/* * Vulkan Example - Multiview (VK_KHR_multiview) * * VK_KHR_multiview allows rendering to multiple views of a single renderpass * * Copyright (C) 2018 by Sascha Willems - www.saschawillems.de * * This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT) */ #include #include #include #include #include #define GLM_FORCE_RADIANS #define GLM_FORCE_DEPTH_ZERO_TO_ONE #include #include #include #include "vulkanexamplebase.h" #include "VulkanModel.hpp" #define ENABLE_VALIDATION false //#define VULKAN_1_1 class VulkanExample : public VulkanExampleBase { public: // Vertex layout for the models vks::VertexLayout vertexLayout = vks::VertexLayout({ vks::VERTEX_COMPONENT_POSITION, vks::VERTEX_COMPONENT_NORMAL, vks::VERTEX_COMPONENT_COLOR, }); struct ColorAttachment { VkImage image; VkImageView view; VkDeviceMemory memory; } colorAttachment; vks::Model scene; struct UBOGS { glm::mat4 projection[2]; glm::mat4 modelview[2]; glm::vec4 lightPos = glm::vec4(-2.5f, -3.5f, 0.0f, 1.0f); } uboGS; vks::Buffer uniformBufferGS; VkPipeline pipeline; VkPipelineLayout pipelineLayout; VkDescriptorSet descriptorSet; VkDescriptorSetLayout descriptorSetLayout; // Semaphore used to synchronize blit to swapchain VkSemaphore blitCompleteSemaphore; std::vector blitCommandBuffers; // Camera and view properties float eyeSeparation = 0.08f; const float focalLength = 0.5f; const float fov = 90.0f; const float zNear = 0.1f; const float zFar = 256.0f; VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION) { title = "Multiview"; camera.type = Camera::CameraType::firstperson; camera.setRotation(glm::vec3(0.0f, 90.0f, 0.0f)); camera.setTranslation(glm::vec3(7.0f, 3.2f, 0.0f)); camera.movementSpeed = 5.0f; settings.overlay = false; enabledDeviceExtensions.push_back(VK_KHR_MULTIVIEW_EXTENSION_NAME); enabledInstanceExtensions.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME); } ~VulkanExample() { vkDestroyPipeline(device, pipeline, nullptr); vkDestroyPipelineLayout(device, pipelineLayout, nullptr); vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr); scene.destroy(); uniformBufferGS.destroy(); } /* Custom framebuffer setup Creates a color framebuffer with multiple layers rendered to in a single pass */ void setupFrameBuffer() { VkImageView attachments[2]; { VkImageCreateInfo imageCI = vks::initializers::imageCreateInfo(); imageCI.imageType = VK_IMAGE_TYPE_2D; imageCI.format = swapChain.colorFormat; imageCI.extent = { width, height, 1 }; imageCI.mipLevels = 1; // Two layers for two views imageCI.arrayLayers = 2; imageCI.samples = VK_SAMPLE_COUNT_1_BIT; imageCI.tiling = VK_IMAGE_TILING_OPTIMAL; imageCI.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT; VkMemoryRequirements memReqs; VK_CHECK_RESULT(vkCreateImage(device, &imageCI, nullptr, &colorAttachment.image)); vkGetImageMemoryRequirements(device, colorAttachment.image, &memReqs); VkMemoryAllocateInfo memoryAllocInfo = vks::initializers::memoryAllocateInfo(); memoryAllocInfo.allocationSize = memReqs.size; memoryAllocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); VK_CHECK_RESULT(vkAllocateMemory(device, &memoryAllocInfo, nullptr, &colorAttachment.memory)); VK_CHECK_RESULT(vkBindImageMemory(device, colorAttachment.image, colorAttachment.memory, 0)); VkImageViewCreateInfo imageViewCI = vks::initializers::imageViewCreateInfo(); imageViewCI.viewType = VK_IMAGE_VIEW_TYPE_2D_ARRAY; imageViewCI.format = swapChain.colorFormat; imageViewCI.flags = 0; imageViewCI.subresourceRange = {}; imageViewCI.