/* * Vulkan Example - Hardware accelerated ray tracing callable shaders example * * Dynamically calls different shaders based on the geometry id in the closest hit shader * * Relevant code parts are marked with [POI] * * Copyright (C) 2021-2023 by Sascha Willems - www.saschawillems.de * * This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT) */ #include "VulkanRaytracingSample.h" class VulkanExample : public VulkanRaytracingSample { public: AccelerationStructure bottomLevelAS; AccelerationStructure topLevelAS; std::vector shaderGroups{}; struct ShaderBindingTables { ShaderBindingTable raygen; ShaderBindingTable miss; ShaderBindingTable hit; ShaderBindingTable callable; } shaderBindingTables; struct UniformData { glm::mat4 viewInverse; glm::mat4 projInverse; } uniformData; vks::Buffer ubo; VkPipeline pipeline; VkPipelineLayout pipelineLayout; VkDescriptorSet descriptorSet; VkDescriptorSetLayout descriptorSetLayout; vks::Buffer vertexBuffer; vks::Buffer indexBuffer; vks::Buffer transformBuffer; uint32_t objectCount = 3; // This sample is derived from an extended base class that saves most of the ray tracing setup boiler plate VulkanExample() : VulkanRaytracingSample() { title = "Ray tracing callable shaders"; timerSpeed *= 0.25f; camera.type = Camera::CameraType::lookat; camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 512.0f); camera.setRotation(glm::vec3(0.0f, 0.0f, 0.0f)); camera.setTranslation(glm::vec3(0.0f, 0.0f, -10.0f)); enableExtensions(); } ~VulkanExample() { if (device) { vkDestroyPipeline(device, pipeline, nullptr); vkDestroyPipelineLayout(device, pipelineLayout, nullptr); vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr); deleteStorageImage(); deleteAccelerationStructure(bottomLevelAS); deleteAccelerationStructure(topLevelAS); shaderBindingTables.raygen.destroy(); shaderBindingTables.miss.destroy(); shaderBindingTables.hit.destroy(); shaderBindingTables.callable.destroy(); vertexBuffer.destroy(); indexBuffer.destroy(); transformBuffer.destroy(); ubo.destroy(); } } /* Create the bottom level acceleration structure contains the scene's actual geometry (vertices, triangles) */ void createBottomLevelAccelerationStructure() { // Setup vertices for a single triangle struct Vertex { float pos[3]; }; std::vector vertices = { { { 1.0f, 1.0f, 0.0f } }, { { -1.0f, 1.0f, 0.0f } }, { { 0.0f, -1.0f, 0.0f } } }; // Setup indices std::vector indices = { 0, 1, 2 }; uint32_t indexCount = static_cast(indices.size()); // Setup transform matrices for the geometries in the bottom level AS std::vector transformMatrices(objectCount); for (uint32_t i = 0; i < objectCount; i++) { transformMatrices[i] = { 1.0f, 0.0f, 0.0f, (float)i * 3.0f - 3.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f }; } // Transform buffer VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT | VK_BUFFER_USAGE_ACCELERATION_STRUCTURE_BUILD_INPUT_READ_ONLY_BIT_KHR, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &transformBuffer, objectCount * sizeof(VkTransformMatrixKHR), transformMatrices.data())); // Create buffers // For the sake of simplicity we won't stage the vertex data to the GPU memory // Vertex buffer VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT | VK_BUFFER_USAGE_ACCELERATION_STRUCTURE_BUILD_INPUT_READ_ONLY_BIT_KHR | VK_BUFFER_USAGE_STORAGE_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &vertexBuffer, vertices.size() * sizeof(Vertex), vertices.data())); // Index buffer VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT | VK_BUFFER_USAGE_ACCELERATION_STRUCTURE_BUILD_INPUT_READ_ONLY_BIT_KHR | VK_BUFFER_USAGE_STORAGE_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &indexBuffer, indices.size() * sizeof(uint32_t), indices.data())); VkDeviceOrHostAddressConstKHR vertexBufferDeviceAddress{}; VkDeviceOrHostAddressConstKHR indexBufferDeviceAddress{}; VkDeviceOrHostAddressConstKHR transformBufferDeviceAddress{}; vertexBufferDeviceAddress.deviceAddress = getBufferDeviceAddress(vertexBuffer.buffer); indexBufferDeviceAddress.deviceAddress = getBufferDeviceAddress(indexBuffer.buffer); transformBufferDeviceAddress.deviceAddress = getBufferDeviceAddress(transformBuffer.buffer); uint32_t numTriangles = 1; // Our scene will consist of three different triangles, that'll be distinguished in the shader via gl_GeometryIndexEXT, so we add three geometries to the bottom level AS std::vector geometryCounts; std::vector accelerationStructureGeometries; for (uint32_t i = 0; i < objectCount; i++) { VkAccelerationStructureGeometryKHR accelerationStructureGeometry = vks::initializers::accelerationStructureGeometryKHR(); accelerationStructureGeometry.flags = VK_GEOMETRY_OPAQUE_BIT_KHR; accelerationStructureGeometry.geometryType = VK_GEOMETRY_TYPE_TRIANGLES_KHR; accelerationStructureGeometry.geometry.triangles.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_GEOMETRY_TRIANGLES_DATA_KHR; accelerationStructureGeometry.geometry.triangles.vertexFormat = VK_FORMAT_R32G32B32_SFLOAT; accelerationStructureGeometry.geometry.triangles.vertexData = vertexBufferDeviceAddress; accelerationStructureGeometry.geometry.triangles.maxVertex = 2; accelerationStructureGeometry.geometry.triangles.vertexStride = sizeof(Vertex); accelerationStructureGeometry.geometry.triangles.indexType = VK_INDEX_TYPE_UINT32; accelerationStructureGeometry.geometry.triangles.indexData = indexBufferDeviceAddress; accelerationStructureGeometry.geometry.triangles.transformData = transformBufferDeviceAddress; accelerationStructureGeometries.push_back(accelerationStructureGeometry); geometryCounts.push_back(1); } // Get size info VkAccelerationStructureBuildGeometryInfoKHR accelerationStructureBuildGeometryInfo = vks::initializers::accelerationStructureBuildGeometryInfoKHR(); accelerationStructureBuildGeometryInfo.type = VK_ACCELERATION_STRUCTURE_TYPE_BOTTOM_LEVEL_KHR; accelerationStructureBuildGeometryInfo.flags = VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_TRACE_BIT_KHR; accelerationStructureBuildGeometryInfo.geometryCount = static_cast(accelerationStructureGeometries.size()); accelerationStructureBuildGeometryInfo.pGeometries = accelerationStructureGeometries.data(); VkAccelerationStructureBuildSizesInfoKHR accelerationStructureBuildSizesInfo = vks::initializers::accelerationStructureBuildSizesInfoKHR(); vkGetAccelerationStructureBuildSizesKHR( device, VK_ACCELERATION_STRUCTURE_BUILD_TYPE_DEVICE_KHR, &accelerationStructureBuildGeometryInfo, geometryCounts.data(), &accelerationStructureBuildSizesInfo); createAccelerationStructure(bottomLevelAS, VK_ACCELERATION_STRUCTURE_TYPE_BOTTOM_LEVEL_KHR, accelerationStructureBuildSizesInfo); // Create a small scratch buffer used during build of the bottom level acceleration structure ScratchBuffer scratchBuffer = createScratchBuffer(accelerationStructureBuildSizesInfo.buildScratchSize); VkAccelerationStructureBuildGeometryInfoKHR accelerationBuildGeometryInfo = vks::initializers::accelerationStructureBuildGeometryInfoKHR(); accelerationBuildGeometryInfo.type = VK_ACCELERATION_STRUCTURE_TYPE_BOTTOM_LEVEL_KHR; accelerationBuildGeometryInfo.flags = VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_TRACE_BIT_KHR; accelerationBuildGeometryInfo.mode = VK_BUILD_ACCELERATION_STRUCTURE_MODE_BUILD_KHR; accelerationBuildGeometryInfo.dstAccelerationStructure = bottomLevelAS.handle; accelerationBuildGeometryInfo.geometryCount = static_cast(accelerationStructureGeometries.size()); accelerationBuildGeometryInfo.pGeometries = accelerationStructureGeometries.data(); accelerationBuildGeometryInfo.scratchData.deviceAddress = scratchBuffer.deviceAddress; // [POI] The bottom level acceleration structure for this sample contains three separate triangle geometries, so we can use gl_GeometryIndexEXT in the closest hit shader to select different callable shaders std::vector accelerationStructureBuildRangeInfos{}; for (uint32_t i = 0; i < objectCount; i++) { VkAccelerationStructureBuildRangeInfoKHR