/* * Vulkan Example - Physical based rendering with image based lighting * * Note: Requires the separate asset pack (see data/README.md) * * Copyright (C) 2016-2017 by Sascha Willems - www.saschawillems.de * * This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT) */ // For reference see http://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_notes_v2.pdf #include #include #include #include #include #include #define GLM_FORCE_RADIANS #define GLM_FORCE_DEPTH_ZERO_TO_ONE #include #include #include #include #include "vulkanexamplebase.h" #include "VulkanBuffer.hpp" #include "VulkanTexture.hpp" #include "VulkanModel.hpp" #define ENABLE_VALIDATION false #define GRID_DIM 7 struct Material { // Parameter block used as push constant block struct PushBlock { float roughness = 0.0f; float metallic = 0.0f; float specular = 0.0f; float r, g, b; } params; std::string name; Material() {}; Material(std::string n, glm::vec3 c) : name(n) { params.r = c.r; params.g = c.g; params.b = c.b; }; }; class VulkanExample : public VulkanExampleBase { public: bool displaySkybox = true; struct Textures { vks::TextureCubeMap environmentCube; // Generated at runtime vks::Texture2D lutBrdf; vks::TextureCubeMap irradianceCube; vks::TextureCubeMap prefilteredCube; } textures; // Vertex layout for the models vks::VertexLayout vertexLayout = vks::VertexLayout({ vks::VERTEX_COMPONENT_POSITION, vks::VERTEX_COMPONENT_NORMAL, vks::VERTEX_COMPONENT_UV, }); struct Meshes { vks::Model skybox; std::vector objects; int32_t objectIndex = 0; } models; struct { vks::Buffer object; vks::Buffer skybox; vks::Buffer params; } uniformBuffers; struct UBOMatrices { glm::mat4 projection; glm::mat4 model; glm::mat4 view; glm::vec3 camPos; } uboMatrices; struct UBOParams { glm::vec4 lights[4]; float exposure = 4.5f; float gamma = 2.2f; } uboParams; struct { VkPipeline skybox; VkPipeline pbr; } pipelines; struct { VkDescriptorSet object; VkDescriptorSet skybox; } descriptorSets; VkPipelineLayout pipelineLayout; VkDescriptorSetLayout descriptorSetLayout; // Default materials to select from std::vector materials; int32_t materialIndex = 0; std::vector materialNames; std::vector objectNames; VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION) { title = "PBR with image based lighting"; camera.type = Camera::CameraType::firstperson; camera.movementSpeed = 4.0f; camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 256.0f); camera.rotationSpeed = 0.25f; camera.setRotation({ -3.75f, 180.0f, 0.0f }); camera.setPosition({ 0.55f, 0.85f, 12.0f }); // Setup some default materials (source: https://seblagarde.wordpress.com/2011/08/17/feeding-a-physical-based-lighting-mode/) materials.push_back(Material("Gold", glm::vec3(1.0f, 0.765557f, 0.336057f))); materials.push_back(Material("Copper", glm::vec3(0.955008f, 0.637427f, 0.538163f))); materials.push_back(Material("Chromium", glm::vec3(0.549585f, 0.556114f, 0.554256f))); materials.push_back(Material("Nickel", glm::vec3(0.659777f, 0.608679f, 0.525649f))); materials.push_back(Material("Titanium", glm::vec3(0.541931f, 0.496791f, 0.449419f))); materials.push_back(Material("Cobalt", glm::vec3(0.662124f, 0.654864f, 0.633732f))); materials.push_back(Material("Platinum", glm::vec3(0.672411f, 0.637331f, 0.585456f))); // Testing materials materials.push_back(Material("White", glm::vec3(1.0f))); materials.push_back(Material("Dark", glm::vec3(0.1f))); materials.push_back(Material("Black", glm::vec3(0.0f))); materials.push_back(Material("Red", glm::vec3(1.0f, 0.0f, 0.0f))); materials.push_back(Material("Blue", glm::vec3(0.0f, 0.0f, 1.0f))); settings.overlay = true; for (auto material : materials) { materialNames.push_back(material.name); } objectNames = { "Sphere", "Teapot", "Torusknot", "Venus" }; materialIndex = 9; } ~VulkanExample() { vkDestroyPipeline(device, pipelines.skybox, nullptr); vkDestroyPipeline(device, pipelines.pbr, nullptr); vkDestroyPipelineLayout(device, pipelineLayout, nullptr); vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr); for (auto& model : models.objects) { model.destroy(); } models.skybox.destroy(); uniformBuffers.object.destroy(); uniformBuffers.skybox.destroy(); uniformBuffers.params.destroy(); textures.environmentCube.destroy(); textures.irradianceCube.destroy(); textures.prefilteredCube.destroy(); textures.lutBrdf.destroy(); } virtual void getEnabledFeatures() { if (deviceFeatures.samplerAnisotropy) { enabledFeatures.samplerAnisotropy = VK_TRUE; } } void buildCommandBuffers() { VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo(); VkClearValue clearValues[2]; clearValues[0].color = { { 0.1f, 0.1f, 0.1f, 1.0f } }; clearValues[1].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo(); renderPassBeginInfo.renderPass = renderPass; renderPassBeginInfo.renderArea.offset.x = 0; renderPassBeginInfo.renderArea.offset.y = 0; renderPassBeginInfo.renderArea.extent.width = width; renderPassBeginInfo.renderArea.extent.height = height; renderPassBeginInfo.clearValueCount = 2; renderPassBeginInfo.pClearValues = clearValues; for (size_t i = 0; i < drawCmdBuffers.size(); ++i) { // Set target frame buffer renderPassBeginInfo.framebuffer = frameBuffers[i]; VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo)); vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f); vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0); vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor); VkDeviceSize offsets[1] = { 0 }; // Skybox if (displaySkybox) { vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets.skybox, 0, NULL); vkCmdBindVertexBuffers(drawCmdBuffers[i], 0, 1, &models.skybox.vertices.buffer, offsets); vkCmdBindIndexBuffer(drawCmdBuffers[i], models.skybox.indices.buffer, 0, VK_INDEX_TYPE_UINT32); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.skybox); vkCmdDrawIndexed(drawCmdBuffers[i], models.skybox.indexCount, 1, 0, 0, 0); } // Objects vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets.object, 0, NULL); vkCmdBindVertexBuffers(drawCmdBuffers[i], 0, 1, &models.objects[models.objectIndex].vertices.buffer, offsets); vkCmdBindIndexBuffer(drawCmdBuffers[i], models.objects[models.objectIndex].indices.buffer, 0, VK_INDEX_TYPE_UINT32); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.pbr); Material mat = materials[materialIndex]; #define SINGLE_ROW 1 #ifdef SINGLE_ROW uint32_t objcount = 10; for (uint32_t x = 0; x < objcount; x++) { glm::vec3 pos = glm::vec3(float(x - (objcount / 2.0f)) * 2.15f, 0.0f, 0.0f); mat.params.roughness = 1.0f-glm::clamp((float)x / (float)objcount, 0.005f, 1.0f); mat.params.metallic = glm::clamp((float)x / (float)objcount, 0.005f, 1.0f); vkCmdPushConstants(drawCmdBuffers[i], pipelineLayout, VK_SHADER_STAGE_VERTEX_BIT, 0, sizeof(glm::vec3), &pos); vkCmdPushConstants(drawCmdBuffers[i], pipelineLayout, VK_SHADER_STAGE_FRAGMENT_BIT, sizeof(glm::vec3), sizeof(Material::PushBlock), &mat); vkCmdDrawIndexed(drawCmdBuffers[i], models.objects[models.objectIndex].indexCount, 1, 0, 0, 0); } #else for (uint32_t y = 0; y < GRID_DIM; y++) { mat.params.metallic = (float)y / (float)(GRID_DIM); for (uint32_t x = 0; x < GRID_DIM; x++) { glm::vec3 pos = glm::vec3(float(x - (GRID_DIM / 2.0f)) * 2.5f, 0.0f, float(y - (GRID_DIM / 2.0f)) * 2.5f); vkCmdPushConstants(drawCmdBuffers[i], pipelineLayout, VK_SHADER_STAGE_VERTEX_BIT, 0, sizeof(glm::vec3), &pos); mat.params.roughness = glm::clamp((float)x / (float)(GRID_DIM), 0.05f, 1.0f); vkCmdPushConstants(drawCmdBuffers[i], pipelineLayout, VK_SHADER_STAGE_FRAGMENT_BIT, sizeof(glm::vec3), sizeof(Material::PushBlock), &mat); vkCmdDrawIndexed(drawCmdBuffers[i], models.objects[models.objectIndex].indexCount, 1, 0, 0, 0); } } #endif drawUI(drawCmdBuffers[i]); vkCmdEndRenderPass(drawCmdBuffers[i]); VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i])); } } void loadAssets() { // Skybox models.skybox.loadFromFile(getAssetPath() + "models/cube.obj", vertexLayout, 1.0f, vulkanDevice, queue); // Objects std::vector filenames = { "geosphere.obj", "teapot.dae", "torusknot.obj", "venus.fbx" }; for (auto file : filenames) { vks::Model model; model.loadFromFile(getAssetPath() + "models/" + file, vertexLayout, 0.05f * (file == "venus.fbx" ? 