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; imageViewCI.subresourceRange.baseMipLevel = 0; imageViewCI.subresourceRange.levelCount = 1; imageViewCI.subresourceRange.baseArrayLayer = 0; // Two layers for two views imageViewCI.subresourceRange.layerCount = 2; imageViewCI.image = colorAttachment.image; VK_CHECK_RESULT(vkCreateImageView(device, &imageViewCI, nullptr, &colorAttachment.view)); } // Depth/Stencil attachment is the same for all frame buffers attachments[0] = colorAttachment.view; attachments[1] = depthStencil.view; VkFramebufferCreateInfo frameBufferCreateInfo = {}; frameBufferCreateInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO; frameBufferCreateInfo.pNext = NULL; frameBufferCreateInfo.renderPass = renderPass; frameBufferCreateInfo.attachmentCount = 2; frameBufferCreateInfo.pAttachments = attachments; frameBufferCreateInfo.width = width; frameBufferCreateInfo.height = height; frameBufferCreateInfo.layers = 1; // Create frame buffers for every swap chain image frameBuffers.resize(swapChain.imageCount); for (uint32_t i = 0; i < frameBuffers.size(); i++) { VK_CHECK_RESULT(vkCreateFramebuffer(device, &frameBufferCreateInfo, nullptr, &frameBuffers[i])); } } /* Custom depth/stencil setup Creates a depth/stencil framebuffer with multiple layers rendered to in a single pass */ void setupDepthStencil() { VkImageCreateInfo image = {}; image.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO; image.pNext = NULL; image.imageType = VK_IMAGE_TYPE_2D; image.format = depthFormat; image.extent = { width, height, 1 }; image.mipLevels = 1; image.arrayLayers = 2; // Two layers for two viewports image.samples = VK_SAMPLE_COUNT_1_BIT; image.tiling = VK_IMAGE_TILING_OPTIMAL; image.usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT; image.flags = 0; VkMemoryAllocateInfo mem_alloc = {}; mem_alloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO; mem_alloc.pNext = NULL; mem_alloc.allocationSize = 0; mem_alloc.memoryTypeIndex = 0; VkImageViewCreateInfo depthStencilView = {}; depthStencilView.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO; depthStencilView.pNext = NULL; depthStencilView.viewType = VK_IMAGE_VIEW_TYPE_2D_ARRAY; depthStencilView.format = depthFormat; depthStencilView.flags = 0; depthStencilView.subresourceRange = {}; depthStencilView.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT; depthStencilView.subresourceRange.baseMipLevel = 0; depthStencilView.subresourceRange.levelCount = 1; depthStencilView.subresourceRange.baseArrayLayer = 0; depthStencilView.subresourceRange.layerCount = 1; VkMemoryRequirements memReqs; VK_CHECK_RESULT(vkCreateImage(device, &image, nullptr, &depthStencil.image)); vkGetImageMemoryRequirements(device, depthStencil.image, &memReqs); mem_alloc.allocationSize = memReqs.size; mem_alloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); VK_CHECK_RESULT(vkAllocateMemory(device, &mem_alloc, nullptr, &depthStencil.mem)); VK_CHECK_RESULT(vkBindImageMemory(device, depthStencil.image, depthStencil.mem, 0)); depthStencilView.image = depthStencil.image; VK_CHECK_RESULT(vkCreateImageView(device, &depthStencilView, nullptr, &depthStencil.view)); } /* Custom renderpass setup */ void setupRenderPass() { std::array attachments = {}; // Color attachment attachments[0].format = swapChain.colorFormat; attachments[0].samples = VK_SAMPLE_COUNT_1_BIT; attachments[0].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; attachments[0].storeOp = VK_ATTACHMENT_STORE_OP_STORE; attachments[0].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; attachments[0].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; attachments[0].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; //attachments[0].finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR; attachments[0].finalLayout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL; // Depth attachment attachments[1].format = depthFormat; attachments[1].samples = VK_SAMPLE_COUNT_1_BIT; attachments[1].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; attachments[1].storeOp = VK_ATTACHMENT_STORE_OP_STORE; attachments[1].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; attachments[1].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; attachments[1].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; attachments[1].finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; VkAttachmentReference colorReference = {}; colorReference.attachment = 0; colorReference.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; VkAttachmentReference depthReference = {}; depthReference.attachment = 1; depthReference.