/* * Vulkan Example - Offscreen rendering using a separate framebuffer * * Copyright (C) Sascha Willems - www.saschawillems.de * * This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT) */ #include #include #include #include #include #define GLM_FORCE_RADIANS #define GLM_FORCE_DEPTH_ZERO_TO_ONE #include #include #include #include "vulkanexamplebase.h" #include "VulkanModel.hpp" #include "VulkanBuffer.hpp" #define ENABLE_VALIDATION false // Offscreen frame buffer properties #define FB_DIM 512 #define FB_COLOR_FORMAT VK_FORMAT_R8G8B8A8_UNORM class VulkanExample : public VulkanExampleBase { public: bool debugDisplay = false; // Vertex layout for the models vks::VertexLayout vertexLayout = vks::VertexLayout({ vks::VERTEX_COMPONENT_POSITION, vks::VERTEX_COMPONENT_UV, vks::VERTEX_COMPONENT_COLOR, vks::VERTEX_COMPONENT_NORMAL, }); struct { vks::Model example; vks::Model quad; vks::Model plane; } models; struct { vks::Buffer vsShared; vks::Buffer vsMirror; vks::Buffer vsOffScreen; vks::Buffer vsDebugQuad; } uniformBuffers; struct UBO { glm::mat4 projection; glm::mat4 view; glm::mat4 model; glm::vec4 lightPos = glm::vec4(0.0f, 0.0f, 0.0f, 1.0f); } uboShared; struct { VkPipeline debug; VkPipeline shaded; VkPipeline shadedOffscreen; VkPipeline mirror; } pipelines; struct { VkPipelineLayout textured; VkPipelineLayout shaded; } pipelineLayouts; struct { VkDescriptorSet offscreen; VkDescriptorSet mirror; VkDescriptorSet model; VkDescriptorSet debugQuad; } descriptorSets; struct { VkDescriptorSetLayout textured; VkDescriptorSetLayout shaded; } descriptorSetLayouts; // Framebuffer for offscreen rendering struct FrameBufferAttachment { VkImage image; VkDeviceMemory mem; VkImageView view; }; struct OffscreenPass { int32_t width, height; VkFramebuffer frameBuffer; FrameBufferAttachment color, depth; VkRenderPass renderPass; VkSampler sampler; VkDescriptorImageInfo descriptor; } offscreenPass; glm::vec3 modelPosition = glm::vec3(0.0f, -1.5f, 0.0f); glm::vec3 modelRotation = glm::vec3(0.0f); VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION) { title = "Offscreen rendering"; timerSpeed *= 0.25f; camera.type = Camera::CameraType::lookat; camera.setPosition(glm::vec3(0.0f, 1.0f, -6.0f)); camera.setRotation(glm::vec3(-2.5f, 0.0f, 0.0f)); camera.setRotationSpeed(0.5f); camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 256.0f); settings.overlay = true; // The scene shader uses a clipping plane, so this feature has to be enabled enabledFeatures.shaderClipDistance = VK_TRUE; } ~VulkanExample() { // Clean up used Vulkan resources // Note : Inherited destructor cleans up resources stored in base class // Frame buffer // Color attachment vkDestroyImageView(device, offscreenPass.color.view, nullptr); vkDestroyImage(device, offscreenPass.color.image, nullptr); vkFreeMemory(device, offscreenPass.color.mem, nullptr); // Depth attachment vkDestroyImageView(device, offscreenPass.depth.view, nullptr); vkDestroyImage(device, offscreenPass.depth.image, nullptr); vkFreeMemory(device, offscreenPass.depth.mem, nullptr); vkDestroyRenderPass(device, offscreenPass.renderPass, nullptr); vkDestroySampler(device, offscreenPass.sampler, nullptr); vkDestroyFramebuffer(device, offscreenPass.frameBuffer, nullptr); vkDestroyPipeline(device, pipelines.debug, nullptr); vkDestroyPipeline(device, pipelines.shaded, nullptr); vkDestroyPipeline(device, pipelines.shadedOffscreen, nullptr); vkDestroyPipeline(device, pipelines.mirror, nullptr); vkDestroyPipelineLayout(device, pipelineLayouts.textured, nullptr); vkDestroyPipelineLayout(device, pipelineLayouts.shaded, nullptr); vkDestroyDescriptorSetLayout(device, descriptorSetLayouts.shaded, nullptr); vkDestroyDescriptorSetLayout(device, descriptorSetLayouts.textured, nullptr); // Models models.example.destroy(); models.quad.destroy(); models.plane.destroy(); // Uniform buffers uniformBuffers.vsShared.destroy(); uniformBuffers.vsMirror.destroy(); uniformBuffers.vsOffScreen.destroy(); uniformBuffers.vsDebugQuad.destroy(); } // Setup the offscreen framebuffer for rendering the mirrored scene // The color attachment of this framebuffer will