange.baseArrayLayer = 0; view.subresourceRange.layerCount = 1; view.subresourceRange.levelCount = texture.mipLevels; view.image = texture.image; VK_CHECK_RESULT(vkCreateImageView(device, &view, nullptr, &texture.view)); // Fill image descriptor image info that can be used during the descriptor set setup texture.descriptor.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; texture.descriptor.imageView = texture.view; texture.descriptor.sampler = texture.sampler; } // Free all Vulkan resources used a texture object void VulkanExample::destroyTextureImage(SparseTexture texture) { vkDestroyImageView(device, texture.view, nullptr); vkDestroyImage(device, texture.image, nullptr); vkDestroySampler(device, texture.sampler, nullptr); texture.destroy(); } void VulkanExample::buildCommandBuffers() { VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo(); VkClearValue clearValues[2]; clearValues[0].color = defaultClearColor; clearValues[1].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo(); renderPassBeginInfo.renderPass = renderPass; renderPassBeginInfo.renderArea.offset.x = 0; renderPassBeginInfo.renderArea.offset.y = 0; renderPassBeginInfo.renderArea.extent.width = width; renderPassBeginInfo.renderArea.extent.height = height; renderPassBeginInfo.clearValueCount = 2; renderPassBeginInfo.pClearValues = clearValues; for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) { renderPassBeginInfo.framebuffer = frameBuffers[i]; VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo)); vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f); vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0); vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor); vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline); plane.draw(drawCmdBuffers[i]); drawUI(drawCmdBuffers[i]); vkCmdEndRenderPass(drawCmdBuffers[i]); VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i])); } } void VulkanExample::draw() { VulkanExampleBase::prepareFrame(); submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer]; VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE)); VulkanExampleBase::submitFrame(); } void VulkanExample::loadAssets() { const uint32_t glTFLoadingFlags = vkglTF::FileLoadingFlags::PreTransformVertices | vkglTF::FileLoadingFlags::PreMultiplyVertexColors | vkglTF::FileLoadingFlags::FlipY; plane.loadFromFile(getAssetPath() + "models/plane.gltf", vulkanDevice, queue, glTFLoadingFlags); } void VulkanExample::setupDescriptorPool() { // Example uses one ubo and one image sampler std::vector poolSizes = { vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1), vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1) }; VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo( static_cast(poolSizes.size()), poolSizes.data(), 2); VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool)); } void VulkanExample::setupDescriptorSetLayout() { std::vector setLayoutBindings = { // Binding 0 : Vertex shader uniform buffer vks::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0), // Binding 1 : Fragment shader image sampler vks::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1) }; VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo( setLayoutBindings.data(), static_cast(setLayoutBindings.size())); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout)); VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo( &descriptorSetLayout, 1); VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout)); } void VulkanExample::setupDescriptorSet() { VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo( descriptorPool, &descriptorSetLayout, 1); VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet)); std::vector writeDescriptorSets = { // Binding 0 : Vertex shader uniform buffer vks::initializers::writeDescriptorSet( descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBufferVS.descriptor), // Binding 1 : Fragment shader texture sampler vks::initializers::writeDescriptorSet( descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &texture.descriptor) }; vkUpdateDescriptorSets(device, static_cast(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL); } void VulkanExample::preparePipelines() { VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE); VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0); VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE); VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState); VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL); VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0); VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0); std::vector dynamicStateEnables = {VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR}; VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables); std::array