3.0f : 1.0f), vulkanDevice, queue); models.objects.push_back(model); } textures.environmentCube.loadFromFile(getAssetPath() + "textures/hdr/pisa_cube.ktx", VK_FORMAT_R16G16B16A16_SFLOAT, vulkanDevice, queue); } void setupDescriptors() { // Descriptor Pool std::vector poolSizes = { vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 4), vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 6) }; VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, 2); VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool)); // Descriptor set layout std::vector setLayoutBindings = { vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, 0), vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_FRAGMENT_BIT, 1), vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 2), vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 3), vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 4), }; VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout)); // Descriptor sets VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1); // Objects VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.object)); std::vector writeDescriptorSets = { vks::initializers::writeDescriptorSet(descriptorSets.object, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.object.descriptor), vks::initializers::writeDescriptorSet(descriptorSets.object, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1, &uniformBuffers.params.descriptor), vks::initializers::writeDescriptorSet(descriptorSets.object, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2, &textures.irradianceCube.descriptor), vks::initializers::writeDescriptorSet(descriptorSets.object, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 3, &textures.lutBrdf.descriptor), vks::initializers::writeDescriptorSet(descriptorSets.object, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 4, &textures.prefilteredCube.descriptor), }; vkUpdateDescriptorSets(device, static_cast(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL); // Sky box VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.skybox)); writeDescriptorSets = { vks::initializers::writeDescriptorSet(descriptorSets.skybox, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.skybox.descriptor), vks::initializers::writeDescriptorSet(descriptorSets.skybox, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1, &uniformBuffers.params.descriptor), vks::initializers::writeDescriptorSet(descriptorSets.skybox, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2, &textures.environmentCube.descriptor), }; vkUpdateDescriptorSets(device, static_cast(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL); } void preparePipelines() { VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE); VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_NONE, VK_FRONT_FACE_COUNTER_CLOCKWISE); VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE); VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState); VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_FALSE, VK_FALSE, VK_COMPARE_OP_LESS_OR_EQUAL); VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1); VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT); std::vector dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR }; VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables); // Pipeline layout VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayout, 1); // Push constant ranges std::vector pushConstantRanges = { vks::initializers::pushConstantRange(VK_SHADER_STAGE_VERTEX_BIT, sizeof(glm::vec3), 0), vks::initializers::pushConstantRange(VK_SHADER_STAGE_FRAGMENT_BIT, sizeof(Material::PushBlock), sizeof(glm::vec3)), }; pipelineLayoutCreateInfo.pushConstantRangeCount = 2; pipelineLayoutCreateInfo.pPushConstantRanges = pushConstantRanges.data(); VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &pipelineLayout)); // Pipelines VkGraphicsPipelineCreateInfo pipelineCreateInfo = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass); std::array shaderStages; pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState; pipelineCreateInfo.pRasterizationState = &rasterizationState; pipelineCreateInfo.pColorBlendState = &colorBlendState; pipelineCreateInfo.pMultisampleState = &multisampleState; pipelineCreateInfo.pViewportState = &viewportState; pipelineCreateInfo.pDepthStencilState = &depthStencilState; pipelineCreateInfo.pDynamicState = &dynamicState; pipelineCreateInfo.stageCount = static_cast(shaderStages.size()); pipelineCreateInfo.pStages = shaderStages.data(); // Vertex bindings an attributes // Binding description std::vector vertexInputBindings = { vks::initializers::vertexInputBindingDescription(0, vertexLayout.stride(), VK_VERTEX_INPUT_RATE_VERTEX), }; // Attribute descriptions std::vector vertexInputAttributes = { vks::initializers::vertexInputAttributeDescription(0, 0, VK_FORMAT_R32G32B32_SFLOAT, 0), // Position vks::initializers::vertexInputAttributeDescription(0, 1, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 3), // Normal vks::initializers::vertexInputAttributeDescription(0, 2, VK_FORMAT_R32G32_SFLOAT, sizeof(float) * 6), // UV }; VkPipelineVertexInputStateCreateInfo vertexInputState = vks::initializers::pipelineVertexInputStateCreateInfo(); vertexInputState.vertexBindingDescriptionCount = static_cast(vertexInputBindings.size()); vertexInputState.pVertexBindingDescriptions = vertexInputBindings.data(); vertexInputState.vertexAttributeDescriptionCount = static_cast(vertexInputAttributes.size()); vertexInputState.pVertexAttributeDescriptions = vertexInputAttributes.data(); pipelineCreateInfo.pVertexInputState = &vertexInputState; // Skybox pipeline (background cube) shaderStages[0] = loadShader(getAssetPath() + "shaders/pbribl/skybox.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getAssetPath() + "shaders/pbribl/skybox.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.skybox)); // PBR pipeline shaderStages[0] = loadShader(getAssetPath() + "shaders/pbribl/pbribl.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getAssetPath() + "shaders/pbribl/pbribl.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); // Enable depth test and write depthStencilState.depthWriteEnable = VK_TRUE; depthStencilState.depthTestEnable = VK_TRUE; VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.pbr)); } // Generate a BRDF integration map used as a look-up-table (stores roughness / NdotV) void generateBRDFLUT() { auto tStart = std::chrono::high_resolution_clock::now(); const VkFormat format = VK_FORMAT_R16G16_SFLOAT; // R16G16 is supported pretty much everywhere const int32_t dim = 512; // Image VkImageCreateInfo imageCI = vks::initializers::imageCreateInfo(); imageCI.imageType = VK_IMAGE_TYPE_2D; imageCI.format = format; imageCI.extent.width = dim; imageCI.extent.height = dim; imageCI.extent.depth = 1; imageCI.mipLevels = 1; imageCI.arrayLayers = 1; imageCI.samples = VK_SAMPLE_COUNT_1_BIT; imageCI.tiling = VK_IMAGE_TILING_OPTIMAL; imageCI.