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; VkSubpassDescription subpassDescription = {}; subpassDescription.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS; subpassDescription.colorAttachmentCount = 1; subpassDescription.pColorAttachments = &colorReference; subpassDescription.pDepthStencilAttachment = &depthReference; subpassDescription.inputAttachmentCount = 0; subpassDescription.pInputAttachments = nullptr; subpassDescription.preserveAttachmentCount = 0; subpassDescription.pPreserveAttachments = nullptr; subpassDescription.pResolveAttachments = nullptr; // Subpass dependencies for layout transitions std::array dependencies; dependencies[0].srcSubpass = VK_SUBPASS_EXTERNAL; dependencies[0].dstSubpass = 0; dependencies[0].srcStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT; dependencies[0].dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; dependencies[0].srcAccessMask = VK_ACCESS_MEMORY_READ_BIT; dependencies[0].dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; dependencies[0].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT; dependencies[1].srcSubpass = 0; dependencies[1].dstSubpass = VK_SUBPASS_EXTERNAL; dependencies[1].srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; dependencies[1].dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT; dependencies[1].srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; dependencies[1].dstAccessMask = VK_ACCESS_MEMORY_READ_BIT; dependencies[1].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT; VkRenderPassCreateInfo renderPassCI{}; renderPassCI.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO; renderPassCI.attachmentCount = static_cast(attachments.size()); renderPassCI.pAttachments = attachments.data(); renderPassCI.subpassCount = 1; renderPassCI.pSubpasses = &subpassDescription; renderPassCI.dependencyCount = static_cast(dependencies.size()); renderPassCI.pDependencies = dependencies.data(); /* Setup multiview info for the renderpass */ /* Bit mask that specifies which view rendering is broadcast to 0011 = Broadcast to first and second view (layer) */ const uint32_t viewMask = 0b00000011; /* Bit mask that specifices correlation between views An implementation may use this for optimizations (concurrent render) */ const uint32_t correlationMask = 0b00000011; VkRenderPassMultiviewCreateInfo renderPassMultiviewCI{}; renderPassMultiviewCI.sType = VK_STRUCTURE_TYPE_RENDER_PASS_MULTIVIEW_CREATE_INFO; renderPassMultiviewCI.subpassCount = 1; renderPassMultiviewCI.pViewMasks = &viewMask; renderPassMultiviewCI.correlationMaskCount = 1; renderPassMultiviewCI.pCorrelationMasks = &correlationMask; renderPassCI.pNext = &renderPassMultiviewCI; VK_CHECK_RESULT(vkCreateRenderPass(device, &renderPassCI, nullptr, &renderPass)); } void buildCommandBuffers() { /* Scene rendering */ VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo(); VkClearValue clearValues[2]; clearValues[0].color = defaultClearColor; clearValues[1].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo(); renderPassBeginInfo.renderPass = renderPass; renderPassBeginInfo.renderArea.offset.x = 0; renderPassBeginInfo.renderArea.offset.y = 0; renderPassBeginInfo.renderArea.extent.width = width; renderPassBeginInfo.renderArea.extent.height = height; renderPassBeginInfo.clearValueCount = 2; renderPassBeginInfo.pClearValues = clearValues; for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) { renderPassBeginInfo.framebuffer = frameBuffers[i]; VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo)); vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f); vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0); vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor); vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, nullptr); VkDeviceSize offsets[1] = { 0 }; vkCmdBindVertexBuffers(drawCmdBuffers[i], 0, 1, &scene.vertices.buffer, offsets); vkCmdBindIndexBuffer(drawCmdBuffers[i], scene.indices.buffer, 0, VK_INDEX_TYPE_UINT32); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline); vkCmdDrawIndexed(drawCmdBuffers[i], scene.indexCount, 