shaderStages; VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo( pipelineLayout, renderPass); pipelineCI.pInputAssemblyState = &inputAssemblyState; pipelineCI.pRasterizationState = &rasterizationState; pipelineCI.pColorBlendState = &colorBlendState; pipelineCI.pMultisampleState = &multisampleState; pipelineCI.pViewportState = &viewportState; pipelineCI.pDepthStencilState = &depthStencilState; pipelineCI.pDynamicState = &dynamicState; pipelineCI.stageCount = static_cast(shaderStages.size()); pipelineCI.pStages = shaderStages.data(); pipelineCI.pVertexInputState = vkglTF::Vertex::getPipelineVertexInputState({ vkglTF::VertexComponent::Position, vkglTF::VertexComponent::Normal, vkglTF::VertexComponent::UV }); shaderStages[0] = loadShader(getShadersPath() + "texturesparseresidency/sparseresidency.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getShadersPath() + "texturesparseresidency/sparseresidency.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipeline)); } // Prepare and initialize uniform buffer containing shader uniforms void VulkanExample::prepareUniformBuffers() { // Vertex shader uniform buffer block VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBufferVS, sizeof(uboVS), &uboVS)); updateUniformBuffers(); } void VulkanExample::updateUniformBuffers() { uboVS.projection = camera.matrices.perspective; uboVS.model = camera.matrices.view; uboVS.viewPos = camera.viewPos; VK_CHECK_RESULT(uniformBufferVS.map()); memcpy(uniformBufferVS.mapped, &uboVS, sizeof(uboVS)); uniformBufferVS.unmap(); } void VulkanExample::prepare() { VulkanExampleBase::prepare(); // Check if the GPU supports sparse residency for 2D images if (!vulkanDevice->features.sparseResidencyImage2D) { vks::tools::exitFatal("Device does not support sparse residency for 2D images!", VK_ERROR_FEATURE_NOT_PRESENT); } loadAssets(); prepareUniformBuffers(); // Create a virtual texture with max. possible dimension (does not take up any VRAM yet) prepareSparseTexture(4096, 4096, 1, VK_FORMAT_R8G8B8A8_UNORM); setupDescriptorSetLayout(); preparePipelines(); setupDescriptorPool(); setupDescriptorSet(); buildCommandBuffers(); prepared = true; } void VulkanExample::render() { if (!prepared) return; draw(); if (camera.updated) { updateUniformBuffers(); } } void VulkanExample::viewChanged() { updateUniformBuffers(); } // Fills a buffer with random colors void VulkanExample::randomPattern(uint8_t* buffer, uint32_t width, uint32_t height) { std::random_device rd; std::mt19937 rndEngine(rd()); std::uniform_int_distribution rndDist(0, 255); uint8_t rndVal[4] = { 0, 0, 0, 0 }; while (rndVal[0] + rndVal[1] + rndVal[2] < 10) { rndVal[0] = (uint8_t)rndDist(rndEngine); rndVal[1] = (uint8_t)rndDist(rndEngine); rndVal[2] = (uint8_t)rndDist(rndEngine); } rndVal[3] = 255; for (uint32_t y = 0; y < height; y++) { for (uint32_t x = 0; x < width; x++) { for (uint32_t c = 0; c < 4; c++, ++buffer) { *buffer = rndVal[c]; } } } } void VulkanExample::uploadContent(VirtualTexturePage page, VkImage image) { // Generate some random image data and upload as a buffer const size_t bufferSize = 4 * page.extent.width * page.extent.height; vks::Buffer imageBuffer; VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &imageBuffer, bufferSize)); imageBuffer.map(); uint8_t* data = (uint8_t*)imageBuffer.mapped; randomPattern(data, page.extent.height, page.extent.width); VkCommandBuffer copyCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true); vks::tools::setImageLayout(copyCmd, image, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, texture.subRange, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT); VkBufferImageCopy region{}; region.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; region.imageSubresource.layerCount = 1; region.imageSubresource.mipLevel = page.mipLevel; region.imageOffset = page.offset; region.imageExtent = page.extent; vkCmdCopyBufferToImage(copyCmd, imageBuffer.buffer, image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, ®ion); vks::tools::setImageLayout(copyCmd, image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, texture.subRange, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT); vulkanDevice->flushCommandBuffer(copyCmd, queue); imageBuffer.destroy(); } void VulkanExample::fillRandomPages() { vkDeviceWaitIdle(device); std::default_random_engine rndEngine(std::random_device{}()); std::uniform_real_distribution rndDist(0.0f, 1.0f); std::vector updatedPages; std::vector bindingChangedPages; for (auto& page : texture.pages) { if (rndDist(rndEngine) < 0.5f) { continue; } if (page.allocate(device, texture.memoryTypeIndex)) { bindingChangedPages.push_back(page); } updatedPages.push_back(page); } // Update sparse queue binding texture.updateSparseBindInfo(bindingChangedPages); VkFenceCreateInfo fenceInfo = vks::initializers::fenceCreateInfo(VK_FLAGS_NONE); VkFence