then be used to sample from in the fragment shader of the final pass void prepareOffscreen() { offscreenPass.width = FB_DIM; offscreenPass.height = FB_DIM; // Find a suitable depth format VkFormat fbDepthFormat; VkBool32 validDepthFormat = vks::tools::getSupportedDepthFormat(physicalDevice, &fbDepthFormat); assert(validDepthFormat); // Color attachment VkImageCreateInfo image = vks::initializers::imageCreateInfo(); image.imageType = VK_IMAGE_TYPE_2D; image.format = FB_COLOR_FORMAT; image.extent.width = offscreenPass.width; image.extent.height = offscreenPass.height; image.extent.depth = 1; image.mipLevels = 1; image.arrayLayers = 1; image.samples = VK_SAMPLE_COUNT_1_BIT; image.tiling = VK_IMAGE_TILING_OPTIMAL; // We will sample directly from the color attachment image.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_SAMPLED_BIT; VkMemoryAllocateInfo memAlloc = vks::initializers::memoryAllocateInfo(); VkMemoryRequirements memReqs; VK_CHECK_RESULT(vkCreateImage(device, &image, nullptr, &offscreenPass.color.image)); vkGetImageMemoryRequirements(device, offscreenPass.color.image, &memReqs); memAlloc.allocationSize = memReqs.size; memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &offscreenPass.color.mem)); VK_CHECK_RESULT(vkBindImageMemory(device, offscreenPass.color.image, offscreenPass.color.mem, 0)); VkImageViewCreateInfo colorImageView = vks::initializers::imageViewCreateInfo(); colorImageView.viewType = VK_IMAGE_VIEW_TYPE_2D; colorImageView.format = FB_COLOR_FORMAT; colorImageView.subresourceRange = {}; colorImageView.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; colorImageView.subresourceRange.baseMipLevel = 0; colorImageView.subresourceRange.levelCount = 1; colorImageView.subresourceRange.baseArrayLayer = 0; colorImageView.subresourceRange.layerCount = 1; colorImageView.image = offscreenPass.color.image; VK_CHECK_RESULT(vkCreateImageView(device, &colorImageView, nullptr, &offscreenPass.color.view)); // Create sampler to sample from the attachment in the fragment shader VkSamplerCreateInfo samplerInfo = vks::initializers::samplerCreateInfo(); samplerInfo.magFilter = VK_FILTER_LINEAR; samplerInfo.minFilter = VK_FILTER_LINEAR; samplerInfo.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR; samplerInfo.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE; samplerInfo.addressModeV = samplerInfo.addressModeU; samplerInfo.addressModeW = samplerInfo.addressModeU; samplerInfo.mipLodBias = 0.0f; samplerInfo.maxAnisotropy = 1.0f; samplerInfo.minLod = 0.0f; samplerInfo.maxLod = 1.0f; samplerInfo.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE; VK_CHECK_RESULT(vkCreateSampler(device, &samplerInfo, nullptr, &offscreenPass.sampler)); // Depth stencil attachment image.format = fbDepthFormat; image.usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT; VK_CHECK_RESULT(vkCreateImage(device, &image, nullptr, &offscreenPass.depth.image)); vkGetImageMemoryRequirements(device, offscreenPass.depth.image, &memReqs); memAlloc.allocationSize = memReqs.size; memAlloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &offscreenPass.depth.mem)); VK_CHECK_RESULT(vkBindImageMemory(device, offscreenPass.depth.image, offscreenPass.depth.mem, 0)); VkImageViewCreateInfo depthStencilView = vks::initializers::imageViewCreateInfo(); depthStencilView.viewType = VK_IMAGE_VIEW_TYPE_2D; depthStencilView.format = fbDepthFormat; depthStencilView.flags = 0; depthStencilView.subresourceRange = {}; depthStencilView.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT; depthStencilView.subresourceRange.baseMipLevel = 0; depthStencilView.subresourceRange.levelCount = 1; depthStencilView.subresourceRange.baseArrayLayer = 0; depthStencilView.subresourceRange.layerCount = 1; depthStencilView.image = offscreenPass.depth.image; VK_CHECK_RESULT(vkCreateImageView(device, &depthStencilView, nullptr, &offscreenPass.depth.view)); // Create a separate render pass for the offscreen rendering as it may differ from the one used for scene rendering std::array attchmentDescriptions = {}; // Color attachment attchmentDescriptions[0].format = FB_COLOR_FORMAT; attchmentDescriptions[0].samples = VK_SAMPLE_COUNT_1_BIT; attchmentDescriptions[0].