/* * Vulkan Example - CPU based fire particle system * * Copyright (C) 2016 by Sascha Willems - www.saschawillems.de * * This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT) */ #include #include #include #include #include #define GLM_FORCE_RADIANS #define GLM_FORCE_DEPTH_ZERO_TO_ONE #include #include #include #include #include "vulkanexamplebase.h" #include "VulkanBuffer.hpp" #include "VulkanTexture.hpp" #include "VulkanModel.hpp" #define VERTEX_BUFFER_BIND_ID 0 #define ENABLE_VALIDATION false #define PARTICLE_COUNT 512 #define PARTICLE_SIZE 10.0f #define FLAME_RADIUS 8.0f #define PARTICLE_TYPE_FLAME 0 #define PARTICLE_TYPE_SMOKE 1 struct Particle { glm::vec4 pos; glm::vec4 color; float alpha; float size; float rotation; uint32_t type; // Attributes not used in shader glm::vec4 vel; float rotationSpeed; }; class VulkanExample : public VulkanExampleBase { public: struct { struct { vks::Texture2D smoke; vks::Texture2D fire; // Use a custom sampler to change sampler attributes required for rotating the uvs in the shader for alpha blended textures VkSampler sampler; } particles; struct { vks::Texture2D colorMap; vks::Texture2D normalMap; } floor; } textures; // Vertex layout for the models vks::VertexLayout vertexLayout = vks::VertexLayout({ vks::VERTEX_COMPONENT_POSITION, vks::VERTEX_COMPONENT_UV, vks::VERTEX_COMPONENT_NORMAL, vks::VERTEX_COMPONENT_TANGENT, vks::VERTEX_COMPONENT_BITANGENT, }); struct { vks::Model environment; } models; glm::vec3 emitterPos = glm::vec3(0.0f, -FLAME_RADIUS + 2.0f, 0.0f); glm::vec3 minVel = glm::vec3(-3.0f, 0.5f, -3.0f); glm::vec3 maxVel = glm::vec3(3.0f, 7.0f, 3.0f); struct { VkBuffer buffer; VkDeviceMemory memory; // Store the mapped address of the particle data for reuse void *mappedMemory; // Size of the particle buffer in bytes size_t size; } particles; struct { vks::Buffer fire; vks::Buffer environment; } uniformBuffers; struct UBOVS { glm::mat4 projection; glm::mat4 model; glm::vec2 viewportDim; float pointSize = PARTICLE_SIZE; } uboVS; struct UBOEnv { glm::mat4 projection; glm::mat4 model; glm::mat4 normal; glm::vec4 lightPos = glm::vec4(0.0f, 0.0f, 0.0f, 0.0f); glm::vec4 cameraPos; } uboEnv; struct { VkPipeline particles; VkPipeline environment; } pipelines; VkPipelineLayout pipelineLayout; VkDescriptorSetLayout descriptorSetLayout; struct { VkDescriptorSet particles; VkDescriptorSet environment; } descriptorSets; std::vector particleBuffer; VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION) { zoom = -75.0f; rotation = { -15.0f, 45.0f, 0.0f }; enableTextOverlay = true; title = "Vulkan Example - CPU particle system"; zoomSpeed *= 1.5f; timerSpeed *= 8.0f; srand(time(NULL)); } ~VulkanExample() { // Clean up used Vulkan resources // Note : Inherited destructor cleans up resources stored in base class textures.particles.smoke.destroy(); textures.particles.fire.destroy(); textures.floor.colorMap.destroy(); textures.floor.normalMap.destroy(); vkDestroyPipeline(device, pipelines.particles, nullptr); vkDestroyPipeline(device, pipelines.environment, nullptr); vkDestroyPipelineLayout(device, pipelineLayout, nullptr); vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr); vkUnmapMemory(device, particles.memory); vkDestroyBuffer(device, particles.buffer, nullptr); vkFreeMemory(device, particles.memory, nullptr); uniformBuffers.environment.destroy(); uniformBuffers.fire.destroy(); models.environment.destroy(); vkDestroySampler(device, textures.particles.sampler, nullptr); } void buildCommandBuffers() { VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo(); VkClearValue clearValues[2]; clearValues[0].color = defaultClearColor; clearValues[1].