// Copyright 2020 Google LLC struct RayPayload { float3 color; float distance; float3 normal; float reflector; }; struct Attributes { float2 bary; }; RaytracingAccelerationStructure topLevelAS : register(t0); struct UBO { float4x4 viewInverse; float4x4 projInverse; float4 lightPos; int vertexSize; }; cbuffer ubo : register(b2) { UBO ubo; }; StructuredBuffer vertices : register(t3); StructuredBuffer indices : register(t4); struct Vertex { float3 pos; float3 normal; float2 uv; float4 color; float4 _pad0; float4 _pad1; }; Vertex unpack(uint index) { // Unpack the vertices from the SSBO using the glTF vertex structure // The multiplier is the size of the vertex divided by four float components (=16 bytes) const int m = ubo.vertexSize / 16; float4 d0 = vertices[m * index + 0]; float4 d1 = vertices[m * index + 1]; float4 d2 = vertices[m * index + 2]; Vertex v; v.pos = d0.xyz; v.normal = float3(d0.w, d1.x, d1.y); v.color = float4(d2.x, d2.y, d2.z, 1.0); return v; } [shader("closesthit")] void main(inout RayPayload rayPayload, in Attributes attribs) { uint PrimitiveID = PrimitiveIndex(); int3 index = int3(indices[3 * PrimitiveID], indices[3 * PrimitiveID + 1], indices[3 * PrimitiveID + 2]); Vertex v0 = unpack(index.x); Vertex v1 = unpack(index.y); Vertex v2 = unpack(index.z); // Interpolate normal const float3 barycentricCoords = float3(1.0f - attribs.bary.x - attribs.bary.y, attribs.bary.x, attribs.bary.y); float3 normal = normalize(v0.normal * barycentricCoords.x + v1.normal * barycentricCoords.y + v2.normal * barycentricCoords.z); // Basic lighting float3 lightVector = normalize(ubo.lightPos.xyz); float dot_product = max(dot(lightVector, normal), 0.6); rayPayload.color.rgb = v0.color * dot_product; rayPayload.distance = RayTCurrent(); rayPayload.normal = normal; // Objects with full white vertex color are treated as reflectors rayPayload.reflector = ((v0.color.r == 1.0f) && (v0.color.g == 1.0f) && (v0.color.b == 1.0f)) ? 1.0f : 0.0f; }