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; attchmentDescriptions[0].storeOp = VK_ATTACHMENT_STORE_OP_STORE; attchmentDescriptions[0].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; attchmentDescriptions[0].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; attchmentDescriptions[0].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; attchmentDescriptions[0].finalLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; // Depth attachment attchmentDescriptions[1].format = fbDepthFormat; attchmentDescriptions[1].samples = VK_SAMPLE_COUNT_1_BIT; attchmentDescriptions[1].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; attchmentDescriptions[1].storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; attchmentDescriptions[1].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; attchmentDescriptions[1].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; attchmentDescriptions[1].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; attchmentDescriptions[1].finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; VkAttachmentReference colorReference = { 0, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL }; VkAttachmentReference depthReference = { 1, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL }; VkSubpassDescription subpassDescription = {}; subpassDescription.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS; subpassDescription.colorAttachmentCount = 1; subpassDescription.pColorAttachments = &colorReference; subpassDescription.pDepthStencilAttachment = &depthReference; // Use subpass dependencies for layout transitions std::array dependencies; dependencies[0].srcSubpass = VK_SUBPASS_EXTERNAL; dependencies[0].dstSubpass = 0; dependencies[0].srcStageMask = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT; dependencies[0].dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; dependencies[0].srcAccessMask = VK_ACCESS_SHADER_READ_BIT; dependencies[0].dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; dependencies[0].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT; dependencies[1].srcSubpass = 0; dependencies[1].dstSubpass = VK_SUBPASS_EXTERNAL; dependencies[1].srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; dependencies[1].dstStageMask = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT; dependencies[1].srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; dependencies[1].dstAccessMask = VK_ACCESS_SHADER_READ_BIT; dependencies[1].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT; // Create the actual renderpass VkRenderPassCreateInfo renderPassInfo = {}; renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO; renderPassInfo.attachmentCount = static_cast(attchmentDescriptions.size()); renderPassInfo.pAttachments = attchmentDescriptions.data(); renderPassInfo.subpassCount = 1; renderPassInfo.pSubpasses = &subpassDescription; renderPassInfo.dependencyCount = static_cast(dependencies.size()); renderPassInfo.pDependencies = dependencies.data(); VK_CHECK_RESULT(vkCreateRenderPass(device, &renderPassInfo, nullptr, &offscreenPass.renderPass)); VkImageView attachments[2]; attachments[0] = offscreenPass.color.view; attachments[1] = offscreenPass.depth.view; VkFramebufferCreateInfo fbufCreateInfo = vks::initializers::framebufferCreateInfo(); fbufCreateInfo.renderPass = offscreenPass.renderPass; fbufCreateInfo.attachmentCount = 2; fbufCreateInfo.pAttachments = attachments; fbufCreateInfo.width = offscreenPass.width; fbufCreateInfo.height = offscreenPass.height; fbufCreateInfo.layers = 1; VK_CHECK_RESULT(vkCreateFramebuffer(device, &fbufCreateInfo, nullptr, &offscreenPass.frameBuffer)); // Fill a descriptor for later use in a descriptor set offscreenPass.descriptor.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; offscreenPass.descriptor.imageView = offscreenPass.color.view; offscreenPass.descriptor.sampler = offscreenPass.sampler; } void buildCommandBuffers() { VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo(); VkClearValue clearValues[2]; VkViewport viewport; VkRect2D scissor; VkDeviceSize offsets[1] = { 0 }; for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) { VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo)); /* First render pass: Offscreen rendering */ { VkClearValue clearValues[2]; clearValues[0].color = { { 0.0f, 0.0f, 0.0f, 0.0f } }; clearValues[1].