/* * Vulkan Example - Drawing multiple animated gears (emulating the look of glxgears) * * All gears are using single index, vertex and uniform buffers to show the Vulkan best practices of keeping the no. of buffer/memory allocations to a mimimum * We use index offsets and instance indices to offset into the buffers at draw time for each gear * * Copyright (C) 2016-2023 by Sascha Willems - www.saschawillems.de * * This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT) */ #include "vulkanexamplebase.h" const uint32_t numGears = 3; // Used for passing the definition of a gear during construction struct GearDefinition { float innerRadius; float outerRadius; float width; int numTeeth; float toothDepth; glm::vec3 color; glm::vec3 pos; float rotSpeed; float rotOffset; }; /* * Gear * This class contains the properties of a single gear and a function to generate vertices and indices */ class Gear { public: // Definition for the vertex data used to render the gears struct Vertex { glm::vec3 position; glm::vec3 normal; glm::vec3 color; }; glm::vec3 color; glm::vec3 pos; float rotSpeed{ 0.0f }; float rotOffset{ 0.0f }; // These are used at draw time to offset into the single buffers uint32_t indexCount{ 0 }; uint32_t indexStart{ 0 }; // Generates the indices and vertices for this gear // They are added to the vertex and index buffers passed into the function // This way we can put all gears into single vertex and index buffers instead of having to allocate single buffers for each gear (which would be bad practice) void generate(GearDefinition& gearDefinition, std::vector& vertexBuffer, std::vector& indexBuffer) { this->color = gearDefinition.color; this->pos = gearDefinition.pos; this->rotOffset = gearDefinition.rotOffset; this->rotSpeed = gearDefinition.rotSpeed; int i; float r0, r1, r2; float ta, da; float u1, v1, u2, v2, len; float cos_ta, cos_ta_1da, cos_ta_2da, cos_ta_3da, cos_ta_4da; float sin_ta, sin_ta_1da, sin_ta_2da, sin_ta_3da, sin_ta_4da; int32_t ix0, ix1, ix2, ix3, ix4, ix5; // We need to know where this triangle's indices start within the single index buffer indexStart = static_cast(indexBuffer.size()); r0 = gearDefinition.innerRadius; r1 = gearDefinition.outerRadius - gearDefinition.toothDepth / 2.0f; r2 = gearDefinition.outerRadius + gearDefinition.toothDepth / 2.0f; da = static_cast (2.0 * M_PI / gearDefinition.numTeeth / 4.0); glm::vec3 normal; // Use lambda functions to simplify vertex and face creation auto addFace = [&indexBuffer](int a, int b, int c) { indexBuffer.push_back(a); indexBuffer.push_back(b); indexBuffer.push_back(c); }; auto addVertex = [this, &vertexBuffer](float x, float y, float z, glm::vec3 normal) { Vertex v{}; v.position = { x, y, z }; v.normal = normal; v.color = this->color; vertexBuffer.push_back(v); return static_cast(vertexBuffer.size()) - 1; }; for (i = 0; i < gearDefinition.numTeeth; i++) { ta = i * static_cast (2.0 * M_PI / gearDefinition.numTeeth); cos_ta = cos(ta); cos_ta_1da = cos(ta + da); cos_ta_2da = cos(ta + 2.0f * da); cos_ta_3da = cos(ta + 3.0f * da); cos_ta_4da = cos(ta + 4.0f * da); sin_ta = sin(ta); sin_ta_1da = sin(ta + da); sin_ta_2da = sin(ta + 2.0f * da); sin_ta_3da = sin(ta + 3.0f * da); sin_ta_4da = sin(ta + 4.0f * da); u1 = r2 * cos_ta_1da - r1 * cos_ta; v1 = r2 * sin_ta_1da - r1 * sin_ta; len = sqrt(u1 * u1 + v1 * v1); u1 /= len; v1 /= len; u2 = r1 * cos_ta_3da - r2 * cos_ta_2da; v2 = r1 * sin_ta_3da - r2 * sin_ta_2da; // Front face normal = glm::vec3(0.0f, 0.0f, 1.0f); ix0 = addVertex(r0 * cos_ta, r0 * sin_ta, gearDefinition.width * 0.5f, normal); ix1 = addVertex(r1 * cos_ta, r1 * sin_ta, gearDefinition.width * 0.5f, normal); ix2 = addVertex(r0 * cos_ta, r0 * sin_ta, gearDefinition.width * 0.5f, normal); ix3 = addVertex(r1 * cos_ta_3da, r1 * sin_ta_3da, gearDefinition.width * 0.5f, normal); ix4 = addVertex(r0 * cos_ta_4da, r0 * sin_ta_4da, gearDefinition.width * 0.5f, normal); ix5 = addVertex(r1 * cos_ta_4da, r1 * sin_ta_4da, gearDefinition.width * 0.5f, normal); addFace(ix0, ix1, ix2); addFace(ix1, ix3, ix2); addFace(ix2, ix3, ix4); addFace(ix3, ix5, ix4); // Teeth front face normal = glm::vec3(0.0f, 0.0f, 1.0f); ix0 = addVertex(r1 * cos_ta, r1 * sin_ta, gearDefinition.width * 0.5f, normal); ix1 = addVertex(r2 * cos_ta_1da, r2 * sin_ta_1da, gearDefinition.width * 0.5f, normal); ix2 = addVertex(r1 * cos_ta_3da, r1 * sin_ta_3da, gearDefinition.width * 0.5f, normal); ix3 = addVertex(r2 * cos_ta_2da, r2 * sin_ta_2da, gearDefinition.width * 0.5f, normal); addFace(ix0, ix1, ix2); addFace(ix1, ix3, ix2); // Back face normal = glm::vec3(0.0f, 0.0f, -1.0f); ix0 = addVertex(r1 * cos_ta, r1 * sin_ta, -gearDefinition.width * 0.5f, normal); ix1 = addVertex(r0 * cos_ta, r0 * sin_ta, -gearDefinition.width * 0.5f, normal); ix2 = addVertex(r1 * cos_ta_3da, r1 * sin_ta_3da, -gearDefinition.width * 0.5f, normal); ix3 = addVertex(r0 * cos_ta, r0 * sin_ta, -gearDefinition.width * 0.5f, normal); ix4 = addVertex(r1 * cos_ta_4da, r1 * sin_ta_4da, -gearDefinition.width * 0.5f, normal); ix5 = addVertex(r0 * cos_ta_4da, r0 * sin_ta_4da, -gearDefinition.width * 0.5f, normal); addFace(ix0, ix1, ix2); addFace(ix1, ix3, ix2); addFace(ix2, ix3, ix4); addFace(ix3, ix5, ix4); // Teeth back face normal = glm::vec3(0.0f, 0.0f, -1.0f); ix0 = addVertex(r1 * cos_ta_3da, r1 * sin_ta_3da, -gearDefinition.width * 0.5f, normal); ix1 = addVertex(r2 * cos_ta_2da, r2 * sin_ta_2da, -gearDefinition.width * 0.5f, normal); ix2 = addVertex(r1 * cos_ta, r1 * sin_ta, -gearDefinition.width * 0.5f, normal); ix3 = addVertex(r2 * cos_ta_1da, r2 * sin_ta_1da, -gearDefinition.width * 0.5f, normal); addFace(ix0, ix1, ix2); addFace(ix1, ix3, ix2); // Outard teeth faces normal = glm::vec3(v1, -u1, 0.0f); ix0 = addVertex(r1 * cos_ta, r1 * sin_ta, gearDefinition.width * 0.5f, normal); ix1 = addVertex(r1 * cos_ta, r1 * sin_ta, -gearDefinition.width * 0.5f, normal); ix2 = addVertex(r2 * cos_ta_1da, r2 * sin_ta_1da, gearDefinition.width * 0.5f, normal); ix3 = addVertex(r2 * cos_ta_1da, r2 * sin_ta_1da, -gearDefinition.width * 0.5f, normal); addFace(ix0, ix1, ix2); addFace(ix1, ix3, ix2); normal = glm::vec3(cos_ta, sin_ta, 0.0f); ix0 = addVertex(r2 * cos_ta_1da, r2 * sin_ta_1da, gearDefinition.width * 0.5f, normal); ix1 = addVertex(r2 * cos_ta_1da, r2 * sin_ta_1da, -gearDefinition.width * 0.5f, normal); ix2 = addVertex(r2 * cos_ta_2da, r2 * sin_ta_2da, gearDefinition.width * 0.5f, normal); ix3 = addVertex(r2 * cos_ta_2da, r2 * sin_ta_2da, -gearDefinition.width * 0.5f, normal); addFace(ix0, ix1, ix2); addFace(ix1, ix3, ix2); normal = glm::vec3(v2, -u2, 0.0f); ix0 = addVertex(r2 * cos_ta_2da, r2 * sin_ta_2da, gearDefinition.width * 0.5f, normal); ix1 = addVertex(r2 * cos_ta_2da, r2 * sin_ta_2da, -gearDefinition.width * 0.5f, normal); ix2 = addVertex(r1 * cos_ta_3da, r1 * sin_ta_3da, gearDefinition.width * 0.5f, normal); ix3 = addVertex(r1 * cos_ta_3da, r1 * sin_ta_3da, -gearDefinition.width * 0.5f, normal); addFace(ix0, ix1, ix2); addFace(ix1, ix3, ix2); normal = glm::vec3(cos_ta, sin_ta, 0.0f); ix0 = addVertex(r1 * cos_ta_3da, r1 * sin_ta_3da, gearDefinition.width * 0.5f, normal); ix1 = addVertex(r1 * cos_ta_3da, r1 * sin_ta_3da, -gearDefinition.width * 0.5f, normal); ix2 = addVertex(r1 * cos_ta_4da, r1 * sin_ta_4da, gearDefinition.width * 0.5f, normal); ix3 = addVertex(r1 * cos_ta_4da, r1 * sin_ta_4da, -gearDefinition.width * 0.5f, normal); addFace(ix0, ix1, ix2); addFace(ix1, ix3, ix2); // Inside cylinder faces ix0 = addVertex(r0 * cos_ta, r0 * sin_ta, -gearDefinition.width * 0.5f, glm::vec3(-cos_ta, -sin_ta, 0.0f)); ix1 = addVertex(r0 * cos_ta, r0 * sin_ta, gearDefinition.width * 0.5f, glm::vec3(-cos_ta, -sin_ta, 0.0f)); ix2 = addVertex(r0 * cos_ta_4da, r0 * sin_ta_4da, -gearDefinition.width * 0.5f, glm::vec3(-cos_ta_4da, -sin_ta_4da, 0.0f)); ix3 = addVertex(r0 * cos_ta_4da, r0 * sin_ta_4da, gearDefinition.width * 