fence; VK_CHECK_RESULT(vkCreateFence(device, &fenceInfo, nullptr, &fence)); vkQueueBindSparse(queue, 1, &texture.bindSparseInfo, fence); vkWaitForFences(device, 1, &fence, VK_TRUE, UINT64_MAX); vkDestroyFence(device, fence, nullptr); for (auto &page: updatedPages) { uploadContent(page, texture.image); } } void VulkanExample::fillMipTail() { // Clean up previous mip tail memory allocation if (texture.mipTailimageMemoryBind.memory != VK_NULL_HANDLE) { vkFreeMemory(device, texture.mipTailimageMemoryBind.memory, nullptr); } //@todo: WIP VkDeviceSize imageMipTailSize = texture.sparseImageMemoryRequirements.imageMipTailSize; VkDeviceSize imageMipTailOffset = texture.sparseImageMemoryRequirements.imageMipTailOffset; // Stride between memory bindings for each mip level if not single mip tail (VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT not set) VkDeviceSize imageMipTailStride = texture.sparseImageMemoryRequirements.imageMipTailStride; VkMemoryAllocateInfo allocInfo = vks::initializers::memoryAllocateInfo(); allocInfo.allocationSize = imageMipTailSize; allocInfo.memoryTypeIndex = texture.memoryTypeIndex; VK_CHECK_RESULT(vkAllocateMemory(device, &allocInfo, nullptr, &texture.mipTailimageMemoryBind.memory)); uint32_t mipLevel = texture.sparseImageMemoryRequirements.imageMipTailFirstLod; uint32_t width = std::max(texture.width >> texture.sparseImageMemoryRequirements.imageMipTailFirstLod, 1u); uint32_t height = std::max(texture.height >> texture.sparseImageMemoryRequirements.imageMipTailFirstLod, 1u); uint32_t depth = 1; for (uint32_t i = texture.mipTailStart; i < texture.mipLevels; i++) { const uint32_t width = std::max(texture.width >> i, 1u); const uint32_t height = std::max(texture.height >> i, 1u); // Generate some random image data and upload as a buffer const size_t bufferSize = 4 * width * height; vks::Buffer imageBuffer; VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &imageBuffer, bufferSize)); imageBuffer.map(); // Fill buffer with random colors std::random_device rd; std::mt19937 rndEngine(rd()); std::uniform_int_distribution rndDist(0, 255); uint8_t* data = (uint8_t*)imageBuffer.mapped; randomPattern(data, width, height); VkCommandBuffer copyCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true); vks::tools::setImageLayout(copyCmd, texture.image, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, texture.subRange, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT); VkBufferImageCopy region{}; region.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; region.imageSubresource.layerCount = 1; region.imageSubresource.mipLevel = i; region.imageOffset = {}; region.imageExtent = { width, height, 1 }; vkCmdCopyBufferToImage(copyCmd, imageBuffer.buffer, texture.image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, ®ion); vks::tools::setImageLayout(copyCmd, texture.image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, texture.subRange, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT); vulkanDevice->flushCommandBuffer(copyCmd, queue); imageBuffer.destroy(); } } void VulkanExample::flushRandomPages() { vkDeviceWaitIdle(device); std::default_random_engine rndEngine(std::random_device{}()); std::uniform_real_distribution rndDist(0.0f, 1.0f); std::vector updatedPages; std::vector bindingChangedPages; for (auto& page : texture.pages) { if (rndDist(rndEngine) < 0.5f) { continue; } if (page.imageMemoryBind.memory != VK_NULL_HANDLE){ page.del = true; bindingChangedPages.push_back(page); } } // Update sparse queue binding texture.updateSparseBindInfo(bindingChangedPages, true); VkFenceCreateInfo fenceInfo = vks::initializers::fenceCreateInfo(VK_FLAGS_NONE); VkFence fence; VK_CHECK_RESULT(vkCreateFence(device, &fenceInfo, nullptr, &fence)); vkQueueBindSparse(queue, 1, &texture.bindSparseInfo, fence); vkWaitForFences(device, 1, &fence, VK_TRUE, UINT64_MAX); vkDestroyFence(device, fence, nullptr); for (auto& page : texture.pages) { if (page.del) { page.release(device); } } } void VulkanExample::OnUpdateUIOverlay(vks::UIOverlay* overlay) { if (overlay->header("Settings")) { if (overlay->sliderFloat("LOD bias", &uboVS.lodBias, -(float)texture.mipLevels, (float)texture.mipLevels)) { updateUniformBuffers(); } if (overlay->button("Fill random pages")) { fillRandomPages(); } if (overlay->button("Flush random pages")) { flushRandomPages(); } if (overlay->button("Fill mip tail")) { fillMipTail(); } } if (overlay->header("Statistics")) { uint32_t respages = 0; std::for_each(texture.pages.begin(), texture.pages.end(), [&respages](VirtualTexturePage page) { respages += (page.resident()) ? 1 : 0; }); overlay->text("Resident pages: %d of %d", respages, static_cast(texture.pages.size())); overlay->text("Mip tail starts at: %d", texture.mipTailStart); } } VULKAN_EXAMPLE_MAIN()