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo(); renderPassBeginInfo.renderPass = offscreenPass.renderPass; renderPassBeginInfo.framebuffer = offscreenPass.frameBuffer; renderPassBeginInfo.renderArea.extent.width = offscreenPass.width; renderPassBeginInfo.renderArea.extent.height = offscreenPass.height; renderPassBeginInfo.clearValueCount = 2; renderPassBeginInfo.pClearValues = clearValues; vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); VkViewport viewport = vks::initializers::viewport((float)offscreenPass.width, (float)offscreenPass.height, 0.0f, 1.0f); vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); VkRect2D scissor = vks::initializers::rect2D(offscreenPass.width, offscreenPass.height, 0, 0); vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor); VkDeviceSize offsets[1] = { 0 }; // Mirrored scene vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.shaded, 0, 1, &descriptorSets.offscreen, 0, NULL); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.shadedOffscreen); vkCmdBindVertexBuffers(drawCmdBuffers[i], 0, 1, &models.example.vertices.buffer, offsets); vkCmdBindIndexBuffer(drawCmdBuffers[i], models.example.indices.buffer, 0, VK_INDEX_TYPE_UINT32); vkCmdDrawIndexed(drawCmdBuffers[i], models.example.indexCount, 1, 0, 0, 0); vkCmdEndRenderPass(drawCmdBuffers[i]); } /* Note: Explicit synchronization is not required between the render pass, as this is done implicit via sub pass dependencies */ /* Second render pass: Scene rendering with applied radial blur */ { clearValues[0].color = defaultClearColor; clearValues[1].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo(); renderPassBeginInfo.renderPass = renderPass; renderPassBeginInfo.framebuffer = frameBuffers[i]; renderPassBeginInfo.renderArea.extent.width = width; renderPassBeginInfo.renderArea.extent.height = height; renderPassBeginInfo.clearValueCount = 2; renderPassBeginInfo.pClearValues = clearValues; vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f); vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0); vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor); VkDeviceSize offsets[1] = { 0 }; if (debugDisplay) { vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.textured, 0, 1, &descriptorSets.debugQuad, 0, NULL); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.debug); vkCmdBindVertexBuffers(drawCmdBuffers[i], 0, 1, &models.quad.vertices.buffer, offsets); vkCmdBindIndexBuffer(drawCmdBuffers[i], models.quad.indices.buffer, 0, VK_INDEX_TYPE_UINT32); vkCmdDrawIndexed(drawCmdBuffers[i], models.quad.indexCount, 1, 0, 0, 0); } // Scene // Reflection plane vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.textured, 0, 1, &descriptorSets.mirror, 0, NULL); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.mirror); vkCmdBindVertexBuffers(drawCmdBuffers[i], 0, 1, &models.plane.vertices.buffer, offsets); vkCmdBindIndexBuffer(drawCmdBuffers[i], models.plane.indices.buffer, 0, VK_INDEX_TYPE_UINT32); vkCmdDrawIndexed(drawCmdBuffers[i], models.plane.indexCount, 1, 0, 0, 0); // Model vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.shaded, 0, 1, &descriptorSets.model, 0, NULL); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.shaded); vkCmdBindVertexBuffers(drawCmdBuffers[i], 0, 1, &models.example.vertices.buffer, offsets); vkCmdBindIndexBuffer(drawCmdBuffers[i], models.example.indices.buffer, 0, VK_INDEX_TYPE_UINT32); vkCmdDrawIndexed(drawCmdBuffers[i], models.example.indexCount, 1, 0, 0, 0); drawUI(drawCmdBuffers[i]); vkCmdEndRenderPass(drawCmdBuffers[i]); } VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i])); } } void loadAssets() { models.plane.loadFromFile(getAssetPath() + "models/plane.obj", vertexLayout, 0.5f, vulkanDevice, queue); models.example.loadFromFile(getAssetPath() + "models/chinesedragon.dae", vertexLayout, 