0.5f, glm::vec3(-cos_ta_4da, -sin_ta_4da, 0.0f)); addFace(ix0, ix1, ix2); addFace(ix1, ix3, ix2); } // We need to know how many indices this triangle has at draw time indexCount = static_cast(indexBuffer.size()) - indexStart; } }; /* * VulkanExample */ class VulkanExample : public VulkanExampleBase { public: std::vector gears{}; VkPipeline pipeline{ VK_NULL_HANDLE }; VkPipelineLayout pipelineLayout{ VK_NULL_HANDLE }; VkDescriptorSet descriptorSet{ VK_NULL_HANDLE }; VkDescriptorSetLayout descriptorSetLayout{ VK_NULL_HANDLE }; // Even though this sample renders multiple objects (gears), we only use single buffers // This is a best practices and Vulkan applications should keep the number of memory allocations as small as possible // Having as little buffers as possible also reduces the number of buffer binds vks::Buffer vertexBuffer; vks::Buffer indexBuffer; struct UniformData { glm::mat4 projection; glm::mat4 view; glm::vec4 lightPos; // The model matrix is used to rotate a given gear, so we have one mat4 per gear glm::mat4 model[numGears]; } uniformData; vks::Buffer uniformBuffer; VulkanExample() : VulkanExampleBase() { title = "Vulkan gears"; camera.type = Camera::CameraType::lookat; camera.setPosition(glm::vec3(0.0f, 2.5f, -16.0f)); camera.setRotation(glm::vec3(0.0f, 0.0f, 0.0f)); camera.setPerspective(60.0f, (float)width / (float)height, 0.001f, 256.0f); timerSpeed *= 0.25f; } ~VulkanExample() { if (device) { vkDestroyPipeline(device, pipeline, nullptr); vkDestroyPipelineLayout(device, pipelineLayout, nullptr); vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr); indexBuffer.destroy(); vertexBuffer.destroy(); uniformBuffer.destroy(); } } void prepareGears() { // Set up three differntly shaped and colored gears std::vector gearDefinitions(3); // Large red gear gearDefinitions[0].innerRadius = 1.0f; gearDefinitions[0].outerRadius = 4.0f; gearDefinitions[0].width = 1.0f; gearDefinitions[0].numTeeth = 20; gearDefinitions[0].toothDepth = 0.7f; gearDefinitions[0].color = { 1.0f, 0.0f, 0.0f }; gearDefinitions[0].pos = { -3.0f, 0.0f, 0.0f }; gearDefinitions[0].rotSpeed = 1.0f; gearDefinitions[0].rotOffset = 0.0f; // Medium sized green gear gearDefinitions[1].innerRadius = 0.5f; gearDefinitions[1].outerRadius = 2.0f; gearDefinitions[1].width = 2.0f; gearDefinitions[1].numTeeth = 10; gearDefinitions[1].toothDepth = 0.7f; gearDefinitions[1].color = { 0.0f, 1.0f, 0.2f }; gearDefinitions[1].pos = { 3.1f, 0.0f, 0.0f }; gearDefinitions[1].rotSpeed = -2.0f; gearDefinitions[1].rotOffset = -9.0f; // Small blue gear gearDefinitions[2].innerRadius = 1.3f; gearDefinitions[2].outerRadius = 2.0f; gearDefinitions[2].width = 0.5f; gearDefinitions[2].numTeeth = 10; gearDefinitions[2].toothDepth = 0.7f; gearDefinitions[2].color = { 0.0f, 0.0f, 1.0f }; gearDefinitions[2].pos = { -3.1f, -6.2f, 0.0f }; gearDefinitions[2].rotSpeed = -2.0f; gearDefinitions[2].rotOffset = -30.0f; // We'll be using a single vertex and a single index buffer for all the gears, no matter their number // This is a Vulkan best practice as it keeps the no. of memory/buffer allocations low // Vulkan offers all the tools to easily index into those buffers at a later point (see the buildCommandBuffers function) std::vector vertices{}; std::vector indices{}; // Fills the vertex and index buffers for each of the gear gears.resize(gearDefinitions.size()); for (int32_t i = 0; i < gears.size(); i++) { gears[i].generate(gearDefinitions[i], vertices, indices); } // Create buffers and stage to device for performances size_t vertexBufferSize = vertices.size() * sizeof(Gear::Vertex); size_t indexBufferSize = indices.size() * sizeof(uint32_t); vks::Buffer vertexStaging, indexStaging; // Temorary Staging buffers from vertex and index data vulkanDevice->createBuffer(VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &vertexStaging, vertexBufferSize, vertices.data()); vulkanDevice->createBuffer(VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &indexStaging, indexBufferSize, indices.data()); // Device