/* * Vulkan Example - Multisampling using resolve attachments * * Copyright (C) 2016 by Sascha Willems - www.saschawillems.de * * This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT) */ #include #include #include #include #include #define GLM_FORCE_RADIANS #define GLM_FORCE_DEPTH_ZERO_TO_ONE #include #include #include #include "vulkanexamplebase.h" #define VERTEX_BUFFER_BIND_ID 0 #define ENABLE_VALIDATION false #define SAMPLE_COUNT VK_SAMPLE_COUNT_4_BIT struct { struct { VkImage image; VkImageView view; VkDeviceMemory memory; } color; struct { VkImage image; VkImageView view; VkDeviceMemory memory; } depth; } multisampleTarget; // Vertex layout for this example std::vector vertexLayout = { vkMeshLoader::VERTEX_LAYOUT_POSITION, vkMeshLoader::VERTEX_LAYOUT_NORMAL, vkMeshLoader::VERTEX_LAYOUT_UV, vkMeshLoader::VERTEX_LAYOUT_COLOR, }; class VulkanExample : public VulkanExampleBase { public: struct { vkTools::VulkanTexture colorMap; } textures; struct { VkPipelineVertexInputStateCreateInfo inputState; std::vector bindingDescriptions; std::vector attributeDescriptions; } vertices; struct { vkMeshLoader::MeshBuffer example; } meshes; struct { vkTools::UniformData vsScene; } uniformData; struct { glm::mat4 projection; glm::mat4 model; glm::vec4 lightPos = glm::vec4(5.0f, 5.0f, 5.0f, 1.0f); } uboVS; struct { VkPipeline solid; } pipelines; VkPipelineLayout pipelineLayout; VkDescriptorSet descriptorSet; VkDescriptorSetLayout descriptorSetLayout; VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION) { zoom = -7.5f; zoomSpeed = 2.5f; rotation = { 0.0f, -90.0f, 0.0f }; cameraPos = glm::vec3(2.5f, 2.5f, 0.0f); title = "Vulkan Example - Multisampling"; } ~VulkanExample() { // Clean up used Vulkan resources // Note : Inherited destructor cleans up resources stored in base class vkDestroyPipeline(device, pipelines.solid, nullptr); vkDestroyPipelineLayout(device, pipelineLayout, nullptr); vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr); vkMeshLoader::freeMeshBufferResources(device, &meshes.example); // Destroy MSAA target vkDestroyImage(device, multisampleTarget.color.image, nullptr); vkDestroyImageView(device, multisampleTarget.color.view, nullptr); vkFreeMemory(device, multisampleTarget.color.memory, nullptr); vkDestroyImage(device, multisampleTarget.depth.image, nullptr); vkDestroyImageView(device, multisampleTarget.depth.view, nullptr); vkFreeMemory(device, multisampleTarget.depth.memory, nullptr); textureLoader->destroyTexture(textures.colorMap); vkTools::destroyUniformData(device, &uniformData.vsScene); } // Creates a multi sample render target (image and view) that is used to resolve // into the visible frame buffer target in the render pass void setupMultisampleTarget() { // Check if device supports requested sample count for color and depth frame buffer assert((deviceProperties.limits.framebufferColorSampleCounts >= SAMPLE_COUNT) && (deviceProperties.limits.framebufferDepthSampleCounts >= SAMPLE_COUNT)); // Color target VkImageCreateInfo info = vkTools::initializers::imageCreateInfo(); info.imageType = VK_IMAGE_TYPE_2D; info.format = colorformat; info.extent.width = width; info.extent.height = height; info.extent.depth = 1; info.mipLevels = 1; info.arrayLayers = 1; info.sharingMode = VK_SHARING_MODE_EXCLUSIVE; info.tiling = VK_IMAGE_TILING_OPTIMAL; info.samples = SAMPLE_COUNT; // Image will only be used as a transient target info.usage = VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT; info.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; vkTools::checkResult(vkCreateImage(device, &info, nullptr, &multisampleTarget.color.image)); VkMemoryRequirements memReqs; vkGetImageMemoryRequirements(device, multisampleTarget.color.image, &memReqs); VkMemoryAllocateInfo memAlloc = vkTools::initializers::memoryAllocateInfo(); memAlloc.allocationSize = memReqs.size; // We prefer a lazily allocated memory type // This means that the memory get allocated when the implementation sees fit, e.g. when first using the images VkBool32 lazyMemType = getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT, &memAlloc.memoryTypeIndex); if (!lazyMemType) { // If this is not available, fall back to device local memory getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &memAlloc.memoryTypeIndex); } vkTools::checkResult(vkAllocateMemory(device, &memAlloc, nullptr, &multisampleTarget.color.memory)); vkBindImageMemory(device, multisampleTarget.color.image, multisampleTarget.color.memory, 0); // Create image view for the MSAA target VkImageViewCreateInfo viewInfo = vkTools::initializers::imageViewCreateInfo(); viewInfo.image = multisampleTarget.color.image; viewInfo.viewType = VK_IMAGE_VIEW_TYPE_2D; viewInfo.format = colorformat; viewInfo.components.r = VK_COMPONENT_SWIZZLE_R; viewInfo.components.g = VK_COMPONENT_SWIZZLE_G; viewInfo.components.b = VK_COMPONENT_SWIZZLE_B; viewInfo.components.a = VK_COMPONENT_SWIZZLE_A; viewInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; viewInfo.subresourceRange.levelCount = 1; viewInfo.subresourceRange.layerCount = 1; vkTools::checkResult(vkCreateImageView(device, &viewInfo, nullptr, &multisampleTarget.color.view)); // Depth target info.imageType = VK_IMAGE_TYPE_2D; info.format = depthFormat; info.extent.width = width; info.extent.height = height; info.extent.depth = 1; info.mipLevels = 1; info.arrayLayers = 1; info.sharingMode = VK_SHARING_MODE_EXCLUSIVE; info.tiling = VK_IMAGE_TILING_OPTIMAL; info.samples = SAMPLE_COUNT; // Image will only be used as a transient target info.usage = VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT | VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT; info.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; vkTools::checkResult(vkCreateImage(device, &info, nullptr, &multisampleTarget.depth.image)); vkGetImageMemoryRequirements(device, multisampleTarget.depth.image, &memReqs); memAlloc = vkTools::initializers::memoryAllocateInfo(); memAlloc.allocationSize = memReqs.size; lazyMemType = getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT, &memAlloc.memoryTypeIndex); if (!lazyMemType) { getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &memAlloc.memoryTypeIndex); } vkTools::checkResult(vkAllocateMemory(device, &memAlloc, nullptr, &multisampleTarget.depth.memory)); vkBindImageMemory(device, multisampleTarget.depth.image, multisampleTarget.depth.memory, 0); // Create image view for the MSAA target viewInfo.image = multisampleTarget.depth.image; viewInfo.viewType = VK_IMAGE_VIEW_TYPE_2D; viewInfo.format = depthFormat; viewInfo.components.r = VK_COMPONENT_SWIZZLE_R; viewInfo.components.g = VK_COMPONENT_SWIZZLE_G; viewInfo.components.b = VK_COMPONENT_SWIZZLE_B; viewInfo.components.a = VK_COMPONENT_SWIZZLE_A; viewInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT; viewInfo.subresourceRange.levelCount = 1; viewInfo.subresourceRange.layerCount = 1; vkTools::checkResult(vkCreateImageView(device, &viewInfo, nullptr, &multisampleTarget.depth.view)); } // Setup a render pass for using a multi sampled attachment // and a resolve attachment that the msaa image is resolved // to at the end of the render pass void setupRenderPass() { // Overrides the virtual function of the base class std::array attachments = {}; // Multisampled attachment that we render to attachments[0].format = colorformat; attachments[0].samples = SAMPLE_COUNT; attachments[0].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; // No longer required after resolve, this may save some bandwidth on certain GPUs attachments[0].storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; attachments[0].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; attachments[0].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; attachments[0].initialLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; attachments[0].finalLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; // This is the frame buffer attachment to where the multisampled image // will be resolved to and which will be presented to the swapchain attachments[1].format = colorformat; attachments[1].samples = VK_SAMPLE_COUNT_1_BIT; attachments[1].loadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; attachments[1].storeOp = VK_ATTACHMENT_STORE_OP_STORE; attachments[1].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; attachments[1].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; attachments[1].initialLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; attachments[1].finalLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; // Multisampled depth attachment we render to attachments[2].format = depthFormat; attachments[2].samples = SAMPLE_COUNT; attachments[2].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; attachments[2].storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; attachments[2].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; attachments[2].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; attachments[2].initialLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; attachments[2].finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; // Depth resolve attachment attachments[3].format = depthFormat; attachments[3].samples = VK_SAMPLE_COUNT_1_BIT; attachments[3].loadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; attachments[3].storeOp = VK_ATTACHMENT_STORE_OP_STORE; attachments[3].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; attachments[3].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; attachments[3].initialLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; attachments[3].finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; VkAttachmentReference colorReference = {}; colorReference.attachment = 0; colorReference.