/* * Vulkan Example - Compute shader N-body simulation using two passes and shared compute shader memory * * Copyright (C) 2016 by Sascha Willems - www.saschawillems.de * * This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT) */ #include #include #include #include #include #include #define GLM_FORCE_RADIANS #define GLM_FORCE_DEPTH_ZERO_TO_ONE #include #include #include #include "vulkanexamplebase.h" #include "VulkanTexture.hpp" #define VERTEX_BUFFER_BIND_ID 0 #define ENABLE_VALIDATION false #if defined(__ANDROID__) // Lower particle count on Android for performance reasons #define PARTICLES_PER_ATTRACTOR 3 * 1024 #else #define PARTICLES_PER_ATTRACTOR 4 * 1024 #endif class VulkanExample : public VulkanExampleBase { public: uint32_t numParticles; struct { vks::Texture2D particle; vks::Texture2D gradient; } textures; struct { VkPipelineVertexInputStateCreateInfo inputState; std::vector bindingDescriptions; std::vector attributeDescriptions; } vertices; // Resources for the graphics part of the example struct { vks::Buffer uniformBuffer; // Contains scene matrices VkDescriptorSetLayout descriptorSetLayout; // Particle system rendering shader binding layout VkDescriptorSet descriptorSet; // Particle system rendering shader bindings VkPipelineLayout pipelineLayout; // Layout of the graphics pipeline VkPipeline pipeline; // Particle rendering pipeline struct { glm::mat4 projection; glm::mat4 view; glm::vec2 screenDim; } ubo; } graphics; // Resources for the compute part of the example struct { vks::Buffer storageBuffer; // (Shader) storage buffer object containing the particles vks::Buffer uniformBuffer; // Uniform buffer object containing particle system parameters VkQueue queue; // Separate queue for compute commands (queue family may differ from the one used for graphics) VkCommandPool commandPool; // Use a separate command pool (queue family may differ from the one used for graphics) VkCommandBuffer commandBuffer; // Command buffer storing the dispatch commands and barriers VkFence fence; // Synchronization fence to avoid rewriting compute CB if still in use VkDescriptorSetLayout descriptorSetLayout; // Compute shader binding layout VkDescriptorSet descriptorSet; // Compute shader bindings VkPipelineLayout pipelineLayout; // Layout of the compute pipeline VkPipeline pipelineCalculate; // Compute pipeline for N-Body velocity calculation (1st pass) VkPipeline pipelineIntegrate; // Compute pipeline for euler integration (2nd pass) VkPipeline blur; VkPipelineLayout pipelineLayoutBlur; VkDescriptorSetLayout descriptorSetLayoutBlur; VkDescriptorSet descriptorSetBlur; struct computeUBO { // Compute shader uniform block object float deltaT; // Frame delta time float destX; // x position of the attractor float destY; // y position of the attractor int32_t particleCount; } ubo; } compute; // SSBO particle declaration struct Particle { glm::vec4 pos; // xyz = position, w = mass glm::vec4 vel; // xyz = velocity, w = gradient texture position }; VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION) { title = "Compute shader N-body system"; settings.overlay = true; camera.type = Camera::CameraType::lookat; camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 512.0f); camera.setRotation(glm::vec3(-26.0f, 75.0f, 0.0f)); camera.setTranslation(glm::vec3(0.0f, 0.0f, -14.0f)); camera.movementSpeed = 2.5f; } ~VulkanExample() { // Graphics graphics.uniformBuffer.destroy(); vkDestroyPipeline(device, graphics.pipeline, nullptr); vkDestroyPipelineLayout(device, graphics.pipelineLayout, nullptr); vkDestroyDescriptorSetLayout(device, graphics.descriptorSetLayout, nullptr); // Compute compute.storageBuffer.destroy(); compute.uniformBuffer.destroy(); vkDestroyPipelineLayout(device, compute.pipelineLayout, nullptr); vkDestroyDescriptorSetLayout(device, compute.descriptorSetLayout, nullptr); vkDestroyPipeline(device, compute.pipelineCalculate, nullptr); vkDestroyPipeline(device, compute.pipelineIntegrate, nullptr); vkDestroyFence(device, compute.fence, nullptr); vkDestroyCommandPool(device, compute.commandPool, nullptr); textures.particle.destroy(); textures.gradient.destroy(); } void loadAssets() { textures.particle.loadFromFile(getAssetPath() + "textures/particle01_rgba.ktx", VK_FORMAT_R8G8B8A8_UNORM, vulkanDevice, queue); textures.gradient.loadFromFile(getAssetPath() + "textures/particle_gradient_rgba.ktx", VK_FORMAT_R8G8B8A8_UNORM, vulkanDevice, queue); } void buildCommandBuffers() { // Destroy command buffers if already present if (!checkCommandBuffers()) { destroyCommandBuffers(); createCommandBuffers(); } VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo(); VkClearValue clearValues[2]; clearValues[0].color = { {0.0f, 0.0f, 0.0f, 1.0f} }; clearValues[1].