accelerationStructureBuildRangeInfo{}; accelerationStructureBuildRangeInfo.primitiveCount = numTriangles; accelerationStructureBuildRangeInfo.primitiveOffset = 0; accelerationStructureBuildRangeInfo.firstVertex = 0; accelerationStructureBuildRangeInfo.transformOffset = i * sizeof(VkTransformMatrixKHR); accelerationStructureBuildRangeInfos.push_back(accelerationStructureBuildRangeInfo); } std::vector accelerationBuildStructureRangeInfos = { &accelerationStructureBuildRangeInfos[0], &accelerationStructureBuildRangeInfos[1], &accelerationStructureBuildRangeInfos[2] }; // Build the acceleration structure on the device via a one-time command buffer submission // Some implementations may support acceleration structure building on the host (VkPhysicalDeviceAccelerationStructureFeaturesKHR->accelerationStructureHostCommands), but we prefer device builds VkCommandBuffer commandBuffer = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true); vkCmdBuildAccelerationStructuresKHR( commandBuffer, 1, &accelerationBuildGeometryInfo, accelerationBuildStructureRangeInfos.data()); vulkanDevice->flushCommandBuffer(commandBuffer, queue); deleteScratchBuffer(scratchBuffer); } /* The top level acceleration structure contains the scene's object instances */ void createTopLevelAccelerationStructure() { VkTransformMatrixKHR transformMatrix = { 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f }; VkAccelerationStructureInstanceKHR instance{}; instance.transform = transformMatrix; instance.instanceCustomIndex = 0; instance.mask = 0xFF; instance.instanceShaderBindingTableRecordOffset = 0; instance.flags = VK_GEOMETRY_INSTANCE_TRIANGLE_FACING_CULL_DISABLE_BIT_KHR; instance.accelerationStructureReference = bottomLevelAS.deviceAddress; // Buffer for instance data vks::Buffer instancesBuffer; VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT | VK_BUFFER_USAGE_ACCELERATION_STRUCTURE_BUILD_INPUT_READ_ONLY_BIT_KHR, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &instancesBuffer, sizeof(VkAccelerationStructureInstanceKHR), &instance)); VkDeviceOrHostAddressConstKHR instanceDataDeviceAddress{}; instanceDataDeviceAddress.deviceAddress = getBufferDeviceAddress(instancesBuffer.buffer); VkAccelerationStructureGeometryKHR accelerationStructureGeometry = vks::initializers::accelerationStructureGeometryKHR(); accelerationStructureGeometry.geometryType = VK_GEOMETRY_TYPE_INSTANCES_KHR; accelerationStructureGeometry.flags = VK_GEOMETRY_OPAQUE_BIT_KHR; accelerationStructureGeometry.geometry.instances.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_GEOMETRY_INSTANCES_DATA_KHR; accelerationStructureGeometry.geometry.instances.arrayOfPointers = VK_FALSE; accelerationStructureGeometry.geometry.instances.data = instanceDataDeviceAddress; // Get size info VkAccelerationStructureBuildGeometryInfoKHR accelerationStructureBuildGeometryInfo = vks::initializers::accelerationStructureBuildGeometryInfoKHR(); accelerationStructureBuildGeometryInfo.type = VK_ACCELERATION_STRUCTURE_TYPE_TOP_LEVEL_KHR; accelerationStructureBuildGeometryInfo.flags = VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_TRACE_BIT_KHR; accelerationStructureBuildGeometryInfo.geometryCount = 1; accelerationStructureBuildGeometryInfo.pGeometries = &accelerationStructureGeometry; uint32_t primitive_count = 1; VkAccelerationStructureBuildSizesInfoKHR accelerationStructureBuildSizesInfo = vks::initializers::accelerationStructureBuildSizesInfoKHR(); vkGetAccelerationStructureBuildSizesKHR( device, VK_ACCELERATION_STRUCTURE_BUILD_TYPE_DEVICE_KHR, &accelerationStructureBuildGeometryInfo, &primitive_count, &accelerationStructureBuildSizesInfo); createAccelerationStructure(topLevelAS, VK_ACCELERATION_STRUCTURE_TYPE_TOP_LEVEL_KHR, accelerationStructureBuildSizesInfo); // Create a small scratch buffer used during build of the top level acceleration structure ScratchBuffer scratchBuffer = createScratchBuffer(accelerationStructureBuildSizesInfo.buildScratchSize); VkAccelerationStructureBuildGeometryInfoKHR