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; VkAttachmentReference depthReference = {}; depthReference.attachment = 2; depthReference.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; // Two resolve attachment references for color and depth std::array resolveReferences = {}; resolveReferences[0].attachment = 1; resolveReferences[0].layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; resolveReferences[1].attachment = 3; resolveReferences[1].layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; VkSubpassDescription subpass = {}; subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS; subpass.colorAttachmentCount = 1; subpass.pColorAttachments = &colorReference; // Pass our resolve attachments to the sub pass subpass.pResolveAttachments = resolveReferences.data(); subpass.pDepthStencilAttachment = &depthReference; VkRenderPassCreateInfo renderPassInfo = vkTools::initializers::renderPassCreateInfo(); renderPassInfo.attachmentCount = attachments.size(); renderPassInfo.pAttachments = attachments.data(); renderPassInfo.subpassCount = 1; renderPassInfo.pSubpasses = &subpass; vkTools::checkResult(vkCreateRenderPass(device, &renderPassInfo, nullptr, &renderPass)); } // Frame buffer attachments must match with render pass setup, // so we need to adjust frame buffer creation to cover our // multisample target void setupFrameBuffer() { // Overrides the virtual function of the base class std::array attachments; setupMultisampleTarget(); attachments[0] = multisampleTarget.color.view; // attachment[1] = swapchain image attachments[2] = multisampleTarget.depth.view; attachments[3] = depthStencil.view; VkFramebufferCreateInfo frameBufferCreateInfo = {}; frameBufferCreateInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO; frameBufferCreateInfo.pNext = NULL; frameBufferCreateInfo.renderPass = renderPass; frameBufferCreateInfo.attachmentCount = attachments.size(); frameBufferCreateInfo.pAttachments = attachments.data(); frameBufferCreateInfo.width = width; frameBufferCreateInfo.height = height; frameBufferCreateInfo.layers = 1; // Create frame buffers for every swap chain image frameBuffers.resize(swapChain.imageCount); for (uint32_t i = 0; i < frameBuffers.size(); i++) { attachments[1] = swapChain.buffers[i].view; vkTools::checkResult(vkCreateFramebuffer(device, &frameBufferCreateInfo, nullptr, &frameBuffers[i])); } } void buildCommandBuffers() { // Initial image layout transitions // We need to transform the MSAA target layouts before using them createSetupCommandBuffer(); // Tansform MSAA color target vkTools::setImageLayout( setupCmdBuffer, multisampleTarget.color.image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL); // Tansform MSAA depth target vkTools::setImageLayout( setupCmdBuffer, multisampleTarget.depth.image, VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL); flushSetupCommandBuffer(); VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo(); VkClearValue clearValues[3]; // Clear to a white background for higher contrast clearValues[0].color = { { 1.0f, 1.0f, 1.0f, 1.0f } }; clearValues[1].color = { { 1.0f, 1.0f, 1.0f, 1.0f } }; clearValues[2].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo(); renderPassBeginInfo.renderPass = renderPass; renderPassBeginInfo.renderArea.extent.width = width; renderPassBeginInfo.renderArea.extent.height = height; renderPassBeginInfo.clearValueCount = 3; renderPassBeginInfo.pClearValues = clearValues; for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) { // Set target frame buffer renderPassBeginInfo.framebuffer = frameBuffers[i]; vkTools::checkResult(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo)); vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); VkViewport viewport = vkTools::initializers::viewport((float)width, (float)height, 0.0f, 1.0f); vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); VkRect2D scissor = vkTools::initializers::rect2D(width, height, 0, 0); vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor); vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.solid); VkDeviceSize offsets[1] = { 0 }; vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &meshes.example.vertices.buf, offsets); vkCmdBindIndexBuffer(drawCmdBuffers[i], meshes.example.indices.buf, 0, VK_INDEX_TYPE_UINT32); vkCmdDrawIndexed(drawCmdBuffers[i], meshes.example.indexCount, 1, 0, 0, 0); vkCmdEndRenderPass(drawCmdBuffers[i]); vkTools::checkResult(vkEndCommandBuffer(drawCmdBuffers[i])); } } void draw() { // Get next image in the swap chain (back/front buffer) vkTools::checkResult(swapChain.acquireNextImage(semaphores.presentComplete, ¤tBuffer)); submitPostPresentBarrier(swapChain.buffers[currentBuffer].image); // Command buffer to be sumitted to the queue submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer]; // Submit to queue vkTools::checkResult(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE)); submitPrePresentBarrier(swapChain.buffers[currentBuffer].image); vkTools::checkResult(swapChain.queuePresent(queue, currentBuffer, semaphores.renderComplete)); vkTools::checkResult(vkQueueWaitIdle(queue)); } void loadTextures() { textureLoader->loadTexture( getAssetPath() + "models/voyager/voyager.ktx", VK_FORMAT_BC3_UNORM_BLOCK, &textures.colorMap); } void loadMeshes() { loadMesh(getAssetPath() + "models/voyager/voyager.obj", &meshes.example, vertexLayout, 1.0f); } void setupVertexDescriptions() { // Binding description vertices.bindingDescriptions.resize(1); vertices.bindingDescriptions[0] = vkTools::initializers::vertexInputBindingDescription( VERTEX_BUFFER_BIND_ID, vkMeshLoader::vertexSize(vertexLayout), VK_VERTEX_INPUT_RATE_VERTEX); // Attribute descriptions vertices.attributeDescriptions.resize(4); // Location 0 : Position vertices.attributeDescriptions[0] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 0, VK_FORMAT_R32G32B32_SFLOAT, 0); // Location 1 : Normal vertices.attributeDescriptions[1] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 1, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 3); // Location 2 : Texture coordinates vertices.attributeDescriptions[2] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 2, VK_FORMAT_R32G32_SFLOAT, sizeof(float) * 6); // Location 3 : Color vertices.attributeDescriptions[3] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 3, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 8); vertices.inputState = vkTools::initializers::pipelineVertexInputStateCreateInfo(); vertices.inputState.vertexBindingDescriptionCount = vertices.bindingDescriptions.size(); vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data(); vertices.inputState.vertexAttributeDescriptionCount = vertices.attributeDescriptions.size(); vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data(); } void setupDescriptorPool() { // Example uses one ubo and one combined image sampler std::vector poolSizes = { vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1), vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1), }; VkDescriptorPoolCreateInfo descriptorPoolInfo = vkTools::initializers::descriptorPoolCreateInfo( poolSizes.size(), poolSizes.data(), 2); vkTools::checkResult(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool)); } void setupDescriptorSetLayout() { std::vector setLayoutBindings = { // Binding 0 : Vertex shader uniform buffer vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0), // Binding 1 : Fragment shader combined sampler vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1), }; VkDescriptorSetLayoutCreateInfo descriptorLayout = vkTools::initializers::descriptorSetLayoutCreateInfo( setLayoutBindings.data(), setLayoutBindings.size()); vkTools::checkResult(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout)); VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = vkTools::initializers::pipelineLayoutCreateInfo( &descriptorSetLayout, 1); vkTools::checkResult(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout)); } void setupDescriptorSet() { VkDescriptorSetAllocateInfo allocInfo = vkTools::initializers::descriptorSetAllocateInfo( descriptorPool, &descriptorSetLayout, 1); vkTools::checkResult(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet)); VkDescriptorImageInfo texDescriptor = vkTools::initializers::descriptorImageInfo( textures.colorMap.sampler, textures.colorMap.view, VK_IMAGE_LAYOUT_GENERAL); std::vector writeDescriptorSets = { // Binding 0 : Vertex shader uniform buffer vkTools::initializers::writeDescriptorSet( descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformData.vsScene.descriptor), // Binding 1 : Color map vkTools::initializers::writeDescriptorSet( descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &texDescriptor) }; vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL); } void preparePipelines() { VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vkTools::initializers::pipelineInputAssemblyStateCreateInfo( VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE); VkPipelineRasterizationStateCreateInfo rasterizationState = vkTools::initializers::pipelineRasterizationStateCreateInfo( VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_CLOCKWISE, 0); VkPipelineColorBlendAttachmentState blendAttachmentState = vkTools::initializers::pipelineColorBlendAttachmentState( 0xf, VK_FALSE); VkPipelineColorBlendStateCreateInfo colorBlendState = vkTools::initializers::pipelineColorBlendStateCreateInfo( 1, &blendAttachmentState); VkPipelineDepthStencilStateCreateInfo depthStencilState = vkTools::initializers::pipelineDepthStencilStateCreateInfo( VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL); VkPipelineViewportStateCreateInfo viewportState = vkTools::initializers::pipelineViewportStateCreateInfo(1, 1, 0); VkPipelineMultisampleStateCreateInfo multisampleState = vkTools::initializers::pipelineMultisampleStateCreateInfo( SAMPLE_COUNT, 0); std::vector dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR }; VkPipelineDynamicStateCreateInfo dynamicState = vkTools::initializers::pipelineDynamicStateCreateInfo( dynamicStateEnables.data(), dynamicStateEnables.size(), 0); // Solid rendering pipeline // Load shaders std::array shaderStages; shaderStages[0] = loadShader(getAssetPath() + "shaders/mesh/mesh.