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo(); renderPassBeginInfo.renderPass = renderPass; renderPassBeginInfo.renderArea.offset.x = 0; renderPassBeginInfo.renderArea.offset.y = 0; renderPassBeginInfo.renderArea.extent.width = width; renderPassBeginInfo.renderArea.extent.height = height; renderPassBeginInfo.clearValueCount = 2; renderPassBeginInfo.pClearValues = clearValues; for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) { // Set target frame buffer renderPassBeginInfo.framebuffer = frameBuffers[i]; VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo)); // Draw the particle system using the update vertex buffer vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f); vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0); vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, graphics.pipeline); vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, graphics.pipelineLayout, 0, 1, &graphics.descriptorSet, 0, NULL); VkDeviceSize offsets[1] = { 0 }; vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &compute.storageBuffer.buffer, offsets); vkCmdDraw(drawCmdBuffers[i], numParticles, 1, 0, 0); vkCmdEndRenderPass(drawCmdBuffers[i]); VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i])); } } void buildComputeCommandBuffer() { VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo(); VK_CHECK_RESULT(vkBeginCommandBuffer(compute.commandBuffer, &cmdBufInfo)); // Compute particle movement // Add memory barrier to ensure that the (graphics) vertex shader has fetched attributes before compute starts to write to the buffer VkBufferMemoryBarrier bufferBarrier = vks::initializers::bufferMemoryBarrier(); bufferBarrier.buffer = compute.storageBuffer.buffer; bufferBarrier.size = compute.storageBuffer.descriptor.range; bufferBarrier.srcAccessMask = VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT; // Vertex shader invocations have finished reading from the buffer bufferBarrier.dstAccessMask = VK_ACCESS_SHADER_WRITE_BIT; // Compute shader wants to write to the buffer // Transfer ownership if compute and graphics queue familiy indices differ bufferBarrier.srcQueueFamilyIndex = vulkanDevice->queueFamilyIndices.graphics; bufferBarrier.dstQueueFamilyIndex = vulkanDevice->queueFamilyIndices.compute; vkCmdPipelineBarrier( compute.commandBuffer, VK_PIPELINE_STAGE_VERTEX_SHADER_BIT, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, VK_FLAGS_NONE, 0, nullptr, 1, &bufferBarrier, 0, nullptr); vkCmdBindPipeline(compute.commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, compute.pipelineCalculate); vkCmdBindDescriptorSets(compute.commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, compute.pipelineLayout, 0, 1, &compute.descriptorSet, 0, 0); // First pass: Calculate particle movement // ------------------------------------------------------------------------------------------------------- vkCmdDispatch(compute.commandBuffer, numParticles / 256, 1, 1); // Add memory barrier to ensure that compute shader has finished writing to the buffer bufferBarrier.srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT; // Compute shader has finished writes to the buffer bufferBarrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT; bufferBarrier.buffer = compute.storageBuffer.buffer; bufferBarrier.size = compute.storageBuffer.descriptor.range; // No ownership transfer necessary bufferBarrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; bufferBarrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; vkCmdPipelineBarrier( compute.commandBuffer, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, VK_FLAGS_NONE, 0, nullptr, 1, &bufferBarrier, 0, nullptr); // Second pass: Integrate particles // ------------------------------------------------------------------------------------------------------- vkCmdBindPipeline(compute.commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, compute.pipelineIntegrate); vkCmdDispatch(compute.commandBuffer, numParticles / 256, 1, 1); // Add memory barrier to ensure that compute shader has finished writing to the buffer // Without this the (rendering) vertex shader may display incomplete results (partial data from last frame) bufferBarrier.srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT; // Compute shader has finished writes to the buffer bufferBarrier.dstAccessMask = VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT; // Vertex shader invocations want to read from the buffer bufferBarrier.buffer = compute.storageBuffer.buffer; bufferBarrier.size = compute.storageBuffer.descriptor.range; // Transfer ownership if compute and graphics queue familiy indices differ bufferBarrier.srcQueueFamilyIndex = vulkanDevice->queueFamilyIndices.compute; bufferBarrier.dstQueueFamilyIndex = vulkanDevice->queueFamilyIndices.graphics; vkCmdPipelineBarrier( compute.commandBuffer, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, VK_PIPELINE_STAGE_VERTEX_SHADER_BIT, VK_FLAGS_NONE, 0, nullptr, 1, &bufferBarrier, 0, nullptr); vkEndCommandBuffer(compute.commandBuffer); } // Setup and fill the compute shader storage buffers containing the particles void prepareStorageBuffers() { #if 0 std::vector attractors = { glm::vec3(2.5f, 1.5f, 0.0f), glm::vec3(-2.5f, -1.5f, 0.0f), }; #else std::vector attractors = { glm::vec3(5.0f, 0.0f, 0.0f), glm::vec3(-5.0f, 0.0f, 0.0f), glm::vec3(0.0f, 0.0f, 5.0f), glm::vec3(0.0f, 0.0f, -5.0f), glm::vec3(0.0f, 4.0f, 0.0f), glm::vec3(0.0f, -8.0f, 0.0f), }; #endif numParticles = static_cast(attractors.size()) * PARTICLES_PER_ATTRACTOR; // Initial particle positions std::vector particleBuffer(numParticles); std::mt19937 rndGen(static_cast(time(0))); std::normal_distribution rndDist(0.0f, 1.0f); for (uint32_t i = 0; i < static_cast(attractors.size()); i++) { for (uint32_t j = 0; j < PARTICLES_PER_ATTRACTOR; j++) { Particle &particle = particleBuffer[i * PARTICLES_PER_ATTRACTOR + j]; // First particle in group as heavy center of gravity if (j == 0) { particle.pos = glm::vec4(attractors[i] * 1.5f, 90000.0f); particle.vel = glm::vec4(glm::vec4(0.0f)); } else { // Position glm::vec3 position(attractors[i] + glm::vec3(rndDist(rndGen), rndDist(rndGen), rndDist(rndGen)) * 0.75f); float len = glm::length(glm::normalize(position - attractors[i])); position.y *= 2.0f - (len * len); // Velocity glm::vec3 angular = glm::vec3(0.5f, 1.5f, 0.5f) * (((i % 2) == 0) ? 1.0f : -1.0f); glm::vec3 velocity = glm::cross((position - attractors[i]), angular) + glm::vec3(rndDist(rndGen), rndDist(rndGen), rndDist(rndGen) * 0.025f); float mass = (rndDist(rndGen) * 0.5f + 0.5f) * 75.0f; particle.pos = glm::vec4(position, mass); particle.vel = glm::vec4(velocity, 0.0f); } // Color gradient offset particle.vel.w = (float)i * 1.0f / static_cast(attractors.size()); } } compute.ubo.particleCount = numParticles; VkDeviceSize storageBufferSize = particleBuffer.size() * sizeof(Particle); // Staging // SSBO won't be changed on the host after upload so copy to device local memory vks::Buffer stagingBuffer; vulkanDevice->createBuffer( VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &stagingBuffer, storageBufferSize, particleBuffer.data()); vulkanDevice->createBuffer( // The SSBO will be used as a storage buffer for the compute pipeline and as a vertex buffer in the graphics pipeline VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &compute.storageBuffer, storageBufferSize); // Copy to staging buffer VkCommandBuffer copyCmd = VulkanExampleBase::createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true); VkBufferCopy copyRegion = {}; copyRegion.size = storageBufferSize; vkCmdCopyBuffer(copyCmd, stagingBuffer.buffer, compute.storageBuffer.buffer, 1, ©Region); VulkanExampleBase::flushCommandBuffer(copyCmd, queue, true); stagingBuffer.destroy(); // Binding description vertices.bindingDescriptions.resize(1); vertices.bindingDescriptions[0] = vks::initializers::vertexInputBindingDescription( VERTEX_BUFFER_BIND_ID, sizeof(Particle), VK_VERTEX_INPUT_RATE_VERTEX); // Attribute descriptions // Describes memory layout and shader positions