/* * Vulkan Example - Parallax Mapping * * Copyright (C) 2016 by Sascha Willems - www.saschawillems.de * * This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT) */ #include #include #include #include #include #define GLM_FORCE_RADIANS #define GLM_FORCE_DEPTH_ZERO_TO_ONE #include #include #include #include #include "vulkanexamplebase.h" #define VERTEX_BUFFER_BIND_ID 0 #define ENABLE_VALIDATION false // Vertex layout for this example std::vector vertexLayout = { vkMeshLoader::VERTEX_LAYOUT_POSITION, vkMeshLoader::VERTEX_LAYOUT_UV, vkMeshLoader::VERTEX_LAYOUT_NORMAL, vkMeshLoader::VERTEX_LAYOUT_TANGENT, vkMeshLoader::VERTEX_LAYOUT_BITANGENT }; class VulkanExample : public VulkanExampleBase { public: bool splitScreen = false; struct { vkTools::VulkanTexture colorMap; // Normals and height are combined in one texture (height = alpha channel) vkTools::VulkanTexture normalHeightMap; } textures; struct { VkPipelineVertexInputStateCreateInfo inputState; std::vector bindingDescriptions; std::vector attributeDescriptions; } vertices; struct { vkMeshLoader::MeshBuffer quad; } meshes; struct { vkTools::UniformData vertexShader; vkTools::UniformData fragmentShader; } uniformData; struct { struct { glm::mat4 projection; glm::mat4 model; glm::mat4 normal; glm::vec4 lightPos = glm::vec4(0.0f); glm::vec4 cameraPos; } vertexShader; struct { // Scale and bias control the parallax offset effect // They need to be tweaked for each material // Getting them wrong destroys the depth effect float scale = 0.06f; float bias = -0.04f; float lightRadius = 1.0f; int32_t usePom = 1; int32_t displayNormalMap = 0; } fragmentShader; } ubos; struct { VkPipeline parallaxMapping; VkPipeline normalMapping; } pipelines; VkPipelineLayout pipelineLayout; VkDescriptorSet descriptorSet; VkDescriptorSetLayout descriptorSetLayout; VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION) { zoom = -2.7f; rotation = glm::vec3(56.0f, 0.0f, 0.0f); rotationSpeed = 0.25f; enableTextOverlay = true; timerSpeed *= 0.25f; paused = true; title = "Vulkan Example - Parallax Mapping"; } ~VulkanExample() { // Clean up used Vulkan resources // Note : Inherited destructor cleans up resources stored in base class vkDestroyPipeline(device, pipelines.parallaxMapping, nullptr); vkDestroyPipeline(device, pipelines.normalMapping, nullptr); vkDestroyPipelineLayout(device, pipelineLayout, nullptr); vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr); vkMeshLoader::freeMeshBufferResources(device, &meshes.quad); vkTools::destroyUniformData(device, &uniformData.vertexShader); vkTools::destroyUniformData(device, &uniformData.fragmentShader); textureLoader->destroyTexture(textures.colorMap); textureLoader->destroyTexture(textures.normalHeightMap); } void loadTextures() { textureLoader->loadTexture( getAssetPath() + "textures/rocks_color_bc3.dds", VK_FORMAT_BC3_UNORM_BLOCK, &textures.colorMap); textureLoader->loadTexture( getAssetPath() + "textures/rocks_normal_height_rgba.dds", VK_FORMAT_R8G8B8A8_UNORM, &textures.normalHeightMap); } void reBuildCommandBuffers() { if (!checkCommandBuffers()) { destroyCommandBuffers(); createCommandBuffers(); } buildCommandBuffers(); } void buildCommandBuffers() { VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo(); VkClearValue clearValues[2]; clearValues[0].color = defaultClearColor; clearValues[1].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo(); renderPassBeginInfo.renderPass = renderPass; renderPassBeginInfo.renderArea.offset.x = 0; renderPassBeginInfo.renderArea.offset.y = 0; renderPassBeginInfo.renderArea.extent.width = width; renderPassBeginInfo.renderArea.extent.height = height; renderPassBeginInfo.clearValueCount = 2; renderPassBeginInfo.pClearValues = clearValues; for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) { // Set target frame buffer renderPassBeginInfo.framebuffer = frameBuffers[i]; VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo)); vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); VkViewport viewport = vkTools::initializers::viewport((splitScreen) ? (float)width / 2.0f : (float)width, (float)height, 0.0f, 1.0f); vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); VkRect2D scissor = vkTools::initializers::rect2D(width, height, 0, 0); vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor); vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL); VkDeviceSize offsets[1] = { 0 }; vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &meshes.quad.vertices.buf, offsets); vkCmdBindIndexBuffer(drawCmdBuffers[i], meshes.quad.indices.buf, 