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo(); renderPassBeginInfo.renderPass = renderPass; renderPassBeginInfo.renderArea.offset.x = 0; renderPassBeginInfo.renderArea.offset.y = 0; renderPassBeginInfo.renderArea.extent.width = width; renderPassBeginInfo.renderArea.extent.height = height; renderPassBeginInfo.clearValueCount = 2; renderPassBeginInfo.pClearValues = clearValues; for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) { // Set target frame buffer renderPassBeginInfo.framebuffer = frameBuffers[i]; VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo)); vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f); vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); VkRect2D scissor = vks::initializers::rect2D(width, height, 0,0); vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor); VkDeviceSize offsets[1] = { 0 }; // Environment vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets.environment, 0, NULL); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.environment); vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &models.environment.vertices.buffer, offsets); vkCmdBindIndexBuffer(drawCmdBuffers[i], models.environment.indices.buffer, 0, VK_INDEX_TYPE_UINT32); vkCmdDrawIndexed(drawCmdBuffers[i], models.environment.indexCount, 1, 0, 0, 0); // Particle system (no index buffer) vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets.particles, 0, NULL); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.particles); vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &particles.buffer, offsets); vkCmdDraw(drawCmdBuffers[i], PARTICLE_COUNT, 1, 0, 0); vkCmdEndRenderPass(drawCmdBuffers[i]); VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i])); } } float rnd(float range) { return range * (rand() / float(RAND_MAX)); } void initParticle(Particle *particle, glm::vec3 emitterPos) { particle->vel = glm::vec4(0.0f, minVel.y + rnd(maxVel.y - minVel.y), 0.0f, 0.0f); particle->alpha = rnd(0.75f); particle->size = 1.0f + rnd(0.5f); particle->color = glm::vec4(1.0f); particle->type = PARTICLE_TYPE_FLAME; particle->rotation = rnd(2.0f * float(M_PI)); particle->rotationSpeed = rnd(2.0f) - rnd(2.0f); // Get random sphere point float theta = rnd(2.0f * float(M_PI)); float phi = rnd(float(M_PI)) - float(M_PI) / 2.0f; float r = rnd(FLAME_RADIUS); particle->pos.x = r * cos(theta) * cos(phi); particle->pos.y = r * sin(phi); particle->pos.z = r * sin(theta) * cos(phi); particle->pos += glm::vec4(emitterPos, 0.0f); } void transitionParticle(Particle *particle) { switch (particle->type) { case PARTICLE_TYPE_FLAME: // Flame particles have a chance of turning into smoke if (rnd(1.0f) < 0.05f) { particle->alpha = 0.0f; particle->color = glm::vec4(0.25f + rnd(0.25f)); particle->pos.x *= 0.5f; particle->pos.z *= 0.5f; particle->vel = glm::vec4(rnd(1.0f) - rnd(1.0f), (minVel.y * 2) + rnd(maxVel.y - minVel.y), rnd(1.0f) - rnd(1.0f), 0.0f); particle->size = 1.0f + rnd(0.5f); particle->rotationSpeed = rnd(1.0f) - rnd(1.0f); particle->type = PARTICLE_TYPE_SMOKE; } else { initParticle(particle, emitterPos); } break; case PARTICLE_TYPE_SMOKE: // Respawn at end of life initParticle(particle, emitterPos); break; } } void prepareParticles() { particleBuffer.resize(PARTICLE_COUNT); for (auto& particle : particleBuffer) { initParticle(&particle, emitterPos); particle.alpha = 1.0f - (abs(particle.pos.y) / (FLAME_RADIUS * 2.0f)); } particles.size = particleBuffer.size() * sizeof(Particle); VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_VERTEX_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, particles.size, &particles.buffer, &particles.memory, particleBuffer.data())); // Map the memory and store the pointer for reuse VK_CHECK_RESULT(vkMapMemory(device, particles.memory, 0, particles.size, 0, &particles.mappedMemory)); } void