vertices.attributeDescriptions.resize(2); // Location 0 : Position vertices.attributeDescriptions[0] = vks::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 0, VK_FORMAT_R32G32B32A32_SFLOAT, offsetof(Particle, pos)); // Location 1 : Velocity (used for gradient lookup) vertices.attributeDescriptions[1] = vks::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 1, VK_FORMAT_R32G32B32A32_SFLOAT, offsetof(Particle, vel)); // Assign to vertex buffer vertices.inputState = vks::initializers::pipelineVertexInputStateCreateInfo(); vertices.inputState.vertexBindingDescriptionCount = static_cast(vertices.bindingDescriptions.size()); vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data(); vertices.inputState.vertexAttributeDescriptionCount = static_cast(vertices.attributeDescriptions.size()); vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data(); } void setupDescriptorPool() { std::vector poolSizes = { vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2), vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1), vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2) }; VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo( static_cast(poolSizes.size()), poolSizes.data(), 2); VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool)); } void setupDescriptorSetLayout() { std::vector setLayoutBindings; setLayoutBindings = { vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 0), vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1), vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 2), }; VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo( setLayoutBindings.data(), static_cast(setLayoutBindings.size())); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &graphics.descriptorSetLayout)); VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo( &graphics.descriptorSetLayout, 1); VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &graphics.pipelineLayout)); } void setupDescriptorSet() { VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo( descriptorPool, &graphics.descriptorSetLayout, 1); VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &graphics.descriptorSet)); std::vector writeDescriptorSets; writeDescriptorSets = { vks::initializers::writeDescriptorSet(graphics.descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 0, &textures.particle.descriptor), vks::initializers::writeDescriptorSet(graphics.descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &textures.gradient.descriptor), vks::initializers::writeDescriptorSet(graphics.descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2, &graphics.uniformBuffer.descriptor), }; vkUpdateDescriptorSets(device, static_cast(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL); } void preparePipelines() { VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo( VK_PRIMITIVE_TOPOLOGY_POINT_LIST, 0, VK_FALSE); VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo( VK_POLYGON_MODE_FILL, VK_CULL_MODE_NONE, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0); VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState( 0xf, VK_FALSE); VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo( 1, &blendAttachmentState); VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo( VK_FALSE, VK_FALSE, VK_COMPARE_OP_ALWAYS); VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0); VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo( VK_SAMPLE_COUNT_1_BIT, 0); std::vector dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR }; VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo( dynamicStateEnables.data(), static_cast(dynamicStateEnables.size()), 0); // Rendering pipeline // Load shaders std::array shaderStages; shaderStages[0] = loadShader(getAssetPath() + "shaders/computenbody/particle.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getAssetPath() + "shaders/computenbody/particle.