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_SAMPLED_BIT; VK_CHECK_RESULT(vkCreateImage(device, &imageCI, nullptr, &textures.lutBrdf.image)); VkMemoryAllocateInfo memAlloc = vks::initializers::memoryAllocateInfo(); VkMemoryRequirements memReqs; vkGetImageMemoryRequirements(device, textures.lutBrdf.image, &memReqs); memAlloc.allocationSize = memReqs.size; memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &textures.lutBrdf.deviceMemory)); VK_CHECK_RESULT(vkBindImageMemory(device, textures.lutBrdf.image, textures.lutBrdf.deviceMemory, 0)); // Image view VkImageViewCreateInfo viewCI = vks::initializers::imageViewCreateInfo(); viewCI.viewType = VK_IMAGE_VIEW_TYPE_2D; viewCI.format = format; viewCI.subresourceRange = {}; viewCI.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; viewCI.subresourceRange.levelCount = 1; viewCI.subresourceRange.layerCount = 1; viewCI.image = textures.lutBrdf.image; VK_CHECK_RESULT(vkCreateImageView(device, &viewCI, nullptr, &textures.lutBrdf.view)); // Sampler VkSamplerCreateInfo samplerCI = vks::initializers::samplerCreateInfo(); samplerCI.magFilter = VK_FILTER_LINEAR; samplerCI.minFilter = VK_FILTER_LINEAR; samplerCI.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR; samplerCI.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE; samplerCI.addressModeV = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE; samplerCI.addressModeW = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE; samplerCI.minLod = 0.0f; samplerCI.maxLod = 1.0f; samplerCI.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE; VK_CHECK_RESULT(vkCreateSampler(device, &samplerCI, nullptr, &textures.lutBrdf.sampler)); textures.lutBrdf.descriptor.imageView = textures.lutBrdf.view; textures.lutBrdf.descriptor.sampler = textures.lutBrdf.sampler; textures.lutBrdf.descriptor.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; textures.lutBrdf.device = vulkanDevice; // FB, Att, RP, Pipe, etc. VkAttachmentDescription attDesc = {}; // Color attachment attDesc.format = format; attDesc.samples = VK_SAMPLE_COUNT_1_BIT; attDesc.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; attDesc.storeOp = VK_ATTACHMENT_STORE_OP_STORE; attDesc.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; attDesc.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; attDesc.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; attDesc.finalLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; VkAttachmentReference colorReference = { 0, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL }; VkSubpassDescription subpassDescription = {}; subpassDescription.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS; subpassDescription.colorAttachmentCount = 1; subpassDescription.pColorAttachments = &colorReference; // Use subpass dependencies for layout transitions std::array dependencies; dependencies[0].srcSubpass = VK_SUBPASS_EXTERNAL; dependencies[0].dstSubpass = 0; dependencies[0].srcStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT; dependencies[0].dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; dependencies[0].srcAccessMask = VK_ACCESS_MEMORY_READ_BIT; dependencies[0].dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; dependencies[0].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT; dependencies[1].srcSubpass = 0; dependencies[1].dstSubpass = VK_SUBPASS_EXTERNAL; dependencies[1].srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; dependencies[1].dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT; dependencies[1].srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; dependencies[1].dstAccessMask = VK_ACCESS_MEMORY_READ_BIT; dependencies[1].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT; // Create the actual renderpass VkRenderPassCreateInfo renderPassCI = vks::initializers::renderPassCreateInfo(); renderPassCI.attachmentCount = 1; renderPassCI.pAttachments = &attDesc; renderPassCI.subpassCount = 1; renderPassCI.pSubpasses = &subpassDescription; renderPassCI.dependencyCount = 2; renderPassCI.pDependencies = dependencies.data(); VkRenderPass renderpass; VK_CHECK_RESULT(vkCreateRenderPass(device, &renderPassCI, nullptr, &renderpass)); VkFramebufferCreateInfo framebufferCI = vks::initializers::framebufferCreateInfo(); framebufferCI.renderPass = renderpass; framebufferCI.attachmentCount = 1; framebufferCI.pAttachments = &textures.lutBrdf.view; framebufferCI.width = dim; framebufferCI.height = dim; framebufferCI.layers = 1; VkFramebuffer framebuffer; VK_CHECK_RESULT(vkCreateFramebuffer(device, &framebufferCI, nullptr, &framebuffer)); // Desriptors VkDescriptorSetLayout descriptorsetlayout; std::vector setLayoutBindings = {}; VkDescriptorSetLayoutCreateInfo descriptorsetlayoutCI = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorsetlayoutCI, nullptr, &descriptorsetlayout)); // Descriptor Pool std::vector poolSizes = { vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1) }; VkDescriptorPoolCreateInfo descriptorPoolCI = vks::initializers::descriptorPoolCreateInfo(poolSizes, 2); VkDescriptorPool descriptorpool; VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolCI, nullptr, &descriptorpool)); // Descriptor sets VkDescriptorSet descriptorset; VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorpool, &descriptorsetlayout, 1); VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorset)); // Pipeline layout VkPipelineLayout pipelinelayout; VkPipelineLayoutCreateInfo pipelineLayoutCI = vks::initializers::pipelineLayoutCreateInfo(&descriptorsetlayout, 1); VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCI, nullptr, &pipelinelayout)); // Pipeline VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE); VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_NONE, VK_FRONT_FACE_COUNTER_CLOCKWISE); VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE); VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState); VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_FALSE, VK_FALSE, VK_COMPARE_OP_LESS_OR_EQUAL); VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1); VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT); std::vector dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR }; VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables); VkPipelineVertexInputStateCreateInfo emptyInputState = vks::initializers::pipelineVertexInputStateCreateInfo(); std::array shaderStages; VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelinelayout, renderpass); pipelineCI.pInputAssemblyState = &inputAssemblyState; pipelineCI.pRasterizationState = &rasterizationState; pipelineCI.pColorBlendState = &colorBlendState; pipelineCI.pMultisampleState = &multisampleState; pipelineCI.pViewportState = &viewportState; pipelineCI.pDepthStencilState = &depthStencilState; pipelineCI.pDynamicState = &dynamicState; pipelineCI.stageCount = 2; pipelineCI.pStages = shaderStages.data(); pipelineCI.pVertexInputState = &emptyInputState; // Look-up-table (from BRDF) pipeline shaderStages[0] = loadShader(getAssetPath() + "shaders/pbribl/genbrdflut.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getAssetPath() + "shaders/pbribl/genbrdflut.