0.3f, vulkanDevice, queue); } void generateQuad() { // Setup vertices for a single uv-mapped quad struct Vertex { float pos[3]; float uv[2]; float col[3]; float normal[3]; }; #define QUAD_COLOR_NORMAL { 1.0f, 1.0f, 1.0f }, { 0.0f, 0.0f, 1.0f } std::vector vertexBuffer = { { { 1.0f, 1.0f, 0.0f },{ 1.0f, 1.0f }, QUAD_COLOR_NORMAL }, { { 0.0f, 1.0f, 0.0f },{ 0.0f, 1.0f }, QUAD_COLOR_NORMAL }, { { 0.0f, 0.0f, 0.0f },{ 0.0f, 0.0f }, QUAD_COLOR_NORMAL }, { { 1.0f, 0.0f, 0.0f },{ 1.0f, 0.0f }, QUAD_COLOR_NORMAL } }; #undef QUAD_COLOR_NORMAL VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_VERTEX_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, vertexBuffer.size() * sizeof(Vertex), &models.quad.vertices.buffer, &models.quad.vertices.memory, vertexBuffer.data())); // Setup indices std::vector indexBuffer = { 0,1,2, 2,3,0 }; models.quad.indexCount = indexBuffer.size(); VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_INDEX_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, indexBuffer.size() * sizeof(uint32_t), &models.quad.indices.buffer, &models.quad.indices.memory, indexBuffer.data())); models.quad.device = device; } void setupDescriptorPool() { std::vector poolSizes = { vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 6), vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 8) }; VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo( poolSizes.size(), poolSizes.data(), 5); VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool)); } void setupDescriptorSetLayout() { std::vector setLayoutBindings; VkDescriptorSetLayoutCreateInfo descriptorLayoutInfo; VkPipelineLayoutCreateInfo pipelineLayoutInfo; // Binding 0 : Vertex shader uniform buffer setLayoutBindings.push_back(vks::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0)); // Binding 1 : Fragment shader image sampler setLayoutBindings.push_back(vks::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1)); // Binding 2 : Fragment shader image sampler setLayoutBindings.push_back(vks::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 2)); // Shaded layouts (only use first layout binding) descriptorLayoutInfo = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings.data(), 1); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayoutInfo, nullptr, &descriptorSetLayouts.shaded)); pipelineLayoutInfo = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayouts.shaded, 1); VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutInfo, nullptr, &pipelineLayouts.shaded)); // Textured layouts (use all layout bindings) descriptorLayoutInfo = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings.data(), static_cast(setLayoutBindings.size())); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayoutInfo, nullptr, &descriptorSetLayouts.textured)); pipelineLayoutInfo = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayouts.textured, 1); VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutInfo, nullptr, &pipelineLayouts.textured)); } void setupDescriptorSet() { // Mirror plane descriptor set VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo( descriptorPool, &descriptorSetLayouts.textured, 1); VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.mirror)); std::vector writeDescriptorSets = { // Binding 0 : Vertex shader uniform buffer vks::initializers::writeDescriptorSet( descriptorSets.mirror, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.vsMirror.descriptor), // Binding 1 : Fragment shader texture sampler vks::initializers::writeDescriptorSet( descriptorSets.mirror, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &offscreenPass.descriptor), }; vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL); // Debug quad VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.debugQuad)); std::vector debugQuadWriteDescriptorSets = { // Binding 0 : Vertex shader uniform buffer vks::initializers::writeDescriptorSet( descriptorSets.debugQuad, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.vsDebugQuad.descriptor), // Binding 1 : Fragment shader texture sampler