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getAssetPath() + "shaders/mesh/mesh.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); VkGraphicsPipelineCreateInfo pipelineCreateInfo = vkTools::initializers::pipelineCreateInfo( pipelineLayout, renderPass, 0); pipelineCreateInfo.pVertexInputState = &vertices.inputState; pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState; pipelineCreateInfo.pRasterizationState = &rasterizationState; pipelineCreateInfo.pColorBlendState = &colorBlendState; pipelineCreateInfo.pMultisampleState = &multisampleState; pipelineCreateInfo.pViewportState = &viewportState; pipelineCreateInfo.pDepthStencilState = &depthStencilState; pipelineCreateInfo.pDynamicState = &dynamicState; pipelineCreateInfo.stageCount = shaderStages.size(); pipelineCreateInfo.pStages = shaderStages.data(); vkTools::checkResult(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.solid)); } // Prepare and initialize uniform buffer containing shader uniforms void prepareUniformBuffers() { // Vertex shader uniform buffer block createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, sizeof(uboVS), &uboVS, &uniformData.vsScene.buffer, &uniformData.vsScene.memory, &uniformData.vsScene.descriptor); updateUniformBuffers(); } void updateUniformBuffers() { // Vertex shader glm::mat4 viewMatrix = glm::mat4(); uboVS.projection = glm::perspective(glm::radians(60.0f), (float)width / (float)height, 0.1f, 256.0f); viewMatrix = glm::translate(viewMatrix, glm::vec3(0.0f, 0.0f, zoom)); float offset = 0.5f; int uboIndex = 1; uboVS.model = glm::mat4(); uboVS.model = viewMatrix * glm::translate(uboVS.model, cameraPos); uboVS.model = glm::rotate(uboVS.model, glm::radians(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f)); uboVS.model = glm::rotate(uboVS.model, glm::radians(rotation.y), glm::vec3(0.0f, 1.0f, 0.0f)); uboVS.model = glm::rotate(uboVS.model, glm::radians(rotation.z), glm::vec3(0.0f, 0.0f, 1.0f)); uint8_t *pData; vkTools::checkResult(vkMapMemory(device, uniformData.vsScene.memory, 0, sizeof(uboVS), 0, (void **)&pData)); memcpy(pData, &uboVS, sizeof(uboVS)); vkUnmapMemory(device, uniformData.vsScene.memory); } void prepare() { VulkanExampleBase::prepare(); loadTextures(); loadMeshes(); setupVertexDescriptions(); prepareUniformBuffers(); setupDescriptorSetLayout(); preparePipelines(); setupDescriptorPool(); setupDescriptorSet(); buildCommandBuffers(); prepared = true; } virtual void render() { if (!prepared) return; vkDeviceWaitIdle(device); draw(); vkDeviceWaitIdle(device); updateUniformBuffers(); } virtual void viewChanged() { updateUniformBuffers(); } }; VulkanExample *vulkanExample; #if defined(_WIN32) LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam) { if (vulkanExample != NULL) { vulkanExample->handleMessages(hWnd, uMsg, wParam, lParam); } return (DefWindowProc(hWnd, uMsg, wParam, lParam)); } #elif defined(__linux__) && !defined(__ANDROID__) static void handleEvent(const xcb_generic_event_t *event) { if (vulkanExample != NULL) { vulkanExample->handleEvent(event); } } #endif // Main entry point #if defined(_WIN32) // Windows entry point int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR pCmdLine, int nCmdShow) #elif defined(__ANDROID__) // Android entry point void android_main(android_app* state) #elif defined(__linux__) // Linux entry point int main(const int argc, const char *argv[]) #endif { #if defined(__ANDROID__) // Removing this may cause the compiler to omit the main entry point // which would make the application crash at start app_dummy(); #endif vulkanExample = new VulkanExample(); #if defined(_WIN32) vulkanExample->setupWindow(hInstance, WndProc); #elif defined(__ANDROID__) // Attach vulkan example to global android application state state->userData = vulkanExample; state->onAppCmd = VulkanExample::handleAppCommand; state->onInputEvent = VulkanExample::handleAppInput; vulkanExample->androidApp = state; #elif defined(__linux__) vulkanExample->setupWindow(); #endif #if !defined(__ANDROID__) vulkanExample->initSwapchain(); vulkanExample->prepare(); #endif vulkanExample->renderLoop(); delete(vulkanExample); #if !defined(__ANDROID__) return 0; #endif }