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); VkPipeline pipeline; VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipeline)); // Render VkClearValue clearValues[1]; clearValues[0].color = { { 0.0f, 0.0f, 0.0f, 1.0f } }; VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo(); renderPassBeginInfo.renderPass = renderpass; renderPassBeginInfo.renderArea.extent.width = dim; renderPassBeginInfo.renderArea.extent.height = dim; renderPassBeginInfo.clearValueCount = 1; renderPassBeginInfo.pClearValues = clearValues; renderPassBeginInfo.framebuffer = framebuffer; VkCommandBuffer cmdBuf = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true); vkCmdBeginRenderPass(cmdBuf, &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); VkViewport viewport = vks::initializers::viewport((float)dim, (float)dim, 0.0f, 1.0f); VkRect2D scissor = vks::initializers::rect2D(dim, dim, 0, 0); vkCmdSetViewport(cmdBuf, 0, 1, &viewport); vkCmdSetScissor(cmdBuf, 0, 1, &scissor); vkCmdBindPipeline(cmdBuf, VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline); vkCmdDraw(cmdBuf, 3, 1, 0, 0); vkCmdEndRenderPass(cmdBuf); vulkanDevice->flushCommandBuffer(cmdBuf, queue); vkQueueWaitIdle(queue); // todo: cleanup vkDestroyPipeline(device, pipeline, nullptr); vkDestroyPipelineLayout(device, pipelinelayout, nullptr); vkDestroyRenderPass(device, renderpass, nullptr); vkDestroyFramebuffer(device, framebuffer, nullptr); vkDestroyDescriptorSetLayout(device, descriptorsetlayout, nullptr); vkDestroyDescriptorPool(device, descriptorpool, nullptr); auto tEnd = std::chrono::high_resolution_clock::now(); auto tDiff = std::chrono::duration(tEnd - tStart).count(); std::cout << "Generating BRDF LUT took " << tDiff << " ms" << std::endl; } // Generate an irradiance cube map from the environment cube map void generateIrradianceCube() { auto tStart = std::chrono::high_resolution_clock::now(); const VkFormat format = VK_FORMAT_R32G32B32A32_SFLOAT; const int32_t dim = 64; const uint32_t numMips = static_cast(floor(log2(dim))) + 1; // Pre-filtered cube map // Image VkImageCreateInfo imageCI = vks::initializers::imageCreateInfo(); imageCI.imageType = VK_IMAGE_TYPE_2D; imageCI.format = format; imageCI.extent.width = dim; imageCI.extent.height = dim; imageCI.extent.depth = 1; imageCI.mipLevels = numMips; imageCI.arrayLayers = 6; imageCI.samples = VK_SAMPLE_COUNT_1_BIT; imageCI.tiling = VK_IMAGE_TILING_OPTIMAL; imageCI.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT; imageCI.flags = VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT; VK_CHECK_RESULT(vkCreateImage(device, &imageCI, nullptr, &textures.irradianceCube.image)); VkMemoryAllocateInfo memAlloc = vks::initializers::memoryAllocateInfo(); VkMemoryRequirements memReqs; vkGetImageMemoryRequirements(device, textures.irradianceCube.image, &memReqs); memAlloc.allocationSize = memReqs.size; memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &textures.irradianceCube.deviceMemory)); VK_CHECK_RESULT(vkBindImageMemory(device, textures.irradianceCube.image, textures.irradianceCube.deviceMemory, 0)); // Image view VkImageViewCreateInfo viewCI = vks::initializers::imageViewCreateInfo(); viewCI.viewType = VK_IMAGE_VIEW_TYPE_CUBE; viewCI.format = format; viewCI.subresourceRange = {}; viewCI.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; viewCI.subresourceRange.levelCount = numMips; viewCI.subresourceRange.layerCount = 6; viewCI.image = textures.irradianceCube.image; VK_CHECK_RESULT(vkCreateImageView(device, &viewCI, nullptr, &textures.irradianceCube.view)); // Sampler VkSamplerCreateInfo samplerCI = vks::initializers::samplerCreateInfo(); samplerCI.magFilter = VK_FILTER_LINEAR; samplerCI.minFilter = VK_FILTER_LINEAR; samplerCI.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR; samplerCI.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE; samplerCI.addressModeV = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE; samplerCI.addressModeW = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE; samplerCI.minLod = 0.0f; samplerCI.maxLod = static_cast(numMips); samplerCI.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE; VK_CHECK_RESULT(vkCreateSampler(device, &samplerCI, nullptr, &textures.irradianceCube.sampler)); textures.irradianceCube.descriptor.imageView = textures.irradianceCube.view; textures.irradianceCube.descriptor.sampler = textures.irradianceCube.sampler; textures.irradianceCube.descriptor.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; textures.irradianceCube.device = vulkanDevice; // FB, Att, RP, Pipe, etc. VkAttachmentDescription attDesc = {}; // Color attachment attDesc.format = format; attDesc.samples = VK_SAMPLE_COUNT_1_BIT; attDesc.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; attDesc.storeOp = VK_ATTACHMENT_STORE_OP_STORE; attDesc.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; attDesc.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; attDesc.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; attDesc.finalLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; VkAttachmentReference colorReference = { 0, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL }; VkSubpassDescription subpassDescription = {}; subpassDescription.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS; subpassDescription.colorAttachmentCount = 1; subpassDescription.pColorAttachments = &colorReference; // Use subpass dependencies for layout transitions std::array dependencies; dependencies[0].srcSubpass = VK_SUBPASS_EXTERNAL; dependencies[0].dstSubpass = 0; dependencies[0].srcStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT; dependencies[0].dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; dependencies[0].srcAccessMask = VK_ACCESS_MEMORY_READ_BIT; dependencies[0].dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; dependencies[0].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT; dependencies[1].srcSubpass = 0; dependencies[1].dstSubpass = VK_SUBPASS_EXTERNAL; dependencies[1].srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; dependencies[1].dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT; dependencies[1].srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; dependencies[1].dstAccessMask = VK_ACCESS_MEMORY_READ_BIT; dependencies[1].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT; // Renderpass VkRenderPassCreateInfo renderPassCI = vks::initializers::renderPassCreateInfo(); renderPassCI.attachmentCount = 1; renderPassCI.pAttachments = &attDesc; renderPassCI.subpassCount = 1; renderPassCI.pSubpasses = &subpassDescription; renderPassCI.dependencyCount = 2; renderPassCI.pDependencies = dependencies.data(); VkRenderPass renderpass; VK_CHECK_RESULT(vkCreateRenderPass(device, &renderPassCI, nullptr, &renderpass)); struct { VkImage image; VkImageView view; VkDeviceMemory memory; VkFramebuffer framebuffer; } offscreen; // Offfscreen framebuffer { // Color attachment VkImageCreateInfo imageCreateInfo = vks::initializers::imageCreateInfo(); imageCreateInfo.imageType = VK_IMAGE_TYPE_2D; imageCreateInfo.format = format; imageCreateInfo.extent.width = dim; imageCreateInfo.extent.height = dim; imageCreateInfo.extent.depth = 1; imageCreateInfo.mipLevels = 1; imageCreateInfo.arrayLayers = 1; imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT; imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL; imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; imageCreateInfo.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT; imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; VK_CHECK_RESULT(vkCreateImage(device, &imageCreateInfo, nullptr, &offscreen.image)); VkMemoryAllocateInfo memAlloc = vks::initializers::memoryAllocateInfo(); VkMemoryRequirements memReqs; vkGetImageMemoryRequirements(device, offscreen.image, &memReqs); memAlloc.allocationSize = memReqs.size; memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &offscreen.memory)); VK_CHECK_RESULT(vkBindImageMemory(device, offscreen.image, offscreen.memory, 0)); VkImageViewCreateInfo colorImageView = vks::initializers::imageViewCreateInfo(); colorImageView.viewType = VK_IMAGE_VIEW_TYPE_2D; colorImageView.format = format; colorImageView.flags = 0; colorImageView.subresourceRange = {}; colorImageView.