1, 0, 0, 0); vkCmdEndRenderPass(drawCmdBuffers[i]); VkImageSubresourceRange subresourceRange{}; subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; subresourceRange.layerCount = VK_REMAINING_ARRAY_LAYERS; subresourceRange.levelCount = VK_REMAINING_MIP_LEVELS; VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i])); } /* Blits */ blitCommandBuffers.resize(drawCmdBuffers.size()); VkCommandBufferAllocateInfo cmdBufAllocateInfo = vks::initializers::commandBufferAllocateInfo(cmdPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY, static_cast(drawCmdBuffers.size())); VK_CHECK_RESULT(vkAllocateCommandBuffers(device, &cmdBufAllocateInfo, blitCommandBuffers.data())); for (int32_t i = 0; i < blitCommandBuffers.size(); ++i) { VK_CHECK_RESULT(vkBeginCommandBuffer(blitCommandBuffers[i], &cmdBufInfo)); VkImageSubresourceRange subresourceRange{}; subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; subresourceRange.layerCount = VK_REMAINING_ARRAY_LAYERS; subresourceRange.levelCount = VK_REMAINING_MIP_LEVELS; vks::tools::setImageLayout( blitCommandBuffers[i], swapChain.images[i], VK_IMAGE_LAYOUT_PRESENT_SRC_KHR, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, subresourceRange); //vks::tools::setImageLayout( // blitCommandBuffers[i], // colorAttachment.image, // VK_IMAGE_LAYOUT_UNDEFINED, // VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, // subresourceRange); VkImageBlit imageBlit{}; imageBlit.srcOffsets[0] = { 0, 0, 0 }; imageBlit.srcOffsets[1] = { static_cast(width), static_cast(height), 1 }; imageBlit.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; imageBlit.srcSubresource.layerCount = 1; imageBlit.dstSubresource = imageBlit.srcSubresource; // Left imageBlit.dstOffsets[0] = { 0, 0, 0 }; imageBlit.dstOffsets[1] = { static_cast(width) / 2, static_cast(height), 1 }; imageBlit.srcSubresource.baseArrayLayer = 0; vkCmdBlitImage( blitCommandBuffers[i], colorAttachment.image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, swapChain.images[i], VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &imageBlit, VK_FILTER_NEAREST); // Right imageBlit.dstOffsets[0] = { static_cast(width) / 2, 0, 0 }; imageBlit.dstOffsets[1] = { static_cast(width), static_cast(height), 1 }; imageBlit.srcSubresource.baseArrayLayer = 1; vkCmdBlitImage( blitCommandBuffers[i], colorAttachment.image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, swapChain.images[i], VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &imageBlit, VK_FILTER_NEAREST); vks::tools::setImageLayout( blitCommandBuffers[i], swapChain.images[i], VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_PRESENT_SRC_KHR, subresourceRange); VK_CHECK_RESULT(vkEndCommandBuffer(blitCommandBuffers[i])); } } void loadAssets() { scene.loadFromFile(getAssetPath() + "models/sampleroom.dae", vertexLayout, 0.25f, vulkanDevice, queue); } void prepareDescriptors() { /* Pool */ std::vector poolSizes = { vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1), vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1) }; VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(static_cast(poolSizes.size()), poolSizes.data(), 1); VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool)); /* Layouts */ std::vector setLayoutBindings = { vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0), vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1) }; VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout)); VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo =vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayout, 1); VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout)); /* Descriptors */ VkDescriptorSetAllocateInfo allocateInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1); VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocateInfo, &descriptorSet)); std::vector writeDescriptorSets = { // Binding 0: Vertex shader UBO vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBufferGS.descriptor), }; vkUpdateDescriptorSets(device, static_cast(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, nullptr); } void preparePipelines() { VkSemaphoreCreateInfo semaphoreCI = vks::initializers::semaphoreCreateInfo(); VK_CHECK_RESULT(vkCreateSemaphore(device, &semaphoreCI, nullptr, &blitCompleteSemaphore)); /* Display multi view features and properties */ VkPhysicalDeviceFeatures2KHR deviceFeatures2{}; VkPhysicalDeviceMultiviewFeaturesKHR extFeatures{}; extFeatures.