updateParticles() { float particleTimer = frameTimer * 0.45f; for (auto& particle : particleBuffer) { switch (particle.type) { case PARTICLE_TYPE_FLAME: particle.pos.y -= particle.vel.y * particleTimer * 3.5f; particle.alpha += particleTimer * 2.5f; particle.size -= particleTimer * 0.5f; break; case PARTICLE_TYPE_SMOKE: particle.pos -= particle.vel * frameTimer * 1.0f; particle.alpha += particleTimer * 1.25f; particle.size += particleTimer * 0.125f; particle.color -= particleTimer * 0.05f; break; } particle.rotation += particleTimer * particle.rotationSpeed; // Transition particle state if (particle.alpha > 2.0f) { transitionParticle(&particle); } } size_t size = particleBuffer.size() * sizeof(Particle); memcpy(particles.mappedMemory, particleBuffer.data(), size); } void loadAssets() { // Textures std::string texFormatSuffix; VkFormat texFormat; // Get supported compressed texture format if (vulkanDevice->features.textureCompressionBC) { texFormatSuffix = "_bc3_unorm"; texFormat = VK_FORMAT_BC3_UNORM_BLOCK; } else if (vulkanDevice->features.textureCompressionASTC_LDR) { texFormatSuffix = "_astc_8x8_unorm"; texFormat = VK_FORMAT_ASTC_8x8_UNORM_BLOCK; } else if (vulkanDevice->features.textureCompressionETC2) { texFormatSuffix = "_etc2_unorm"; texFormat = VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK; } else { vks::tools::exitFatal("Device does not support any compressed texture format!", "Error"); } // Particles textures.particles.smoke.loadFromFile(getAssetPath() + "textures/particle_smoke.ktx", VK_FORMAT_R8G8B8A8_UNORM, vulkanDevice, queue); textures.particles.fire.loadFromFile(getAssetPath() + "textures/particle_fire.ktx", VK_FORMAT_R8G8B8A8_UNORM, vulkanDevice, queue); // Floor textures.floor.colorMap.loadFromFile(getAssetPath() + "textures/fireplace_colormap" + texFormatSuffix + ".ktx", texFormat, vulkanDevice, queue); textures.floor.normalMap.loadFromFile(getAssetPath() + "textures/fireplace_normalmap" + texFormatSuffix + ".ktx", texFormat, vulkanDevice, queue); // Create a custom sampler to be used with the particle textures // Create sampler VkSamplerCreateInfo samplerCreateInfo = vks::initializers::samplerCreateInfo(); samplerCreateInfo.magFilter = VK_FILTER_LINEAR; samplerCreateInfo.minFilter = VK_FILTER_LINEAR; samplerCreateInfo.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR; // Different address mode samplerCreateInfo.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER; samplerCreateInfo.addressModeV = samplerCreateInfo.addressModeU; samplerCreateInfo.addressModeW = samplerCreateInfo.addressModeU; samplerCreateInfo.mipLodBias = 0.0f; samplerCreateInfo.compareOp = VK_COMPARE_OP_NEVER; samplerCreateInfo.minLod = 0.0f; // Both particle textures have the same number of mip maps samplerCreateInfo.maxLod = float(textures.particles.fire.mipLevels); // Enable anisotropic filtering samplerCreateInfo.maxAnisotropy = 8.0f; samplerCreateInfo.anisotropyEnable = VK_TRUE; // Use a different border color (than the normal texture loader) for additive blending samplerCreateInfo.borderColor = VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK; VK_CHECK_RESULT(vkCreateSampler(device, &samplerCreateInfo, nullptr, &textures.particles.sampler)); models.environment.loadFromFile(getAssetPath() + "models/fireplace.obj", vertexLayout, 10.0f, vulkanDevice, queue); } void setupDescriptorPool() { // Example uses one ubo and one image sampler std::vector poolSizes = { vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2), vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 4) }; VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo( poolSizes.size(), poolSizes.data(), 2); VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool)); } void setupDescriptorSetLayout() { std::vector