0, VK_INDEX_TYPE_UINT32); // Parallax enabled vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.parallaxMapping); vkCmdDrawIndexed(drawCmdBuffers[i], meshes.quad.indexCount, 1, 0, 0, 1); // Normal mapping if (splitScreen) { viewport.x = (float)width / 2.0f; vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.normalMapping); vkCmdDrawIndexed(drawCmdBuffers[i], meshes.quad.indexCount, 1, 0, 0, 1); } vkCmdEndRenderPass(drawCmdBuffers[i]); VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i])); } } void loadMeshes() { loadMesh(getAssetPath() + "models/plane_z.obj", &meshes.quad, vertexLayout, 0.1f); } void setupVertexDescriptions() { // Binding description vertices.bindingDescriptions.resize(1); vertices.bindingDescriptions[0] = vkTools::initializers::vertexInputBindingDescription( VERTEX_BUFFER_BIND_ID, vkMeshLoader::vertexSize(vertexLayout), VK_VERTEX_INPUT_RATE_VERTEX); // Attribute descriptions // Describes memory layout and shader positions vertices.attributeDescriptions.resize(5); // Location 0 : Position vertices.attributeDescriptions[0] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 0, VK_FORMAT_R32G32B32_SFLOAT, 0); // Location 1 : Texture coordinates vertices.attributeDescriptions[1] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 1, VK_FORMAT_R32G32_SFLOAT, sizeof(float) * 3); // Location 2 : Normal vertices.attributeDescriptions[2] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 2, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 5); // Location 3 : Tangent vertices.attributeDescriptions[3] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 3, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 8); // Location 4 : Bitangent vertices.attributeDescriptions[4] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 4, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 11); vertices.inputState = vkTools::initializers::pipelineVertexInputStateCreateInfo(); vertices.inputState.vertexBindingDescriptionCount = vertices.bindingDescriptions.size(); vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data(); vertices.inputState.vertexAttributeDescriptionCount = vertices.attributeDescriptions.size(); vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data(); } void setupDescriptorPool() { // Example uses two ubos and two image sampler std::vector poolSizes = { vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2), vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2) }; VkDescriptorPoolCreateInfo descriptorPoolInfo = vkTools::initializers::descriptorPoolCreateInfo( poolSizes.size(), poolSizes.data(), 4); VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool)); } void setupDescriptorSetLayout() { std::vector setLayoutBindings = { // Binding 0 : Vertex shader uniform buffer vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0), // Binding 1 : Fragment shader color map image sampler vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1), // Binding 2 : Fragment combined normal and heightmap vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 2), // Binding 3 : Fragment shader uniform buffer vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_FRAGMENT_BIT, 3) }; VkDescriptorSetLayoutCreateInfo descriptorLayout = vkTools::initializers::descriptorSetLayoutCreateInfo( setLayoutBindings.data(), setLayoutBindings.size()); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout)); VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = vkTools::initializers::pipelineLayoutCreateInfo( &descriptorSetLayout, 1); VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout)); } void setupDescriptorSet() { VkDescriptorSetAllocateInfo allocInfo = vkTools::initializers::descriptorSetAllocateInfo( descriptorPool, &descriptorSetLayout, 1); VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet)); // Color map image descriptor VkDescriptorImageInfo texDescriptorColorMap = vkTools::initializers::descriptorImageInfo( textures.colorMap.sampler, textures.colorMap.view, VK_IMAGE_LAYOUT_GENERAL); VkDescriptorImageInfo texDescriptorNormalHeightMap = vkTools::initializers::descriptorImageInfo( textures.normalHeightMap.sampler, textures.normalHeightMap.view, VK_IMAGE_LAYOUT_GENERAL); std::vector writeDescriptorSets = { // Binding 0 : Vertex shader uniform buffer vkTools::initializers::writeDescriptorSet( descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformData.vertexShader.descriptor), // Binding 1 : Fragment shader image