local buffers to where our staging buffers will be copied to vulkanDevice->createBuffer(VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &vertexBuffer, vertexBufferSize); vulkanDevice->createBuffer(VK_BUFFER_USAGE_INDEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &indexBuffer, indexBufferSize); // Copy host (staging) to device VkCommandBuffer copyCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true); VkBufferCopy copyRegion = {}; copyRegion.size = vertexBufferSize; vkCmdCopyBuffer(copyCmd, vertexStaging.buffer, vertexBuffer.buffer, 1, ©Region); copyRegion.size = indexBufferSize; vkCmdCopyBuffer(copyCmd, indexStaging.buffer, indexBuffer.buffer, 1, ©Region); vulkanDevice->flushCommandBuffer(copyCmd, queue, true); vertexStaging.destroy(); indexStaging.destroy(); } void setupDescriptors() { // We use a single descriptor set for the uniform data that contains both global matrices as well as per-gear model matrices // Pool std::vector poolSizes = { vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1), }; VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, static_cast(gears.size())); VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool)); // Layout std::vector setLayoutBindings = { // Binding 0 : Vertex shader uniform buffer vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0) }; VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout)); // Set VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1); VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet)); VkWriteDescriptorSet writeDescriptorSet = vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffer.descriptor); vkUpdateDescriptorSets(vulkanDevice->logicalDevice, 1, &writeDescriptorSet, 0, nullptr); } void preparePipelines() { // Layout VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayout, 1); VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &pipelineLayout)); // Pipelines VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE); VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_CLOCKWISE, 0); VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE); VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState); VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL); VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0); VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0); std::vector dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR }; VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables); // Solid rendering pipeline // Load shaders std::array shaderStages; shaderStages[0] = loadShader(getShadersPath() + "gears/gears.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getShadersPath() + "gears/gears.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); // Vertex bindings and attributes to match the vertex buffers storing the vertices for the gears VkVertexInputBindingDescription vertexInputBinding = { vks::initializers::vertexInputBindingDescription(0, sizeof(Gear::Vertex), VK_VERTEX_INPUT_RATE_VERTEX) }; std::vector vertexInputAttributes = { vks::initializers::vertexInputAttributeDescription(0, 0, VK_FORMAT_R32G32B32_SFLOAT, offsetof(Gear::Vertex, position)), // Location 0 : Position vks::initializers::vertexInputAttributeDescription(0, 1, VK_FORMAT_R32G32B32_SFLOAT, offsetof(Gear::Vertex, normal)), // Location 1 : Normal vks::initializers::vertexInputAttributeDescription(0, 2, VK_FORMAT_R32G32B32_SFLOAT, offsetof(Gear::Vertex, color)), // Location 2 : Color }; VkPipelineVertexInputStateCreateInfo vertexInputStateCI = vks::initializers::pipelineVertexInputStateCreateInfo(); vertexInputStateCI.vertexBindingDescriptionCount = 1; vertexInputStateCI.pVertexBindingDescriptions = &vertexInputBinding; vertexInputStateCI.vertexAttributeDescriptionCount = static_cast(vertexInputAttributes.size()); vertexInputStateCI.pVertexAttributeDescriptions = vertexInputAttributes.data(); VkGraphicsPipelineCreateInfo