vks::initializers::writeDescriptorSet( descriptorSets.debugQuad, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &offscreenPass.descriptor) }; vkUpdateDescriptorSets(device, debugQuadWriteDescriptorSets.size(), debugQuadWriteDescriptorSets.data(), 0, NULL); // Shaded descriptor sets allocInfo.pSetLayouts = &descriptorSetLayouts.shaded; // Model VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.model)); std::vector modelWriteDescriptorSets = { // Binding 0 : Vertex shader uniform buffer vks::initializers::writeDescriptorSet( descriptorSets.model, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.vsShared.descriptor) }; vkUpdateDescriptorSets(device, modelWriteDescriptorSets.size(), modelWriteDescriptorSets.data(), 0, NULL); // Offscreen VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.offscreen)); std::vector offScreenWriteDescriptorSets = { // Binding 0 : Vertex shader uniform buffer vks::initializers::writeDescriptorSet( descriptorSets.offscreen, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.vsOffScreen.descriptor) }; vkUpdateDescriptorSets(device, offScreenWriteDescriptorSets.size(), offScreenWriteDescriptorSets.data(), 0, NULL); } void preparePipelines() { VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo( VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE); VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo( VK_POLYGON_MODE_FILL, VK_CULL_MODE_FRONT_BIT, VK_FRONT_FACE_CLOCKWISE, 0); VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState( 0xf, VK_FALSE); VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo( 1, &blendAttachmentState); VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo( VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL); VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0); VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo( VK_SAMPLE_COUNT_1_BIT, 0); std::vector dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR }; VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo( dynamicStateEnables.data(), dynamicStateEnables.size(), 0); // Solid rendering pipeline // Load shaders std::array shaderStages; shaderStages[0] = loadShader(getShadersPath() + "offscreen/quad.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getShadersPath() + "offscreen/quad.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); // Vertex bindings and attributes const std::vector vertexInputBindings = { vks::initializers::vertexInputBindingDescription(0, vertexLayout.stride(), VK_VERTEX_INPUT_RATE_VERTEX), }; const std::vector vertexInputAttributes = { vks::initializers::vertexInputAttributeDescription(0, 0, VK_FORMAT_R32G32B32_SFLOAT, 0), // Location 0: Position vks::initializers::vertexInputAttributeDescription(0, 1, VK_FORMAT_R32G32_SFLOAT, sizeof(float) * 3), // Location 1: UV vks::initializers::vertexInputAttributeDescription(0, 2, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 5), // Location 2: Color vks::initializers::vertexInputAttributeDescription(0, 3, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 8), // Location 3: Normal }; VkPipelineVertexInputStateCreateInfo vertexInputState = vks::initializers::pipelineVertexInputStateCreateInfo(); vertexInputState.vertexBindingDescriptionCount = static_cast(vertexInputBindings.size()); vertexInputState.pVertexBindingDescriptions = vertexInputBindings.data(); vertexInputState.vertexAttributeDescriptionCount = static_cast(vertexInputAttributes.size()); vertexInputState.pVertexAttributeDescriptions = vertexInputAttributes.data(); VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelineLayouts.textured, renderPass, 0); pipelineCI.pVertexInputState = &vertexInputState; pipelineCI.pInputAssemblyState = &inputAssemblyState; pipelineCI.pRasterizationState = &rasterizationState; pipelineCI.pColorBlendState = &colorBlendState; pipelineCI.pMultisampleState = &multisampleState; pipelineCI.pViewportState = &viewportState; pipelineCI.pDepthStencilState = &depthStencilState; pipelineCI.pDynamicState = &dynamicState; pipelineCI.stageCount = shaderStages.size(); pipelineCI.pStages = shaderStages.data(); VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.debug)); // Mirror shaderStages[0] = loadShader(getShadersPath() + "offscreen/mirror.