sampler vkTools::initializers::writeDescriptorSet( descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &texDescriptorColorMap), // Binding 2 : Combined normal and heightmap vkTools::initializers::writeDescriptorSet( descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2, &texDescriptorNormalHeightMap), // Binding 3 : Fragment shader uniform buffer vkTools::initializers::writeDescriptorSet( descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 3, &uniformData.fragmentShader.descriptor) }; vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL); } void preparePipelines() { VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vkTools::initializers::pipelineInputAssemblyStateCreateInfo( VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE); VkPipelineRasterizationStateCreateInfo rasterizationState = vkTools::initializers::pipelineRasterizationStateCreateInfo( VK_POLYGON_MODE_FILL, VK_CULL_MODE_NONE, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0); VkPipelineColorBlendAttachmentState blendAttachmentState = vkTools::initializers::pipelineColorBlendAttachmentState( 0xf, VK_FALSE); VkPipelineColorBlendStateCreateInfo colorBlendState = vkTools::initializers::pipelineColorBlendStateCreateInfo( 1, &blendAttachmentState); VkPipelineDepthStencilStateCreateInfo depthStencilState = vkTools::initializers::pipelineDepthStencilStateCreateInfo( VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL); VkPipelineViewportStateCreateInfo viewportState = vkTools::initializers::pipelineViewportStateCreateInfo(1, 1, 0); VkPipelineMultisampleStateCreateInfo multisampleState = vkTools::initializers::pipelineMultisampleStateCreateInfo( VK_SAMPLE_COUNT_1_BIT, 0); std::vector dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR }; VkPipelineDynamicStateCreateInfo dynamicState = vkTools::initializers::pipelineDynamicStateCreateInfo( dynamicStateEnables.data(), dynamicStateEnables.size(), 0); // Parallax mapping pipeline // Load shaders std::array shaderStages; shaderStages[0] = loadShader(getAssetPath() + "shaders/parallax/parallax.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getAssetPath() + "shaders/parallax/parallax.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); VkGraphicsPipelineCreateInfo pipelineCreateInfo = vkTools::initializers::pipelineCreateInfo( pipelineLayout, renderPass, 0); pipelineCreateInfo.pVertexInputState = &vertices.inputState; pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState; pipelineCreateInfo.pRasterizationState = &rasterizationState; pipelineCreateInfo.pColorBlendState = &colorBlendState; pipelineCreateInfo.pMultisampleState = &multisampleState; pipelineCreateInfo.pViewportState = &viewportState; pipelineCreateInfo.pDepthStencilState = &depthStencilState; pipelineCreateInfo.pDynamicState = &dynamicState; pipelineCreateInfo.stageCount = shaderStages.size(); pipelineCreateInfo.pStages = shaderStages.data(); VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.parallaxMapping)); // Normal mapping (no parallax effect) shaderStages[0] = loadShader(getAssetPath() + "shaders/parallax/normalmap.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getAssetPath() + "shaders/parallax/normalmap.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.normalMapping)); } void prepareUniformBuffers() { // Vertex shader ubo createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, sizeof(ubos.vertexShader), nullptr, &uniformData.vertexShader.buffer, &uniformData.vertexShader.memory, &uniformData.vertexShader.descriptor); // Fragment shader ubo createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, sizeof(ubos.fragmentShader), nullptr, &uniformData.fragmentShader.buffer, &uniformData.fragmentShader.memory, &uniformData.fragmentShader.descriptor); updateUniformBuffers(); } void updateUniformBuffers() { // Vertex shader glm::mat4 viewMatrix = glm::mat4(); ubos.vertexShader.projection = glm::perspective(glm::radians(45.0f), (float)(width* ((splitScreen) ? 