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; colorImageView.subresourceRange.baseMipLevel = 0; colorImageView.subresourceRange.levelCount = 1; colorImageView.subresourceRange.baseArrayLayer = 0; colorImageView.subresourceRange.layerCount = 1; colorImageView.image = offscreen.image; VK_CHECK_RESULT(vkCreateImageView(device, &colorImageView, nullptr, &offscreen.view)); VkFramebufferCreateInfo fbufCreateInfo = vks::initializers::framebufferCreateInfo(); fbufCreateInfo.renderPass = renderpass; fbufCreateInfo.attachmentCount = 1; fbufCreateInfo.pAttachments = &offscreen.view; fbufCreateInfo.width = dim; fbufCreateInfo.height = dim; fbufCreateInfo.layers = 1; VK_CHECK_RESULT(vkCreateFramebuffer(device, &fbufCreateInfo, nullptr, &offscreen.framebuffer)); VkCommandBuffer layoutCmd = VulkanExampleBase::createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true); vks::tools::setImageLayout( layoutCmd, offscreen.image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL); VulkanExampleBase::flushCommandBuffer(layoutCmd, queue, true); } // Descriptors VkDescriptorSetLayout descriptorsetlayout; std::vector setLayoutBindings = { vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 0), }; VkDescriptorSetLayoutCreateInfo descriptorsetlayoutCI = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorsetlayoutCI, nullptr, &descriptorsetlayout)); // Descriptor Pool std::vector poolSizes = { vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1) }; VkDescriptorPoolCreateInfo descriptorPoolCI = vks::initializers::descriptorPoolCreateInfo(poolSizes, 2); VkDescriptorPool descriptorpool; VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolCI, nullptr, &descriptorpool)); // Descriptor sets VkDescriptorSet descriptorset; VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorpool, &descriptorsetlayout, 1); VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorset)); VkWriteDescriptorSet writeDescriptorSet = vks::initializers::writeDescriptorSet(descriptorset, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 0, &textures.environmentCube.descriptor); vkUpdateDescriptorSets(device, 1, &writeDescriptorSet, 0, nullptr); // Pipeline layout struct PushBlock { glm::mat4 mvp; // Sampling deltas float deltaPhi = (2.0f * float(M_PI)) / 180.0f; float deltaTheta = (0.5f * float(M_PI)) / 64.0f; } pushBlock; VkPipelineLayout pipelinelayout; std::vector pushConstantRanges = { vks::initializers::pushConstantRange(VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, sizeof(PushBlock), 0), }; VkPipelineLayoutCreateInfo pipelineLayoutCI = vks::initializers::pipelineLayoutCreateInfo(&descriptorsetlayout, 1); pipelineLayoutCI.pushConstantRangeCount = 1; pipelineLayoutCI.pPushConstantRanges = pushConstantRanges.data(); VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCI, nullptr, &pipelinelayout)); // Pipeline VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE); VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_NONE, VK_FRONT_FACE_COUNTER_CLOCKWISE); VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE); VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState); VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_FALSE, VK_FALSE, VK_COMPARE_OP_LESS_OR_EQUAL); VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1); VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT); std::vector dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR }; VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables); // Vertex input state VkVertexInputBindingDescription vertexInputBinding = vks::initializers::vertexInputBindingDescription(0, vertexLayout.stride(), VK_VERTEX_INPUT_RATE_VERTEX); VkVertexInputAttributeDescription vertexInputAttribute = vks::initializers::vertexInputAttributeDescription(0, 0, VK_FORMAT_R32G32B32_SFLOAT, 0); VkPipelineVertexInputStateCreateInfo vertexInputState = vks::initializers::pipelineVertexInputStateCreateInfo(); vertexInputState.vertexBindingDescriptionCount = 1; vertexInputState.pVertexBindingDescriptions = &vertexInputBinding; vertexInputState.vertexAttributeDescriptionCount = 1; vertexInputState.pVertexAttributeDescriptions = &vertexInputAttribute; std::array shaderStages; VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelinelayout, renderpass); pipelineCI.pInputAssemblyState = &inputAssemblyState; pipelineCI.pRasterizationState = &rasterizationState; pipelineCI.pColorBlendState = &colorBlendState; pipelineCI.pMultisampleState = &multisampleState; pipelineCI.pViewportState = &viewportState; pipelineCI.pDepthStencilState = &depthStencilState; pipelineCI.pDynamicState = &dynamicState; pipelineCI.stageCount = 2; pipelineCI.pStages = shaderStages.data(); pipelineCI.pVertexInputState = &vertexInputState; pipelineCI.renderPass = renderpass; shaderStages[0] = loadShader(getAssetPath() + "shaders/pbribl/filtercube.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getAssetPath() + "shaders/pbribl/irradiancecube.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); VkPipeline pipeline; VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipeline)); // Render VkClearValue clearValues[1]; clearValues[0].color = { { 0.0f, 0.0f, 0.2f, 0.0f } }; VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo(); // Reuse render pass from example pass renderPassBeginInfo.renderPass = renderpass; renderPassBeginInfo.framebuffer = offscreen.framebuffer; renderPassBeginInfo.renderArea.extent.width = dim; renderPassBeginInfo.renderArea.extent.height = dim; renderPassBeginInfo.clearValueCount = 1; renderPassBeginInfo.pClearValues = clearValues; std::vector matrices = { // POSITIVE_X glm::rotate(glm::rotate(glm::mat4(1.0f), glm::radians(90.0f), glm::vec3(0.0f, 1.0f, 0.0f)), glm::radians(180.0f), glm::vec3(1.0f, 0.0f, 0.0f)), // NEGATIVE_X glm::rotate(glm::rotate(glm::mat4(1.0f), glm::radians(-90.0f), glm::vec3(0.0f, 1.0f, 0.0f)), glm::radians(180.0f), glm::vec3(1.0f, 0.0f, 0.0f)), // POSITIVE_Y glm::rotate(glm::mat4(1.0f), glm::radians(-90.0f), glm::vec3(1.0f, 0.0f, 0.0f)), // NEGATIVE_Y glm::rotate(glm::mat4(1.0f), glm::radians(90.0f), glm::vec3(1.0f, 0.0f, 0.0f)), // POSITIVE_Z glm::rotate(glm::mat4(1.0f), glm::radians(180.0f), glm::vec3(1.0f, 0.0f, 0.0f)), // NEGATIVE_Z glm::rotate(glm::mat4(1.0f), glm::radians(180.0f), glm::vec3(0.0f, 0.0f, 1.0f)), }; VkCommandBuffer cmdBuf = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true); VkViewport viewport = vks::initializers::viewport((float)dim, (float)dim, 0.0f, 1.0f); VkRect2D scissor = vks::initializers::rect2D(dim, dim, 0, 0); vkCmdSetViewport(cmdBuf, 0, 1, &viewport); vkCmdSetScissor(cmdBuf, 0, 1, &scissor); VkImageSubresourceRange subresourceRange = {}; subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; subresourceRange.baseMipLevel = 0; subresourceRange.levelCount = numMips; subresourceRange.layerCount = 6; // Change image layout for all cubemap faces to transfer destination vks::tools::setImageLayout( cmdBuf, textures.irradianceCube.image, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, subresourceRange); for (uint32_t m = 0; m < numMips; m++) { for (uint32_t f = 0; f < 6; f++) { viewport.width = static_cast(dim * std::pow(0.5f, m)); viewport.height = static_cast(dim * std::pow(0.5f, m)); vkCmdSetViewport(cmdBuf, 0, 1, &viewport); // Render scene from cube face's point of view vkCmdBeginRenderPass(cmdBuf, &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); // Update shader push constant block pushBlock.mvp = glm::perspective((float)(M_PI / 2.0), 1.0f, 0.1f, 512.0f) * matrices[f]; vkCmdPushConstants(cmdBuf, pipelinelayout, VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, 0, sizeof(PushBlock), &pushBlock); vkCmdBindPipeline(cmdBuf, VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline); vkCmdBindDescriptorSets(cmdBuf, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelinelayout, 0, 1, &descriptorset, 0, NULL); VkDeviceSize offsets[1] = { 0 }; vkCmdBindVertexBuffers(cmdBuf, 0, 1, &models.skybox.vertices.buffer, offsets); vkCmdBindIndexBuffer(cmdBuf, models.skybox.indices.buffer, 0, VK_INDEX_TYPE_UINT32); vkCmdDrawIndexed(cmdBuf, models.skybox.indexCount, 1, 0, 0, 0); vkCmdEndRenderPass(cmdBuf); vks::tools::setImageLayout( cmdBuf, offscreen.image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL); // Copy region for transfer from framebuffer to cube face VkImageCopy copyRegion = {}; copyRegion.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; copyRegion.srcSubresource.baseArrayLayer = 0; copyRegion.srcSubresource.mipLevel = 0; copyRegion.srcSubresource.layerCount = 1; copyRegion.srcOffset = { 0, 0, 0 }; copyRegion.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; copyRegion.dstSubresource.baseArrayLayer = f; copyRegion.dstSubresource.mipLevel = m; copyRegion.dstSubresource.layerCount = 1; copyRegion.dstOffset = { 0, 0, 0 }; copyRegion.extent.width = static_cast(viewport.width); copyRegion.extent.height = static_cast(viewport.height); copyRegion.extent.depth = 1; vkCmdCopyImage( cmdBuf, offscreen.image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, textures.irradianceCube.image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, ©Region); // Transform framebuffer color attachment back vks::tools::setImageLayout( cmdBuf, offscreen.image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL); } } vks::tools::setImageLayout( cmdBuf, textures.irradianceCube.image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, subresourceRange); vulkanDevice->flushCommandBuffer(cmdBuf, queue); // todo: cleanup vkDestroyRenderPass(device, renderpass, nullptr); vkDestroyFramebuffer(device, offscreen.framebuffer, nullptr); vkFreeMemory(device, offscreen.memory, nullptr); vkDestroyImageView(device, offscreen.view, nullptr); vkDestroyImage(device, offscreen.image, nullptr); vkDestroyDescriptorPool(device, descriptorpool, nullptr); vkDestroyDescriptorSetLayout(device, descriptorsetlayout, nullptr); vkDestroyPipeline(device, pipeline, nullptr); vkDestroyPipelineLayout(device, pipelinelayout, nullptr); auto tEnd = std::chrono::high_resolution_clock::now(); auto tDiff = std::chrono::duration(tEnd - tStart).count(); std::cout << "Generating irradiance cube with " << numMips << " mip levels took " << tDiff << " ms" << std::endl; } // Prefilter environment cubemap // See https://placeholderart.wordpress.com/2015/07/28/implementation-notes-runtime-environment-map-filtering-for-image-based-lighting/ void generatePrefilteredCube() { auto tStart = std::chrono::high_resolution_clock::now(); const VkFormat format = VK_FORMAT_R16G16B16A16_SFLOAT; const int32_t dim = 512; const uint32_t numMips = static_cast(floor(log2(dim))) + 1; // Pre-filtered cube map // Image VkImageCreateInfo imageCI = vks::initializers::imageCreateInfo(); imageCI.imageType = VK_IMAGE_TYPE_2D; imageCI.format = format; imageCI.extent.width = dim; imageCI.extent.height = dim; imageCI.extent.depth = 1; imageCI.mipLevels = numMips; imageCI.arrayLayers = 6; imageCI.samples = VK_SAMPLE_COUNT_1_BIT; imageCI.tiling = VK_IMAGE_TILING_OPTIMAL; imageCI.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT; imageCI.flags = VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT; VK_CHECK_RESULT(vkCreateImage(device, &imageCI, nullptr, &textures.prefilteredCube.image)); VkMemoryAllocateInfo memAlloc = vks::initializers::memoryAllocateInfo(); VkMemoryRequirements memReqs; vkGetImageMemoryRequirements(device, textures.prefilteredCube.image, &memReqs); memAlloc.allocationSize = memReqs.size; memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &textures.prefilteredCube.deviceMemory)); VK_CHECK_RESULT(vkBindImageMemory(device, textures.prefilteredCube.image, textures.prefilteredCube.deviceMemory, 0)); // Image view VkImageViewCreateInfo viewCI = vks::initializers::imageViewCreateInfo(); viewCI.viewType = VK_IMAGE_VIEW_TYPE_CUBE; viewCI.format = format; viewCI.subresourceRange = {}; viewCI.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; viewCI.subresourceRange.levelCount = numMips; viewCI.subresourceRange.layerCount = 6; viewCI.image = textures.prefilteredCube.image; VK_CHECK_RESULT(vkCreateImageView(device, &viewCI, nullptr, &textures.prefilteredCube.view)); // Sampler VkSamplerCreateInfo samplerCI = vks::initializers::samplerCreateInfo(); samplerCI.magFilter = VK_FILTER_LINEAR; samplerCI.minFilter = VK_FILTER_LINEAR; samplerCI.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR; samplerCI.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE; samplerCI.addressModeV = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE; samplerCI.addressModeW = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE; samplerCI.minLod = 0.0f; samplerCI.maxLod = static_cast(numMips); samplerCI.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE; VK_CHECK_RESULT(vkCreateSampler(device, &samplerCI, nullptr, &textures.prefilteredCube.sampler)); textures.prefilteredCube.descriptor.imageView = textures.prefilteredCube.view; textures.prefilteredCube.descriptor.sampler = textures.prefilteredCube.sampler; textures.prefilteredCube.descriptor.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; textures.prefilteredCube.device = vulkanDevice; // FB, Att, RP, Pipe, etc. VkAttachmentDescription attDesc = {}; // Color attachment attDesc.format = format; attDesc.samples = VK_SAMPLE_COUNT_1_BIT; attDesc.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; attDesc.storeOp = VK_ATTACHMENT_STORE_OP_STORE; attDesc.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; attDesc.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; attDesc.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; attDesc.finalLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; VkAttachmentReference colorReference = { 0, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL }; VkSubpassDescription subpassDescription = {}; subpassDescription.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS; subpassDescription.colorAttachmentCount = 1; subpassDescription.pColorAttachments = &colorReference; // Use subpass dependencies for layout transitions std::array dependencies; dependencies[0].srcSubpass = VK_SUBPASS_EXTERNAL; dependencies[0].dstSubpass = 0; dependencies[0].srcStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT; dependencies[0].dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; dependencies[0].srcAccessMask = VK_ACCESS_MEMORY_READ_BIT; dependencies[0].dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; dependencies[0].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT; dependencies[1].srcSubpass = 0; dependencies[1].dstSubpass = VK_SUBPASS_EXTERNAL; dependencies[1].srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; dependencies[1].dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT; dependencies[1].srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; dependencies[1].dstAccessMask = VK_ACCESS_MEMORY_READ_BIT; dependencies[1].