setLayoutBindings = { // Binding 0 : Vertex shader uniform buffer vks::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0), // Binding 1 : Fragment shader image sampler vks::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1), // Binding 1 : Fragment shader image sampler vks::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 2) }; VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo( setLayoutBindings.data(), setLayoutBindings.size()); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout)); VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo( &descriptorSetLayout, 1); VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout)); } void setupDescriptorSets() { std::vector writeDescriptorSets; VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo( descriptorPool, &descriptorSetLayout, 1); VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.particles)); // Image descriptor for the color map texture VkDescriptorImageInfo texDescriptorSmoke = vks::initializers::descriptorImageInfo( textures.particles.sampler, textures.particles.smoke.view, VK_IMAGE_LAYOUT_GENERAL); VkDescriptorImageInfo texDescriptorFire = vks::initializers::descriptorImageInfo( textures.particles.sampler, textures.particles.fire.view, VK_IMAGE_LAYOUT_GENERAL); writeDescriptorSets = { // Binding 0: Vertex shader uniform buffer vks::initializers::writeDescriptorSet( descriptorSets.particles, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.fire.descriptor), // Binding 1: Smoke texture vks::initializers::writeDescriptorSet( descriptorSets.particles, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &texDescriptorSmoke), // Binding 1: Fire texture array vks::initializers::writeDescriptorSet( descriptorSets.particles, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2, &texDescriptorFire) }; vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL); // Environment VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.environment)); writeDescriptorSets = { // Binding 0: Vertex shader uniform buffer vks::initializers::writeDescriptorSet( descriptorSets.environment, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.environment.descriptor), // Binding 1: Color map vks::initializers::writeDescriptorSet( descriptorSets.environment, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &textures.floor.colorMap.descriptor), // Binding 2: Normal map vks::initializers::writeDescriptorSet( descriptorSets.environment, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2, &textures.floor.normalMap.descriptor), }; vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL); } void preparePipelines() { VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo( VK_PRIMITIVE_TOPOLOGY_POINT_LIST, 0, VK_FALSE); VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo( VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_CLOCKWISE, 0); VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState( 0xf, VK_FALSE); VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo( 1, &blendAttachmentState); VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo( VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL); VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0); VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo( VK_SAMPLE_COUNT_1_BIT, 0); std::vector dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR }; VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo( dynamicStateEnables.data(), dynamicStateEnables.size(), 0); // Load shaders std::array shaderStages; VkGraphicsPipelineCreateInfo pipelineCreateInfo = vks::initializers::pipelineCreateInfo( pipelineLayout, renderPass, 0); pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState; pipelineCreateInfo.pRasterizationState = &rasterizationState; pipelineCreateInfo.pColorBlendState = &colorBlendState; pipelineCreateInfo.pMultisampleState = &multisampleState; pipelineCreateInfo.pViewportState = &viewportState; pipelineCreateInfo.pDepthStencilState = &depthStencilState; pipelineCreateInfo.pDynamicState = &dynamicState; pipelineCreateInfo.stageCount = shaderStages.size(); pipelineCreateInfo.pStages = shaderStages.data(); // Particle rendering pipeline { // Shaders shaderStages[0] = loadShader(getAssetPath() + "shaders/particlefire/particle.