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES_KHR; deviceFeatures2.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2_KHR; deviceFeatures2.pNext = &extFeatures; PFN_vkGetPhysicalDeviceFeatures2KHR vkGetPhysicalDeviceFeatures2KHR = reinterpret_cast(vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceFeatures2KHR")); vkGetPhysicalDeviceFeatures2KHR(physicalDevice, &deviceFeatures2); std::cout << "Multiview features:" << std::endl; std::cout << "\tmultiview = " << extFeatures.multiview << std::endl; std::cout << "\tmultiviewGeometryShader = " << extFeatures.multiviewGeometryShader << std::endl; std::cout << "\tmultiviewTessellationShader = " << extFeatures.multiviewTessellationShader << std::endl; std::cout << std::endl; VkPhysicalDeviceProperties2KHR deviceProps2{}; VkPhysicalDeviceMultiviewPropertiesKHR extProps{}; extProps.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES_KHR; deviceProps2.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2_KHR; deviceProps2.pNext = &extProps; PFN_vkGetPhysicalDeviceProperties2KHR vkGetPhysicalDeviceProperties2KHR = reinterpret_cast(vkGetInstanceProcAddr(instance, "vkGetPhysicalDeviceProperties2KHR")); vkGetPhysicalDeviceProperties2KHR(physicalDevice, &deviceProps2); std::cout << "Multiview properties:" << std::endl; std::cout << "\tmaxMultiviewViewCount = " << extProps.maxMultiviewViewCount << std::endl; std::cout << "\tmaxMultiviewInstanceIndex = " << extProps.maxMultiviewInstanceIndex << std::endl; /* Create graphics pipeline */ VkPipelineInputAssemblyStateCreateInfo inputAssemblyStateCI = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE); VkPipelineRasterizationStateCreateInfo rasterizationStateCI = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_CLOCKWISE); VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE); VkPipelineColorBlendStateCreateInfo colorBlendStateCI = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState); VkPipelineDepthStencilStateCreateInfo depthStencilStateCI = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL); VkPipelineViewportStateCreateInfo viewportStateCI = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0); VkPipelineMultisampleStateCreateInfo multisampleStateCI = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT); std::vector dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR }; VkPipelineDynamicStateCreateInfo dynamicStateCI = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables); std::vector vertexInputBindings = { vks::initializers::vertexInputBindingDescription(0, vertexLayout.stride(), VK_VERTEX_INPUT_RATE_VERTEX), }; std::vector vertexInputAttributes = { vks::initializers::vertexInputAttributeDescription(0, 0, VK_FORMAT_R32G32B32_SFLOAT, 0), // Location 0: Position vks::initializers::vertexInputAttributeDescription(0, 1, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 3), // Location 1: Normals vks::initializers::vertexInputAttributeDescription(0, 2, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 6), // Location 2: Color }; VkPipelineVertexInputStateCreateInfo vertexInputState = vks::initializers::pipelineVertexInputStateCreateInfo(); vertexInputState.vertexBindingDescriptionCount = static_cast(vertexInputBindings.size()); vertexInputState.pVertexBindingDescriptions = vertexInputBindings.data(); vertexInputState.vertexAttributeDescriptionCount = static_cast(vertexInputAttributes.size()); vertexInputState.pVertexAttributeDescriptions = vertexInputAttributes.data(); VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass); pipelineCI.pVertexInputState = &vertexInputState; pipelineCI.pInputAssemblyState = &inputAssemblyStateCI; pipelineCI.pRasterizationState = &rasterizationStateCI; pipelineCI.pColorBlendState = &colorBlendStateCI; pipelineCI.pMultisampleState = &multisampleStateCI; pipelineCI.pViewportState = &viewportStateCI; pipelineCI.pDepthStencilState = &depthStencilStateCI; pipelineCI.pDynamicState = &dynamicStateCI; pipelineCI.renderPass = renderPass; /* Load shaders Contrary to the viewport array example we don't need a geometry shader for broadcasting */ std::array shaderStages; shaderStages[0] = loadShader(getAssetPath() + "shaders/multiview/multiview.