// Copyright 2020 Google LLC Texture2DMS texturePosition : register(t1); SamplerState samplerPosition : register(s1); Texture2DMS textureNormal : register(t2); SamplerState samplerNormal : register(s2); Texture2DMS textureAlbedo : register(t3); SamplerState samplerAlbedo : register(s3); struct Light { float4 position; float3 color; float radius; }; struct UBO { Light lights[6]; float4 viewPos; int debugDisplayTarget; }; cbuffer ubo : register(b4) { UBO ubo; } [[vk::constant_id(0)]] const int NUM_SAMPLES = 8; #define NUM_LIGHTS 6 // Manual resolve for MSAA samples float4 resolve(Texture2DMS tex, int2 uv) { float4 result = float4(0.0, 0.0, 0.0, 0.0); for (int i = 0; i < NUM_SAMPLES; i++) { uint status = 0; float4 val = tex.Load(uv, i, int2(0, 0), status); result += val; } // Average resolved samples return result / float(NUM_SAMPLES); } float3 calculateLighting(float3 pos, float3 normal, float4 albedo) { float3 result = float3(0.0, 0.0, 0.0); for(int i = 0; i < NUM_LIGHTS; ++i) { // Vector to light float3 L = ubo.lights[i].position.xyz - pos; // Distance from light to fragment position float dist = length(L); // Viewer to fragment float3 V = ubo.viewPos.xyz - pos; V = normalize(V); // Light to fragment L = normalize(L); // Attenuation float atten = ubo.lights[i].radius / (pow(dist, 2.0) + 1.0); // Diffuse part float3 N = normalize(normal); float NdotL = max(0.0, dot(N, L)); float3 diff = ubo.lights[i].color * albedo.rgb * NdotL * atten; // Specular part float3 R = reflect(-L, N); float NdotR = max(0.0, dot(R, V)); float3 spec = ubo.lights[i].color * albedo.a * pow(NdotR, 8.0) * atten; result += diff + spec; } return result; } float4 main([[vk::location(0)]] float2 inUV : TEXCOORD0) : SV_TARGET { int2 attDim; int sampleCount; texturePosition.GetDimensions(attDim.x, attDim.y, sampleCount); int2 UV = int2(inUV * attDim); float3 fragColor; uint status = 0; // Debug display if (ubo.debugDisplayTarget > 0) { switch (ubo.debugDisplayTarget) { case 1: fragColor.rgb = texturePosition.Load(UV, 0, int2(0, 0), status).rgb; break; case 2: fragColor.rgb = textureNormal.Load(UV, 0, int2(0, 0), status).rgb; break; case 3: fragColor.rgb = textureAlbedo.Load(UV, 0, int2(0, 0), status).rgb; break; case 4: fragColor.rgb = textureAlbedo.Load(UV, 0, int2(0, 0), status).aaa; break; } return float4(fragColor, 1.0); } #define ambient 0.15 // Ambient part float4 alb = resolve(textureAlbedo, UV); fragColor = float3(0.0, 0.0, 0.0); // Calualte lighting for every MSAA sample for (int i = 0; i < NUM_SAMPLES; i++) { float3 pos = texturePosition.Load(UV, i, int2(0, 0), status).rgb; float3 normal = textureNormal.Load(UV, i, int2(0, 0), status).rgb; float4 albedo = textureAlbedo.Load(UV, i, int2(0, 0), status); fragColor += calculateLighting(pos, normal, albedo); } fragColor = (alb.rgb * ambient) + fragColor / float(NUM_SAMPLES); return float4(fragColor, 1.0); }