0.5f : 1.0f)) / (float)height, 0.001f, 256.0f); viewMatrix = glm::translate(viewMatrix, glm::vec3(0.0f, 0.0f, zoom)); ubos.vertexShader.model = glm::mat4(); ubos.vertexShader.model = viewMatrix * glm::translate(ubos.vertexShader.model, cameraPos); ubos.vertexShader.model = glm::rotate(ubos.vertexShader.model, glm::radians(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f)); ubos.vertexShader.model = glm::rotate(ubos.vertexShader.model, glm::radians(rotation.y), glm::vec3(0.0f, 1.0f, 0.0f)); ubos.vertexShader.model = glm::rotate(ubos.vertexShader.model, glm::radians(rotation.z), glm::vec3(0.0f, 0.0f, 1.0f)); ubos.vertexShader.normal = glm::inverseTranspose(ubos.vertexShader.model); if (!paused) { ubos.vertexShader.lightPos.x = sin(glm::radians(timer * 360.0f)) * 0.5f; ubos.vertexShader.lightPos.y = cos(glm::radians(timer * 360.0f)) * 0.5f; } ubos.vertexShader.cameraPos = glm::vec4(0.0, 0.0, zoom, 0.0); uint8_t *pData; VK_CHECK_RESULT(vkMapMemory(device, uniformData.vertexShader.memory, 0, sizeof(ubos.vertexShader), 0, (void **)&pData)); memcpy(pData, &ubos.vertexShader, sizeof(ubos.vertexShader)); vkUnmapMemory(device, uniformData.vertexShader.memory); // Fragment shader VK_CHECK_RESULT(vkMapMemory(device, uniformData.fragmentShader.memory, 0, sizeof(ubos.fragmentShader), 0, (void **)&pData)); memcpy(pData, &ubos.fragmentShader, sizeof(ubos.fragmentShader)); vkUnmapMemory(device, uniformData.fragmentShader.memory); } void draw() { VulkanExampleBase::prepareFrame(); // Command buffer to be sumitted to the queue submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer]; // Submit to queue VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE)); VulkanExampleBase::submitFrame(); } void prepare() { VulkanExampleBase::prepare(); loadTextures(); loadMeshes(); setupVertexDescriptions(); prepareUniformBuffers(); setupDescriptorSetLayout(); preparePipelines(); setupDescriptorPool(); setupDescriptorSet(); buildCommandBuffers(); prepared = true; } virtual void render() { if (!prepared) return; draw(); if (!paused) { updateUniformBuffers(); } } virtual void viewChanged() { updateUniformBuffers(); } void toggleParallaxOffset() { ubos.fragmentShader.usePom = !ubos.fragmentShader.usePom; updateUniformBuffers(); } void toggleNormalMapDisplay() { ubos.fragmentShader.displayNormalMap = !ubos.fragmentShader.displayNormalMap; updateUniformBuffers(); } void toggleSplitScreen() { splitScreen = !splitScreen; updateUniformBuffers(); reBuildCommandBuffers(); } virtual void keyPressed(uint32_t keyCode) { switch (keyCode) { case 0x4F: case GAMEPAD_BUTTON_A: toggleParallaxOffset(); break; case 0x4E: case GAMEPAD_BUTTON_X: toggleNormalMapDisplay(); break; case 0x53: case GAMEPAD_BUTTON_Y: toggleSplitScreen(); break; } } virtual void getOverlayText(VulkanTextOverlay *textOverlay) { #if defined(__ANDROID__) textOverlay->addText("Press \"Button A\" to toggle parallax", 5.0f, 85.0f, VulkanTextOverlay::alignLeft); textOverlay->addText("Press \"Button X\" to toggle normals", 5.0f, 100.0f, VulkanTextOverlay::alignLeft); textOverlay->addText("Press \"Button Y\" to toggle splitscreen", 5.0f, 115.0f, VulkanTextOverlay::alignLeft); #else textOverlay->addText("Press \"o\" to toggle parallax", 5.0f, 85.0f, VulkanTextOverlay::alignLeft); textOverlay->addText("Press \"n\" to toggle normals", 5.0f, 100.0f, VulkanTextOverlay::alignLeft); textOverlay->addText("Press \"s\" to toggle splitscreen", 5.0f, 115.0f, VulkanTextOverlay::alignLeft); #endif } }; VulkanExample *vulkanExample; #if defined(_WIN32) LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam) { if (vulkanExample != NULL) { vulkanExample->handleMessages(hWnd, uMsg, wParam, lParam); } return (DefWindowProc(hWnd, uMsg, wParam, lParam)); } #elif defined(__linux__) && !defined(__ANDROID__) static void handleEvent(const xcb_generic_event_t *event) { if (vulkanExample != NULL) { vulkanExample->handleEvent(event); } } #endif // Main entry point #if defined(_WIN32) // Windows entry point int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR pCmdLine, int nCmdShow) #elif defined(__ANDROID__) // Android entry point void android_main(android_app* state) #elif defined(__linux__) // Linux entry point int main(const int argc, const char *argv[]) #endif { #if defined(__ANDROID__) // Removing this may cause the compiler to omit the main entry point // which would make the application crash at start app_dummy(); #endif vulkanExample = new VulkanExample(); #if defined(_WIN32) vulkanExample->setupWindow(hInstance, WndProc); #elif defined(__ANDROID__) // Attach vulkan example to global android application state state->userData = vulkanExample; state->onAppCmd = VulkanExample::handleAppCommand; state->onInputEvent = VulkanExample::handleAppInput; vulkanExample->androidApp = state; #elif defined(__linux__) vulkanExample->setupWindow(); #endif #if !defined(__ANDROID__) vulkanExample->initSwapchain(); vulkanExample->prepare(); #endif vulkanExample->renderLoop(); delete(vulkanExample); #if !defined(__ANDROID__) return 0; #endif }