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getAssetPath() + "shaders/multiview/multiview.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); pipelineCI.stageCount = 2; pipelineCI.pStages = shaderStages.data(); VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipeline)); } // Prepare and initialize uniform buffer containing shader uniforms void prepareUniformBuffers() { VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBufferGS, sizeof(uboGS))); VK_CHECK_RESULT(uniformBufferGS.map()); updateUniformBuffers(); } void updateUniformBuffers() { // Matrices for the two viewports // See http://paulbourke.net/stereographics/stereorender/ // Calculate some variables float aspectRatio = (float)(width * 0.5f) / (float)height; float wd2 = zNear * tan(glm::radians(fov / 2.0f)); float ndfl = zNear / focalLength; float left, right; float top = wd2; float bottom = -wd2; glm::vec3 camFront; camFront.x = -cos(glm::radians(rotation.x)) * sin(glm::radians(rotation.y)); camFront.y = sin(glm::radians(rotation.x)); camFront.z = cos(glm::radians(rotation.x)) * cos(glm::radians(rotation.y)); camFront = glm::normalize(camFront); glm::vec3 camRight = glm::normalize(glm::cross(camFront, glm::vec3(0.0f, 1.0f, 0.0f))); glm::mat4 rotM = glm::mat4(1.0f); glm::mat4 transM; rotM = glm::rotate(rotM, glm::radians(camera.rotation.x), glm::vec3(1.0f, 0.0f, 0.0f)); rotM = glm::rotate(rotM, glm::radians(camera.rotation.y), glm::vec3(0.0f, 1.0f, 0.0f)); rotM = glm::rotate(rotM, glm::radians(camera.rotation.z), glm::vec3(0.0f, 0.0f, 1.0f)); // Left eye left = -aspectRatio * wd2 + 0.5f * eyeSeparation * ndfl; right = aspectRatio * wd2 + 0.5f * eyeSeparation * ndfl; transM = glm::translate(glm::mat4(1.0f), camera.position - camRight * (eyeSeparation / 2.0f)); uboGS.projection[0] = glm::frustum(left, right, bottom, top, zNear, zFar); uboGS.modelview[0] = rotM * transM; // Right eye left = -aspectRatio * wd2 - 0.5f * eyeSeparation * ndfl; right = aspectRatio * wd2 - 0.5f * eyeSeparation * ndfl; transM = glm::translate(glm::mat4(1.0f), camera.position + camRight * (eyeSeparation / 2.0f)); uboGS.projection[1] = glm::frustum(left, right, bottom, top, zNear, zFar); uboGS.modelview[1] = rotM * transM; memcpy(uniformBufferGS.mapped, &uboGS, sizeof(uboGS)); } void draw() { // TODO: blit after render, needs changes in base clase (fixed semaphores in submitFrame) VulkanExampleBase::prepareFrame(); submitInfo.pWaitSemaphores = &semaphores.presentComplete; submitInfo.pSignalSemaphores = &blitCompleteSemaphore; submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &blitCommandBuffers[currentBuffer]; VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE)); submitInfo.pWaitSemaphores = &blitCompleteSemaphore; submitInfo.pSignalSemaphores = &semaphores.renderComplete; submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer]; VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE)); VulkanExampleBase::submitFrame(); } void prepare() { VulkanExampleBase::prepare(); loadAssets(); prepareUniformBuffers(); prepareDescriptors(); preparePipelines(); buildCommandBuffers(); prepared = true; } virtual void render() { if (!prepared) return; draw(); if (camera.updated) { updateUniformBuffers(); } } virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay) { if (overlay->header("Settings")) { if (overlay->sliderFloat("Eye separation", &eyeSeparation, -1.0f, 1.0f)) { updateUniformBuffers(); } } } }; VULKAN_EXAMPLE_MAIN()