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getAssetPath() + "shaders/particlefire/particle.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); // Vertex input state VkVertexInputBindingDescription vertexInputBinding = vks::initializers::vertexInputBindingDescription(VERTEX_BUFFER_BIND_ID, sizeof(Particle), VK_VERTEX_INPUT_RATE_VERTEX); std::vector vertexInputAttributes = { vks::initializers::vertexInputAttributeDescription(VERTEX_BUFFER_BIND_ID, 0, VK_FORMAT_R32G32B32A32_SFLOAT, offsetof(Particle, pos)), // Location 0: Position vks::initializers::vertexInputAttributeDescription(VERTEX_BUFFER_BIND_ID, 1, VK_FORMAT_R32G32B32A32_SFLOAT, offsetof(Particle, color)), // Location 1: Color vks::initializers::vertexInputAttributeDescription(VERTEX_BUFFER_BIND_ID, 2, VK_FORMAT_R32_SFLOAT, offsetof(Particle, alpha)), // Location 2: Alpha vks::initializers::vertexInputAttributeDescription(VERTEX_BUFFER_BIND_ID, 3, VK_FORMAT_R32_SFLOAT, offsetof(Particle, size)), // Location 3: Size vks::initializers::vertexInputAttributeDescription(VERTEX_BUFFER_BIND_ID, 4, VK_FORMAT_R32_SFLOAT, offsetof(Particle, rotation)), // Location 4: Rotation vks::initializers::vertexInputAttributeDescription(VERTEX_BUFFER_BIND_ID, 5, VK_FORMAT_R32_SINT, offsetof(Particle, type)), // Location 5: Particle type }; VkPipelineVertexInputStateCreateInfo vertexInputState = vks::initializers::pipelineVertexInputStateCreateInfo(); vertexInputState.vertexBindingDescriptionCount = 1; vertexInputState.pVertexBindingDescriptions = &vertexInputBinding; vertexInputState.vertexAttributeDescriptionCount = static_cast(vertexInputAttributes.size()); vertexInputState.pVertexAttributeDescriptions = vertexInputAttributes.data(); pipelineCreateInfo.pVertexInputState = &vertexInputState; // Dont' write to depth buffer depthStencilState.depthWriteEnable = VK_FALSE; // Premulitplied alpha blendAttachmentState.blendEnable = VK_TRUE; blendAttachmentState.srcColorBlendFactor = VK_BLEND_FACTOR_ONE; blendAttachmentState.dstColorBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA; blendAttachmentState.colorBlendOp = VK_BLEND_OP_ADD; blendAttachmentState.srcAlphaBlendFactor = VK_BLEND_FACTOR_ONE; blendAttachmentState.dstAlphaBlendFactor = VK_BLEND_FACTOR_ZERO; blendAttachmentState.alphaBlendOp = VK_BLEND_OP_ADD; blendAttachmentState.colorWriteMask = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT; VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.particles)); } // Environment rendering pipeline (normal mapped) { // Shaders shaderStages[0] = loadShader(getAssetPath() + "shaders/particlefire/normalmap.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getAssetPath() + "shaders/particlefire/normalmap.