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT; // Renderpass VkRenderPassCreateInfo renderPassCI = vks::initializers::renderPassCreateInfo(); renderPassCI.attachmentCount = 1; renderPassCI.pAttachments = &attDesc; renderPassCI.subpassCount = 1; renderPassCI.pSubpasses = &subpassDescription; renderPassCI.dependencyCount = 2; renderPassCI.pDependencies = dependencies.data(); VkRenderPass renderpass; VK_CHECK_RESULT(vkCreateRenderPass(device, &renderPassCI, nullptr, &renderpass)); struct { VkImage image; VkImageView view; VkDeviceMemory memory; VkFramebuffer framebuffer; } offscreen; // Offfscreen framebuffer { // Color attachment VkImageCreateInfo imageCreateInfo = vks::initializers::imageCreateInfo(); imageCreateInfo.imageType = VK_IMAGE_TYPE_2D; imageCreateInfo.format = format; imageCreateInfo.extent.width = dim; imageCreateInfo.extent.height = dim; imageCreateInfo.extent.depth = 1; imageCreateInfo.mipLevels = 1; imageCreateInfo.arrayLayers = 1; imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT; imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL; imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; imageCreateInfo.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT; imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; VK_CHECK_RESULT(vkCreateImage(device, &imageCreateInfo, nullptr, &offscreen.image)); VkMemoryAllocateInfo memAlloc = vks::initializers::memoryAllocateInfo(); VkMemoryRequirements memReqs; vkGetImageMemoryRequirements(device, offscreen.image, &memReqs); memAlloc.allocationSize = memReqs.size; memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &offscreen.memory)); VK_CHECK_RESULT(vkBindImageMemory(device, offscreen.image, offscreen.memory, 0)); VkImageViewCreateInfo colorImageView = vks::initializers::imageViewCreateInfo(); colorImageView.viewType = VK_IMAGE_VIEW_TYPE_2D; colorImageView.format = format; colorImageView.flags = 0; colorImageView.subresourceRange = {}; colorImageView.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; colorImageView.subresourceRange.baseMipLevel = 0; colorImageView.subresourceRange.levelCount = 1; colorImageView.subresourceRange.baseArrayLayer = 0; colorImageView.subresourceRange.layerCount = 1; colorImageView.image = offscreen.image; VK_CHECK_RESULT(vkCreateImageView(device, &colorImageView, nullptr, &offscreen.view)); VkFramebufferCreateInfo fbufCreateInfo = vks::initializers::framebufferCreateInfo(); fbufCreateInfo.renderPass = renderpass; fbufCreateInfo.attachmentCount = 1; fbufCreateInfo.pAttachments = &offscreen.view; fbufCreateInfo.width = dim; fbufCreateInfo.height = dim; fbufCreateInfo.layers = 1; VK_CHECK_RESULT(vkCreateFramebuffer(device, &fbufCreateInfo, nullptr, &offscreen.framebuffer)); VkCommandBuffer layoutCmd = VulkanExampleBase::createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true); vks::tools::setImageLayout( layoutCmd, offscreen.image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL); VulkanExampleBase::flushCommandBuffer(layoutCmd, queue, true); } // Descriptors VkDescriptorSetLayout descriptorsetlayout; std::vector setLayoutBindings = { vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 0), }; VkDescriptorSetLayoutCreateInfo descriptorsetlayoutCI = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorsetlayoutCI, nullptr, &descriptorsetlayout)); // Descriptor Pool std::vector poolSizes = { vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1) }; VkDescriptorPoolCreateInfo descriptorPoolCI = vks::initializers::descriptorPoolCreateInfo(poolSizes, 2); VkDescriptorPool descriptorpool; VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolCI, nullptr, &descriptorpool)); // Descriptor sets VkDescriptorSet descriptorset; VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorpool, &descriptorsetlayout, 1); VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorset)); VkWriteDescriptorSet writeDescriptorSet = vks::initializers::writeDescriptorSet(descriptorset, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 0, &textures.environmentCube.descriptor); vkUpdateDescriptorSets(device, 1, &writeDescriptorSet, 0, nullptr); // Pipeline layout struct PushBlock { glm::mat4 mvp; float roughness; uint32_t numSamples = 32u; } pushBlock; VkPipelineLayout pipelinelayout; std::vector pushConstantRanges = { vks::initializers::pushConstantRange(VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, sizeof(PushBlock), 0), }; VkPipelineLayoutCreateInfo pipelineLayoutCI = vks::initializers::pipelineLayoutCreateInfo(&descriptorsetlayout, 1); pipelineLayoutCI.pushConstantRangeCount = 1; pipelineLayoutCI.pPushConstantRanges = pushConstantRanges.data(); VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCI, nullptr, &pipelinelayout)); // Pipeline VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE); VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_NONE, VK_FRONT_FACE_COUNTER_CLOCKWISE); VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE); VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState); VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_FALSE, VK_FALSE, VK_COMPARE_OP_LESS_OR_EQUAL); VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1); VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT); std::vector dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR }; VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables); // Vertex input state VkVertexInputBindingDescription vertexInputBinding = vks::initializers::vertexInputBindingDescription(0, vertexLayout.stride(), VK_VERTEX_INPUT_RATE_VERTEX); VkVertexInputAttributeDescription vertexInputAttribute = vks::initializers::vertexInputAttributeDescription(0, 0, VK_FORMAT_R32G32B32_SFLOAT, 0); VkPipelineVertexInputStateCreateInfo vertexInputState = vks::initializers::pipelineVertexInputStateCreateInfo(); vertexInputState.vertexBindingDescriptionCount = 1; vertexInputState.pVertexBindingDescriptions = &vertexInputBinding; vertexInputState.vertexAttributeDescriptionCount = 1; vertexInputState.pVertexAttributeDescriptions = &vertexInputAttribute; std::array shaderStages; VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelinelayout, renderpass); pipelineCI.pInputAssemblyState = &inputAssemblyState; pipelineCI.pRasterizationState = &rasterizationState; pipelineCI.pColorBlendState = &colorBlendState; pipelineCI.pMultisampleState = &multisampleState; pipelineCI.pViewportState = &viewportState; pipelineCI.pDepthStencilState = &depthStencilState; pipelineCI.pDynamicState = &dynamicState; pipelineCI.stageCount = 2; pipelineCI.pStages = shaderStages.data(); pipelineCI.pVertexInputState = &vertexInputState; pipelineCI.renderPass = renderpass; shaderStages[0] = loadShader(getAssetPath() + "shaders/pbribl/filtercube.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getAssetPath() + "shaders/pbribl/prefilterenvmap.