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); VkGraphicsPipelineCreateInfo pipelineCreateInfo = vks::initializers::pipelineCreateInfo( graphics.pipelineLayout, renderPass, 0); pipelineCreateInfo.pVertexInputState = &vertices.inputState; pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState; pipelineCreateInfo.pRasterizationState = &rasterizationState; pipelineCreateInfo.pColorBlendState = &colorBlendState; pipelineCreateInfo.pMultisampleState = &multisampleState; pipelineCreateInfo.pViewportState = &viewportState; pipelineCreateInfo.pDepthStencilState = &depthStencilState; pipelineCreateInfo.pDynamicState = &dynamicState; pipelineCreateInfo.stageCount = static_cast(shaderStages.size()); pipelineCreateInfo.pStages = shaderStages.data(); pipelineCreateInfo.renderPass = renderPass; // Additive blending blendAttachmentState.colorWriteMask = 0xF; blendAttachmentState.blendEnable = VK_TRUE; blendAttachmentState.colorBlendOp = VK_BLEND_OP_ADD; blendAttachmentState.srcColorBlendFactor = VK_BLEND_FACTOR_ONE; blendAttachmentState.dstColorBlendFactor = VK_BLEND_FACTOR_ONE; blendAttachmentState.alphaBlendOp = VK_BLEND_OP_ADD; blendAttachmentState.srcAlphaBlendFactor = VK_BLEND_FACTOR_SRC_ALPHA; blendAttachmentState.dstAlphaBlendFactor = VK_BLEND_FACTOR_DST_ALPHA; VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &graphics.pipeline)); } void prepareCompute() { // Create a compute capable device queue // The VulkanDevice::createLogicalDevice functions finds a compute capable queue and prefers queue families that only support compute // Depending on the implementation this may result in different queue family indices for graphics and computes, // requiring proper synchronization (see the memory barriers in buildComputeCommandBuffer) VkDeviceQueueCreateInfo queueCreateInfo = {}; queueCreateInfo.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO; queueCreateInfo.pNext = NULL; queueCreateInfo.queueFamilyIndex = vulkanDevice->queueFamilyIndices.compute; queueCreateInfo.queueCount = 1; vkGetDeviceQueue(device, vulkanDevice->queueFamilyIndices.compute, 0, &compute.queue); // Create compute pipeline // Compute pipelines are created separate from graphics pipelines even if they use the same queue (family index) std::vector setLayoutBindings = { // Binding 0 : Particle position storage buffer vks::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, VK_SHADER_STAGE_COMPUTE_BIT, 0), // Binding 1 : Uniform buffer vks::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_COMPUTE_BIT, 1), }; VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo( setLayoutBindings.data(), static_cast(setLayoutBindings.size())); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &compute.descriptorSetLayout)); VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo( &compute.descriptorSetLayout, 1); VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &compute.pipelineLayout)); VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo( descriptorPool, &compute.descriptorSetLayout, 1); VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &compute.descriptorSet)); std::vector computeWriteDescriptorSets = { // Binding 0 : Particle position storage buffer vks::initializers::writeDescriptorSet( compute.descriptorSet, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 0, &compute.storageBuffer.descriptor), // Binding 1 : Uniform buffer vks::initializers::writeDescriptorSet( compute.descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1, &compute.uniformBuffer.descriptor) }; vkUpdateDescriptorSets(device, static_cast(computeWriteDescriptorSets.size()), computeWriteDescriptorSets.data(), 0, NULL); // Create pipelines VkComputePipelineCreateInfo computePipelineCreateInfo = vks::initializers::computePipelineCreateInfo(compute.pipelineLayout, 0); // 1st pass computePipelineCreateInfo.stage = loadShader(getAssetPath() + "shaders/computenbody/particle_calculate.comp.spv", VK_SHADER_STAGE_COMPUTE_BIT); // Set shader parameters via specialization constants struct SpecializationData { uint32_t sharedDataSize; float gravity; float power; float soften; } specializationData; std::vector specializationMapEntries; specializationMapEntries.push_back(vks::initializers::specializationMapEntry(0, offsetof(SpecializationData, sharedDataSize), sizeof(uint32_t))); specializationMapEntries.push_back(vks::initializers::specializationMapEntry(1, offsetof(SpecializationData, gravity), sizeof(float))); specializationMapEntries.push_back(vks::initializers::specializationMapEntry(2, offsetof(SpecializationData, power), sizeof(float))); specializationMapEntries.push_back(vks::initializers::specializationMapEntry(3, offsetof(SpecializationData, soften), sizeof(float))); specializationData.sharedDataSize = std::min((uint32_t)1024, (uint32_t)(vulkanDevice->properties.limits.maxComputeSharedMemorySize / sizeof(glm::vec4))); specializationData.gravity = 0.002f; specializationData.power = 0.75f; specializationData.soften = 0.05f; VkSpecializationInfo specializationInfo = vks::initializers::specializationInfo(static_cast(specializationMapEntries.size()), specializationMapEntries.data(), sizeof(specializationData), &specializationData); computePipelineCreateInfo.stage.pSpecializationInfo = &specializationInfo; VK_CHECK_RESULT(vkCreateComputePipelines(device, pipelineCache, 1, &computePipelineCreateInfo, nullptr, &compute.pipelineCalculate)); // 2nd pass computePipelineCreateInfo.stage = loadShader(getAssetPath() + "shaders/computenbody/particle_integrate.comp.spv", VK_SHADER_STAGE_COMPUTE_BIT); VK_CHECK_RESULT(vkCreateComputePipelines(device, pipelineCache, 1, &computePipelineCreateInfo, nullptr, &compute.pipelineIntegrate)); // Separate command pool as queue family for compute may be different than graphics VkCommandPoolCreateInfo cmdPoolInfo = {}; cmdPoolInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO; cmdPoolInfo.queueFamilyIndex = vulkanDevice->queueFamilyIndices.compute; cmdPoolInfo.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT; VK_CHECK_RESULT(vkCreateCommandPool(device, &cmdPoolInfo, nullptr, &compute.commandPool)); // Create a command buffer for compute operations VkCommandBufferAllocateInfo cmdBufAllocateInfo = vks::initializers::commandBufferAllocateInfo( compute.commandPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY, 1); VK_CHECK_RESULT(vkAllocateCommandBuffers(device, &cmdBufAllocateInfo, &compute.commandBuffer)); // Fence for compute CB sync VkFenceCreateInfo fenceCreateInfo = vks::initializers::fenceCreateInfo(VK_FENCE_CREATE_SIGNALED_BIT); VK_CHECK_RESULT(vkCreateFence(device, &fenceCreateInfo, nullptr, &compute.fence)); // Build a single command buffer containing the compute dispatch commands buildComputeCommandBuffer(); } // Prepare and initialize uniform buffer containing shader uniforms void prepareUniformBuffers() { // Compute shader uniform buffer block vulkanDevice->createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &compute.uniformBuffer, sizeof(compute.ubo)); // Map for host access VK_CHECK_RESULT(compute.uniformBuffer.map()); // Vertex shader uniform buffer block vulkanDevice->createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &graphics.uniformBuffer, sizeof(graphics.ubo)); // Map for host access VK_CHECK_RESULT(graphics.uniformBuffer.map()); updateGraphicsUniformBuffers(); } void updateUniformBuffers() { compute.ubo.deltaT = paused ? 0.0f : frameTimer * 0.05f; compute.ubo.destX = sin(glm::radians(timer * 360.0f)) * 0.75f; compute.ubo.destY = 0.0f; memcpy(compute.uniformBuffer.mapped, &compute.ubo, sizeof(compute.ubo)); } void updateGraphicsUniformBuffers() { graphics.ubo.projection = camera.matrices.perspective; graphics.ubo.view = camera.matrices.view; graphics.ubo.screenDim = glm::vec2((float)width, (float)height); memcpy(graphics.uniformBuffer.mapped, &graphics.ubo, sizeof(graphics.ubo)); } void draw() { // Submit graphics commands VulkanExampleBase::prepareFrame(); submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer]; VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE)); VulkanExampleBase::submitFrame(); // Submit compute commands vkWaitForFences(device, 1, &compute.fence, VK_TRUE, UINT64_MAX); vkResetFences(device, 1, &compute.fence); VkSubmitInfo computeSubmitInfo = vks::initializers::submitInfo(); computeSubmitInfo.commandBufferCount = 1; computeSubmitInfo.pCommandBuffers = &compute.commandBuffer; VK_CHECK_RESULT(vkQueueSubmit(compute.queue, 1, &computeSubmitInfo, compute.fence)); } void prepare() { VulkanExampleBase::prepare(); loadAssets(); prepareStorageBuffers(); prepareUniformBuffers(); setupDescriptorSetLayout(); preparePipelines(); setupDescriptorPool(); setupDescriptorSet(); prepareCompute(); buildCommandBuffers(); prepared = true; } virtual void render() { if (!prepared) return; draw(); updateUniformBuffers(); } virtual void viewChanged() { updateGraphicsUniformBuffers(); } }; VULKAN_EXAMPLE_MAIN()