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); // Vertex input state VkVertexInputBindingDescription vertexInputBinding = vks::initializers::vertexInputBindingDescription(VERTEX_BUFFER_BIND_ID, vertexLayout.stride(), VK_VERTEX_INPUT_RATE_VERTEX); std::vector vertexInputAttributes = { vks::initializers::vertexInputAttributeDescription(VERTEX_BUFFER_BIND_ID, 0, VK_FORMAT_R32G32B32_SFLOAT, 0), // Location 0: Position vks::initializers::vertexInputAttributeDescription(VERTEX_BUFFER_BIND_ID, 1, VK_FORMAT_R32G32_SFLOAT, sizeof(float) * 3), // Location 1: UV vks::initializers::vertexInputAttributeDescription(VERTEX_BUFFER_BIND_ID, 2, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 5), // Location 2: Normal vks::initializers::vertexInputAttributeDescription(VERTEX_BUFFER_BIND_ID, 3, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 8), // Location 3: Tangent vks::initializers::vertexInputAttributeDescription(VERTEX_BUFFER_BIND_ID, 4, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 11), // Location 4: Bitangen }; VkPipelineVertexInputStateCreateInfo vertexInputState = vks::initializers::pipelineVertexInputStateCreateInfo(); vertexInputState.vertexBindingDescriptionCount = 1; vertexInputState.pVertexBindingDescriptions = &vertexInputBinding; vertexInputState.vertexAttributeDescriptionCount = static_cast(vertexInputAttributes.size()); vertexInputState.pVertexAttributeDescriptions = vertexInputAttributes.data(); pipelineCreateInfo.pVertexInputState = &vertexInputState; blendAttachmentState.blendEnable = VK_FALSE; depthStencilState.depthWriteEnable = VK_TRUE; inputAssemblyState.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST; VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.environment)); } } // Prepare and initialize uniform buffer containing shader uniforms void prepareUniformBuffers() { // Vertex shader uniform buffer block VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBuffers.fire, sizeof(uboVS))); // Vertex shader uniform buffer block VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBuffers.environment, sizeof(uboEnv))); // Map persistent VK_CHECK_RESULT(uniformBuffers.fire.map()); VK_CHECK_RESULT(uniformBuffers.environment.map()); updateUniformBuffers(); } void updateUniformBufferLight() { // Environment uboEnv.lightPos.x = sin(timer * 2.0f * float(M_PI)) * 1.5f; uboEnv.lightPos.y = 0.0f; uboEnv.lightPos.z = cos(timer * 2.0f * float(M_PI)) * 1.5f; memcpy(uniformBuffers.environment.mapped, &uboEnv, sizeof(uboEnv)); } void updateUniformBuffers() { // Vertex shader glm::mat4 viewMatrix = glm::mat4(); uboVS.projection = glm::perspective(glm::radians(60.0f), (float)width / (float)height, 0.001f, 256.0f); viewMatrix = glm::translate(viewMatrix, glm::vec3(0.0f, 0.0f, zoom)); uboVS.model = glm::mat4(); uboVS.model = viewMatrix * glm::translate(uboVS.model, glm::vec3(0.0f, 15.0f, 0.0f)); uboVS.model = glm::rotate(uboVS.model, glm::radians(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f)); uboVS.model = glm::rotate(uboVS.model, glm::radians(rotation.y), glm::vec3(0.0f, 1.0f, 0.0f)); uboVS.model = glm::rotate(uboVS.model, glm::radians(rotation.z), glm::vec3(0.0f, 0.0f, 1.0f)); uboVS.viewportDim = glm::vec2((float)width, (float)height); memcpy(uniformBuffers.fire.mapped, &uboVS, sizeof(uboVS)); // Environment uboEnv.projection = uboVS.projection; uboEnv.model = uboVS.model; uboEnv.normal = glm::inverseTranspose(uboEnv.model); uboEnv.cameraPos = glm::vec4(0.0, 0.0, zoom, 0.0); memcpy(uniformBuffers.environment.mapped, &uboEnv, sizeof(uboEnv)); } void draw() { VulkanExampleBase::prepareFrame(); // Command buffer to be sumitted to the queue submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer]; // Submit to queue VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE)); VulkanExampleBase::submitFrame(); } void prepare() { VulkanExampleBase::prepare(); loadAssets(); prepareParticles(); prepareUniformBuffers(); setupDescriptorSetLayout(); preparePipelines(); setupDescriptorPool(); setupDescriptorSets(); buildCommandBuffers(); prepared = true; } virtual void render() { if (!prepared) return; draw(); if (!paused) { updateUniformBufferLight(); updateParticles(); } } virtual void viewChanged() { updateUniformBuffers(); } }; VULKAN_EXAMPLE_MAIN()