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); VkPipeline pipeline; VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipeline)); // Render VkClearValue clearValues[1]; clearValues[0].color = { { 0.0f, 0.0f, 0.2f, 0.0f } }; VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo(); // Reuse render pass from example pass renderPassBeginInfo.renderPass = renderpass; renderPassBeginInfo.framebuffer = offscreen.framebuffer; renderPassBeginInfo.renderArea.extent.width = dim; renderPassBeginInfo.renderArea.extent.height = dim; renderPassBeginInfo.clearValueCount = 1; renderPassBeginInfo.pClearValues = clearValues; std::vector matrices = { // POSITIVE_X glm::rotate(glm::rotate(glm::mat4(1.0f), glm::radians(90.0f), glm::vec3(0.0f, 1.0f, 0.0f)), glm::radians(180.0f), glm::vec3(1.0f, 0.0f, 0.0f)), // NEGATIVE_X glm::rotate(glm::rotate(glm::mat4(1.0f), glm::radians(-90.0f), glm::vec3(0.0f, 1.0f, 0.0f)), glm::radians(180.0f), glm::vec3(1.0f, 0.0f, 0.0f)), // POSITIVE_Y glm::rotate(glm::mat4(1.0f), glm::radians(-90.0f), glm::vec3(1.0f, 0.0f, 0.0f)), // NEGATIVE_Y glm::rotate(glm::mat4(1.0f), glm::radians(90.0f), glm::vec3(1.0f, 0.0f, 0.0f)), // POSITIVE_Z glm::rotate(glm::mat4(1.0f), glm::radians(180.0f), glm::vec3(1.0f, 0.0f, 0.0f)), // NEGATIVE_Z glm::rotate(glm::mat4(1.0f), glm::radians(180.0f), glm::vec3(0.0f, 0.0f, 1.0f)), }; VkCommandBuffer cmdBuf = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true); VkViewport viewport = vks::initializers::viewport((float)dim, (float)dim, 0.0f, 1.0f); VkRect2D scissor = vks::initializers::rect2D(dim, dim, 0, 0); vkCmdSetViewport(cmdBuf, 0, 1, &viewport); vkCmdSetScissor(cmdBuf, 0, 1, &scissor); VkImageSubresourceRange subresourceRange = {}; subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; subresourceRange.baseMipLevel = 0; subresourceRange.levelCount = numMips; subresourceRange.layerCount = 6; // Change image layout for all cubemap faces to transfer destination vks::tools::setImageLayout( cmdBuf, textures.prefilteredCube.image, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, subresourceRange); for (uint32_t m = 0; m < numMips; m++) { pushBlock.roughness = (float)m / (float)(numMips - 1); for (uint32_t f = 0; f < 6; f++) { viewport.width = static_cast(dim * std::pow(0.5f, m)); viewport.height = static_cast(dim * std::pow(0.5f, m)); vkCmdSetViewport(cmdBuf, 0, 1, &viewport); // Render scene from cube face's point of view vkCmdBeginRenderPass(cmdBuf, &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); // Update shader push constant block pushBlock.mvp = glm::perspective((float)(M_PI / 2.0), 1.0f, 0.1f, 512.0f) * matrices[f]; vkCmdPushConstants(cmdBuf, pipelinelayout, VK_SHADER_STAGE_VERTEX_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, 0, sizeof(PushBlock), &pushBlock); vkCmdBindPipeline(cmdBuf, VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline); vkCmdBindDescriptorSets(cmdBuf, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelinelayout, 0, 1, &descriptorset, 0, NULL); VkDeviceSize offsets[1] = { 0 }; vkCmdBindVertexBuffers(cmdBuf, 0, 1, &models.skybox.vertices.buffer, offsets); vkCmdBindIndexBuffer(cmdBuf, models.skybox.indices.buffer, 0, VK_INDEX_TYPE_UINT32); vkCmdDrawIndexed(cmdBuf, models.skybox.indexCount, 1, 0, 0, 0); vkCmdEndRenderPass(cmdBuf); vks::tools::setImageLayout( cmdBuf, offscreen.image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL); // Copy region for transfer from framebuffer to cube face VkImageCopy copyRegion = {}; copyRegion.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; copyRegion.srcSubresource.baseArrayLayer = 0; copyRegion.srcSubresource.mipLevel = 0; copyRegion.srcSubresource.layerCount = 1; copyRegion.srcOffset = { 0, 0, 0 }; copyRegion.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; copyRegion.dstSubresource.baseArrayLayer = f; copyRegion.dstSubresource.mipLevel = m; copyRegion.dstSubresource.layerCount = 1; copyRegion.dstOffset = { 0, 0, 0 }; copyRegion.extent.width = static_cast(viewport.width); copyRegion.extent.height = static_cast(viewport.height); copyRegion.extent.depth = 1; vkCmdCopyImage( cmdBuf, offscreen.image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, textures.prefilteredCube.image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, ©Region); // Transform framebuffer color attachment back vks::tools::setImageLayout( cmdBuf, offscreen.image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL); } } vks::tools::setImageLayout( cmdBuf, textures.prefilteredCube.image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, subresourceRange); vulkanDevice->flushCommandBuffer(cmdBuf, queue); // todo: cleanup vkDestroyRenderPass(device, renderpass, nullptr); vkDestroyFramebuffer(device, offscreen.framebuffer, nullptr); vkFreeMemory(device, offscreen.memory, nullptr); vkDestroyImageView(device, offscreen.view, nullptr); vkDestroyImage(device, offscreen.image, nullptr); vkDestroyDescriptorPool(device, descriptorpool, nullptr); vkDestroyDescriptorSetLayout(device, descriptorsetlayout, nullptr); vkDestroyPipeline(device, pipeline, nullptr); vkDestroyPipelineLayout(device, pipelinelayout, nullptr); auto tEnd = std::chrono::high_resolution_clock::now(); auto tDiff = std::chrono::duration(tEnd - tStart).count(); std::cout << "Generating pre-filtered enivornment cube with " << numMips << " mip levels took " << tDiff << " ms" << std::endl; } // Prepare and initialize uniform buffer containing shader uniforms void prepareUniformBuffers() { // Objact vertex shader uniform buffer VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBuffers.object, sizeof(uboMatrices))); // Skybox vertex shader uniform buffer VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBuffers.skybox, sizeof(uboMatrices))); // Shared parameter uniform buffer VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBuffers.params, sizeof(uboParams))); // Map persistent VK_CHECK_RESULT(uniformBuffers.object.map()); VK_CHECK_RESULT(uniformBuffers.skybox.map()); VK_CHECK_RESULT(uniformBuffers.params.map()); updateUniformBuffers(); updateParams(); } void updateUniformBuffers() { // 3D object uboMatrices.projection = camera.matrices.perspective; uboMatrices.view = camera.matrices.view; uboMatrices.model = glm::rotate(glm::mat4(1.0f), glm::radians(90.0f + (models.objectIndex == 1 ? 45.0f : 0.0f)), glm::vec3(0.0f, 1.0f, 0.0f)); uboMatrices.camPos = camera.position * -1.0f; memcpy(uniformBuffers.object.mapped, &uboMatrices, sizeof(uboMatrices)); // Skybox uboMatrices.model = glm::mat4(glm::mat3(camera.matrices.view)); memcpy(uniformBuffers.skybox.mapped, &uboMatrices, sizeof(uboMatrices)); } void updateParams() { const float p = 15.0f; uboParams.lights[0] = glm::vec4(-p, -p*0.5f, -p, 1.0f); uboParams.lights[1] = glm::vec4(-p, -p*0.5f, p, 1.0f); uboParams.lights[2] = glm::vec4( p, -p*0.5f, p, 1.0f); uboParams.lights[3] = glm::vec4( p, -p*0.5f, -p, 1.0f); memcpy(uniformBuffers.params.mapped, &uboParams, sizeof(uboParams)); } void draw() { VulkanExampleBase::prepareFrame(); submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer]; VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE)); VulkanExampleBase::submitFrame(); } void prepare() { VulkanExampleBase::prepare(); loadAssets(); generateBRDFLUT(); generateIrradianceCube(); generatePrefilteredCube(); prepareUniformBuffers(); setupDescriptors(); preparePipelines(); buildCommandBuffers(); prepared = true; } virtual void render() { if (!prepared) return; draw(); } virtual void viewChanged() { updateUniformBuffers(); } virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay) { if (overlay->header("Settings")) { if (overlay->comboBox("Material", &materialIndex, materialNames)) { buildCommandBuffers(); } if (overlay->comboBox("Object type", &models.objectIndex, objectNames)) { updateUniformBuffers(); buildCommandBuffers(); } if (overlay->inputFloat("Exposure", &uboParams.exposure, 0.1f, 2)) { updateParams(); } if (overlay->inputFloat("Gamma", &uboParams.gamma, 0.1f, 2)) { updateParams(); } if (overlay->checkBox("Skybox", &displaySkybox)) { buildCommandBuffers(); } } } }; VULKAN_EXAMPLE_MAIN()