accelerationBuildGeometryInfo = vks::initializers::accelerationStructureBuildGeometryInfoKHR(); accelerationBuildGeometryInfo.type = VK_ACCELERATION_STRUCTURE_TYPE_TOP_LEVEL_KHR; accelerationBuildGeometryInfo.flags = VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_TRACE_BIT_KHR; accelerationBuildGeometryInfo.mode = VK_BUILD_ACCELERATION_STRUCTURE_MODE_BUILD_KHR; accelerationBuildGeometryInfo.dstAccelerationStructure = topLevelAS.handle; accelerationBuildGeometryInfo.geometryCount = 1; accelerationBuildGeometryInfo.pGeometries = &accelerationStructureGeometry; accelerationBuildGeometryInfo.scratchData.deviceAddress = scratchBuffer.deviceAddress; VkAccelerationStructureBuildRangeInfoKHR accelerationStructureBuildRangeInfo{}; accelerationStructureBuildRangeInfo.primitiveCount = 1; accelerationStructureBuildRangeInfo.primitiveOffset = 0; accelerationStructureBuildRangeInfo.firstVertex = 0; accelerationStructureBuildRangeInfo.transformOffset = 0; std::vector accelerationBuildStructureRangeInfos = { &accelerationStructureBuildRangeInfo }; // Build the acceleration structure on the device via a one-time command buffer submission // Some implementations may support acceleration structure building on the host (VkPhysicalDeviceAccelerationStructureFeaturesKHR->accelerationStructureHostCommands), but we prefer device builds VkCommandBuffer commandBuffer = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true); vkCmdBuildAccelerationStructuresKHR( commandBuffer, 1, &accelerationBuildGeometryInfo, accelerationBuildStructureRangeInfos.data()); vulkanDevice->flushCommandBuffer(commandBuffer, queue); deleteScratchBuffer(scratchBuffer); instancesBuffer.destroy(); } /* Create the Shader Binding Tables that binds the programs and top-level acceleration structure SBT Layout used in this sample: /-----------\ | raygen | |-----------| | miss | |-----------| | hit | |-----------| | callable0 | | callable1 | | callabel2 | \-----------/ */ void createShaderBindingTables() { const uint32_t handleSize = rayTracingPipelineProperties.shaderGroupHandleSize; const uint32_t handleSizeAligned = vks::tools::alignedSize(rayTracingPipelineProperties.shaderGroupHandleSize, rayTracingPipelineProperties.shaderGroupHandleAlignment); const uint32_t groupCount = static_cast(shaderGroups.size()); const uint32_t sbtSize = groupCount * handleSizeAligned; std::vector shaderHandleStorage(sbtSize); VK_CHECK_RESULT(vkGetRayTracingShaderGroupHandlesKHR(device, pipeline, 0, groupCount, sbtSize, shaderHandleStorage.data())); createShaderBindingTable(shaderBindingTables.raygen, 1); createShaderBindingTable(shaderBindingTables.miss, 1); createShaderBindingTable(shaderBindingTables.hit, 1); // [POI] The callable shader binding table contains one shader handle per ray traced object createShaderBindingTable(shaderBindingTables.callable, objectCount); // Copy handles memcpy(shaderBindingTables.raygen.mapped, shaderHandleStorage.data(), handleSize); memcpy(shaderBindingTables.miss.mapped, shaderHandleStorage.data() + handleSizeAligned, handleSize); memcpy(shaderBindingTables.hit.mapped, shaderHandleStorage.data() + handleSizeAligned * 2, handleSize); memcpy(shaderBindingTables.callable.mapped, shaderHandleStorage.data() + handleSizeAligned * 3, handleSize * 3); } /* Create the descriptor sets used for the ray tracing dispatch */ void createDescriptorSets() { std::vector poolSizes = { { VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, 1 }, { VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 1 }, { VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1 }, { VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 2 } }; VkDescriptorPoolCreateInfo descriptorPoolCreateInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, 1); VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolCreateInfo, nullptr, &descriptorPool)); VkDescriptorSetAllocateInfo descriptorSetAllocateInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1); VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &descriptorSetAllocateInfo, &descriptorSet)); VkWriteDescriptorSetAccelerationStructureKHR descriptorAccelerationStructureInfo = vks::initializers::writeDescriptorSetAccelerationStructureKHR(); descriptorAccelerationStructureInfo.accelerationStructureCount = 1; descriptorAccelerationStructureInfo.pAccelerationStructures = &topLevelAS.handle; VkWriteDescriptorSet accelerationStructureWrite{}; accelerationStructureWrite.