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getShadersPath() + "offscreen/mirror.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); rasterizationState.cullMode = VK_CULL_MODE_NONE; VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.mirror)); // Flip culling rasterizationState.cullMode = VK_CULL_MODE_BACK_BIT; // Phong shading pipelines pipelineCI.layout = pipelineLayouts.shaded; // Scene shaderStages[0] = loadShader(getShadersPath() + "offscreen/phong.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getShadersPath() + "offscreen/phong.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.shaded)); // Offscreen // Flip culling rasterizationState.cullMode = VK_CULL_MODE_FRONT_BIT; pipelineCI.renderPass = offscreenPass.renderPass; VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.shadedOffscreen)); } // Prepare and initialize uniform buffer containing shader uniforms void prepareUniformBuffers() { // Mesh vertex shader uniform buffer block VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBuffers.vsShared, sizeof(uboShared))); // Mirror plane vertex shader uniform buffer block VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBuffers.vsMirror, sizeof(uboShared))); // Offscreen vertex shader uniform buffer block VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBuffers.vsOffScreen, sizeof(uboShared))); // Debug quad vertex shader uniform buffer block VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBuffers.vsDebugQuad, sizeof(uboShared))); // Map persistent VK_CHECK_RESULT(uniformBuffers.vsShared.map()); VK_CHECK_RESULT(uniformBuffers.vsMirror.map()); VK_CHECK_RESULT(uniformBuffers.vsOffScreen.map()); VK_CHECK_RESULT(uniformBuffers.vsDebugQuad.map()); updateUniformBuffers(); updateUniformBufferOffscreen(); } void updateUniformBuffers() { uboShared.projection = camera.matrices.perspective; uboShared.view = camera.matrices.view; // Model uboShared.model = glm::mat4(1.0f); uboShared.model = glm::rotate(uboShared.model, glm::radians(modelRotation.y), glm::vec3(0.0f, 1.0f, 0.0f)); uboShared.model = glm::translate(uboShared.model, modelPosition); memcpy(uniformBuffers.vsShared.mapped, &uboShared, sizeof(uboShared)); // Mirror uboShared.model = glm::mat4(1.0f); memcpy(uniformBuffers.vsMirror.mapped, &uboShared, sizeof(uboShared)); // Debug quad // @todo: Full screen triangle in VS uboShared.projection = glm::ortho(4.0f, 0.0f, 0.0f, 4.0f*(float)height / (float)width, -1.0f, 1.0f); uboShared.model = glm::translate(glm::mat4(1.0f), glm::vec3(0.0f, 0.0f, 0.0f)); memcpy(uniformBuffers.vsDebugQuad.mapped, &uboShared, sizeof(uboShared)); } void updateUniformBufferOffscreen() { uboShared.projection = camera.matrices.perspective; uboShared.view = camera.matrices.view; uboShared.model = glm::mat4(1.0f); uboShared.model = glm::rotate(uboShared.model, glm::radians(modelRotation.y), glm::vec3(0.0f, 1.0f, 0.0f)); uboShared.model = glm::scale(uboShared.model, glm::vec3(1.0f, -1.0f, 1.0f)); uboShared.model = glm::translate(uboShared.model, modelPosition); memcpy(uniformBuffers.vsOffScreen.mapped, &uboShared, sizeof(uboShared)); } void draw() { VulkanExampleBase::prepareFrame(); // Command buffer to be sumitted to the queue submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer]; // Submit to queue VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE)); VulkanExampleBase::submitFrame(); } void prepare() { VulkanExampleBase::prepare(); loadAssets(); generateQuad(); prepareOffscreen(); prepareUniformBuffers(); setupDescriptorSetLayout(); preparePipelines(); setupDescriptorPool(); setupDescriptorSet(); buildCommandBuffers(); prepared = true; } virtual void render() { if (!prepared) return; draw(); if (!paused) { modelRotation.y += frameTimer * 10.0f; updateUniformBuffers(); updateUniformBufferOffscreen(); } } virtual void viewChanged() { updateUniformBuffers(); updateUniformBufferOffscreen(); } virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay) { if (overlay->header("Settings")) { if (overlay->checkBox("Display render target", &debugDisplay)) { buildCommandBuffers(); } } } }; VULKAN_EXAMPLE_MAIN()