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET; // The specialized acceleration structure descriptor has to be chained accelerationStructureWrite.pNext = &descriptorAccelerationStructureInfo; accelerationStructureWrite.dstSet = descriptorSet; accelerationStructureWrite.dstBinding = 0; accelerationStructureWrite.descriptorCount = 1; accelerationStructureWrite.descriptorType = VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR; VkDescriptorImageInfo storageImageDescriptor{ VK_NULL_HANDLE, storageImage.view, VK_IMAGE_LAYOUT_GENERAL }; VkDescriptorBufferInfo vertexBufferDescriptor{ vertexBuffer.buffer, 0, VK_WHOLE_SIZE }; VkDescriptorBufferInfo indexBufferDescriptor{ indexBuffer.buffer, 0, VK_WHOLE_SIZE }; std::vector writeDescriptorSets = { // Binding 0: Top level acceleration structure accelerationStructureWrite, // Binding 1: Ray tracing result image vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 1, &storageImageDescriptor), // Binding 2: Uniform data vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2, &ubo.descriptor), // Binding 3: Scene vertex buffer vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 3, &vertexBufferDescriptor), // Binding 4: Scene index buffer vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 4, &indexBufferDescriptor), }; vkUpdateDescriptorSets(device, static_cast(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, VK_NULL_HANDLE); } /* Create our ray tracing pipeline */ void createRayTracingPipeline() { std::vector setLayoutBindings = { // Binding 0: Acceleration structure vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, VK_SHADER_STAGE_RAYGEN_BIT_KHR | VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR, 0), // Binding 1: Storage image vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, VK_SHADER_STAGE_RAYGEN_BIT_KHR, 1), // Binding 2: Uniform buffer vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_RAYGEN_BIT_KHR | VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR | VK_SHADER_STAGE_MISS_BIT_KHR, 2), // Binding 3: Vertex buffer vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR, 3), // Binding 4: Index buffer vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR, 4), }; VkDescriptorSetLayoutCreateInfo descriptorSetLayoutCI = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorSetLayoutCI, nullptr, &descriptorSetLayout)); VkPipelineLayoutCreateInfo pPipelineLayoutCI = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayout, 1); VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCI, nullptr, &pipelineLayout)); /* Setup ray tracing shader groups */ std::vector shaderStages; VkRayTracingShaderGroupCreateInfoKHR shaderGroup; // Ray generation shader group shaderStages.push_back(loadShader(getShadersPath() + "raytracingcallable/raygen.rgen.spv", VK_SHADER_STAGE_RAYGEN_BIT_KHR)); shaderGroup = vks::initializers::rayTracingShaderGroupCreateInfoKHR(); shaderGroup.type = VK_RAY_TRACING_SHADER_GROUP_TYPE_GENERAL_KHR; shaderGroup.generalShader = static_cast(shaderStages.size()) - 1; shaderGroup.closestHitShader = VK_SHADER_UNUSED_KHR; shaderGroup.anyHitShader = VK_SHADER_UNUSED_KHR; shaderGroup.intersectionShader = VK_SHADER_UNUSED_KHR; shaderGroups.push_back(shaderGroup); // Miss shader group shaderStages.push_back(loadShader(getShadersPath() + "raytracingcallable/miss.rmiss.spv", VK_SHADER_STAGE_MISS_BIT_KHR)); shaderGroup = vks::initializers::rayTracingShaderGroupCreateInfoKHR(); shaderGroup.type = VK_RAY_TRACING_SHADER_GROUP_TYPE_GENERAL_KHR; shaderGroup.generalShader = static_cast(shaderStages.size()) - 1; shaderGroup.closestHitShader = VK_SHADER_UNUSED_KHR; shaderGroup.anyHitShader = VK_SHADER_UNUSED_KHR; shaderGroup.intersectionShader = VK_SHADER_UNUSED_KHR; shaderGroups.push_back(shaderGroup); // Closest hit shader group shaderStages.push_back(loadShader(getShadersPath() + "raytracingcallable/closesthit.rchit.spv", VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR)); shaderGroup = vks::initializers::rayTracingShaderGroupCreateInfoKHR(); shaderGroup.type = VK_RAY_TRACING_SHADER_GROUP_TYPE_TRIANGLES_HIT_GROUP_KHR; shaderGroup.generalShader = VK_SHADER_UNUSED_KHR; shaderGroup.closestHitShader = static_cast(shaderStages.size()) - 1; shaderGroup.anyHitShader = VK_SHADER_UNUSED_KHR; shaderGroup.intersectionShader = VK_SHADER_UNUSED_KHR; shaderGroups.push_back(shaderGroup); // [POI] Callable shader group // This sample's hit shader will call different callable shaders depending on the geometry index using executeCallableEXT, so as we render three geometries, we'll also use three callable shaders for (uint32_t i = 0; i < objectCount; i++) { shaderStages.push_back(loadShader(getShadersPath() + "raytracingcallable/callable" + std::to_string(i+1) + ".rcall.spv", VK_SHADER_STAGE_CALLABLE_BIT_KHR)); shaderGroup = vks::initializers::rayTracingShaderGroupCreateInfoKHR(); shaderGroup.type = VK_RAY_TRACING_SHADER_GROUP_TYPE_GENERAL_KHR; shaderGroup.generalShader = static_cast(shaderStages.size()) - 1; shaderGroup.closestHitShader = VK_SHADER_UNUSED_KHR; shaderGroup.anyHitShader = VK_SHADER_UNUSED_KHR; shaderGroup.intersectionShader = VK_SHADER_UNUSED_KHR; shaderGroups.push_back(shaderGroup); } // Get max pipeline ray tracing recursion depth for physical device VkPhysicalDeviceRayTracingPipelinePropertiesKHR physicalDeviceRayTracingPipelinePropertiesKHR {}; physicalDeviceRayTracingPipelinePropertiesKHR.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_TRACING_PIPELINE_PROPERTIES_KHR; VkPhysicalDeviceProperties2 physicalDeviceProperties2; physicalDeviceProperties2.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2_KHR; physicalDeviceProperties2.pNext = &physicalDeviceRayTracingPipelinePropertiesKHR; vkGetPhysicalDeviceProperties2(physicalDevice, &physicalDeviceProperties2); VkRayTracingPipelineCreateInfoKHR rayTracingPipelineCI = vks::initializers::rayTracingPipelineCreateInfoKHR(); rayTracingPipelineCI.stageCount = static_cast(shaderStages.size()); rayTracingPipelineCI.pStages = shaderStages.data(); rayTracingPipelineCI.groupCount = static_cast(shaderGroups.size()); rayTracingPipelineCI.pGroups = shaderGroups.data(); rayTracingPipelineCI.maxPipelineRayRecursionDepth = std::min(uint32_t(2), physicalDeviceRayTracingPipelinePropertiesKHR.maxRayRecursionDepth); rayTracingPipelineCI.layout = pipelineLayout; VK_CHECK_RESULT(vkCreateRayTracingPipelinesKHR(device, VK_NULL_HANDLE, VK_NULL_HANDLE, 1, &rayTracingPipelineCI, nullptr, &pipeline)); } /* Create the uniform buffer used to pass matrices to the ray tracing ray generation shader */ void createUniformBuffer() { VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &ubo, sizeof(uniformData), &uniformData)); VK_CHECK_RESULT(ubo.map()); updateUniformBuffers(); } /* If the window has been resized, we need to recreate the storage image and it's descriptor */ void handleResize() { // Recreate image createStorageImage(swapChain.colorFormat, { width, height, 1 }); // Update descriptor VkDescriptorImageInfo storageImageDescriptor{ VK_NULL_HANDLE, storageImage.view, VK_IMAGE_LAYOUT_GENERAL }; VkWriteDescriptorSet resultImageWrite = vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 1, &storageImageDescriptor); vkUpdateDescriptorSets(device, 1, &resultImageWrite, 0, VK_NULL_HANDLE); resized = false; } /* Command buffer generation */ void buildCommandBuffers() { if (resized) { handleResize(); } VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo(); VkImageSubresourceRange subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 }; for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) { VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo)); /* Dispatch the ray tracing commands */ vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, pipeline); vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, pipelineLayout, 0, 1, &descriptorSet, 0, 0); vkCmdTraceRaysKHR( drawCmdBuffers[i], &shaderBindingTables.raygen.stridedDeviceAddressRegion, &shaderBindingTables.miss.stridedDeviceAddressRegion, &shaderBindingTables.hit.stridedDeviceAddressRegion, &shaderBindingTables.callable.stridedDeviceAddressRegion, width, height, 1); /* Copy ray tracing output to swap chain image */ // Prepare current swap chain image as transfer destination vks::tools::setImageLayout( drawCmdBuffers[i], swapChain.images[i], VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, subresourceRange); // Prepare ray tracing output image as transfer source vks::tools::setImageLayout( drawCmdBuffers[i], storageImage.image, VK_IMAGE_LAYOUT_GENERAL, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, subresourceRange); VkImageCopy copyRegion{}; copyRegion.srcSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 }; copyRegion.srcOffset = { 0, 0, 0 }; copyRegion.dstSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 }; copyRegion.dstOffset = { 0, 0, 0 }; copyRegion.extent = { width, height, 1 }; vkCmdCopyImage(drawCmdBuffers[i], storageImage.image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, swapChain.images[i], VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, ©Region); // Transition swap chain image back for presentation vks::tools::setImageLayout( drawCmdBuffers[i], swapChain.images[i], VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_LAYOUT_PRESENT_SRC_KHR, subresourceRange); // Transition ray tracing output image back to general layout vks::tools::setImageLayout( drawCmdBuffers[i], storageImage.image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, VK_IMAGE_LAYOUT_GENERAL, subresourceRange); drawUI(drawCmdBuffers[i], frameBuffers[i]); VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i])); } } void updateUniformBuffers() { uniformData.projInverse = glm::inverse(camera.matrices.perspective); uniformData.viewInverse = glm::inverse(camera.matrices.view); memcpy(ubo.mapped, &uniformData, sizeof(uniformData)); } void getEnabledFeatures() { // Enable features required for ray tracing using feature chaining via pNext enabledBufferDeviceAddresFeatures.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES; enabledBufferDeviceAddresFeatures.bufferDeviceAddress = VK_TRUE; enabledRayTracingPipelineFeatures.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_TRACING_PIPELINE_FEATURES_KHR; enabledRayTracingPipelineFeatures.rayTracingPipeline = VK_TRUE; enabledRayTracingPipelineFeatures.pNext = &enabledBufferDeviceAddresFeatures; enabledAccelerationStructureFeatures.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ACCELERATION_STRUCTURE_FEATURES_KHR; enabledAccelerationStructureFeatures.accelerationStructure = VK_TRUE; enabledAccelerationStructureFeatures.pNext = &enabledRayTracingPipelineFeatures; deviceCreatepNextChain = &enabledAccelerationStructureFeatures; } void prepare() { VulkanRaytracingSample::prepare(); // Create the acceleration structures used to render the ray traced scene createBottomLevelAccelerationStructure(); createTopLevelAccelerationStructure(); createStorageImage(swapChain.colorFormat, { width, height, 1 }); createUniformBuffer(); createRayTracingPipeline(); createShaderBindingTables(); createDescriptorSets(); buildCommandBuffers(); prepared = true; } void draw() { VulkanExampleBase::prepareFrame(); submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer]; VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE)); VulkanExampleBase::submitFrame(); } virtual void render() { if (!prepared) return; draw(); if (!paused || camera.updated) updateUniformBuffers(); } }; VULKAN_EXAMPLE_MAIN()