pipelineCreateInfo = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass, 0); pipelineCreateInfo.pVertexInputState = &vertexInputStateCI; pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState; pipelineCreateInfo.pRasterizationState = &rasterizationState; pipelineCreateInfo.pColorBlendState = &colorBlendState; pipelineCreateInfo.pMultisampleState = &multisampleState; pipelineCreateInfo.pViewportState = &viewportState; pipelineCreateInfo.pDepthStencilState = &depthStencilState; pipelineCreateInfo.pDynamicState = &dynamicState; pipelineCreateInfo.stageCount = static_cast(shaderStages.size()); pipelineCreateInfo.pStages = shaderStages.data(); VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipeline)); } void buildCommandBuffers() { VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo(); VkClearValue clearValues[2]; clearValues[0].color = defaultClearColor; clearValues[1].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo(); renderPassBeginInfo.renderPass = renderPass; renderPassBeginInfo.renderArea.offset.x = 0; renderPassBeginInfo.renderArea.offset.y = 0; renderPassBeginInfo.renderArea.extent.width = width; renderPassBeginInfo.renderArea.extent.height = height; renderPassBeginInfo.clearValueCount = 2; renderPassBeginInfo.pClearValues = clearValues; for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) { renderPassBeginInfo.framebuffer = frameBuffers[i]; VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo)); vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f); vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0); vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline); // Vertices, indices and uniform data for all gears are stored in single buffers, so we only need to bind one buffer of each type and then index/offset into that for each separate gear VkDeviceSize offsets[1] = { 0 }; vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, nullptr); vkCmdBindVertexBuffers(drawCmdBuffers[i], 0, 1, &vertexBuffer.buffer, offsets); vkCmdBindIndexBuffer(drawCmdBuffers[i], indexBuffer.buffer, 0, VK_INDEX_TYPE_UINT32); for (auto j = 0; j < numGears; j++) { // We use the instance index (last argument) to pass the index of the triangle to the shader // With this we can index into the model matrices array of the uniform buffer like this (see gears.vert): // ubo.model[gl_InstanceIndex]; vkCmdDrawIndexed(drawCmdBuffers[i], gears[j].indexCount, 1, gears[j].indexStart, 0, j); } drawUI(drawCmdBuffers[i]); vkCmdEndRenderPass(drawCmdBuffers[i]); VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i])); } } void prepareUniformBuffers() { // Create the vertex shader uniform buffer block VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBuffer, sizeof(UniformData))); // Map persistent VK_CHECK_RESULT(uniformBuffer.map()); } void updateUniformBuffers() { float degree = timer * 360.0f; // Camera specific global matrices uniformData.projection = camera.matrices.perspective; uniformData.view = camera.matrices.view; uniformData.lightPos = glm::vec4(0.0f, 0.0f, 2.5f, 1.0f); // Update the model matrix for each gear that contains it's position and rotation for (auto i = 0; i < numGears; i++) { Gear gear = gears[i]; uniformData.model[i] = glm::mat4(1.0f); uniformData.model[i] = glm::translate(uniformData.model[i], gear.pos); uniformData.model[i] = glm::rotate(uniformData.model[i], glm::radians((gear.rotSpeed * degree) + gear.rotOffset), glm::vec3(0.0f, 0.0f, 1.0f)); } memcpy(uniformBuffer.mapped, &uniformData, sizeof(UniformData)); } void prepare() { VulkanExampleBase::prepare(); prepareGears(); prepareUniformBuffers(); setupDescriptors(); preparePipelines(); buildCommandBuffers(); prepared = true; } void draw() { VulkanExampleBase::prepareFrame(); submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer]; VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE)); VulkanExampleBase::submitFrame(); } virtual void render() { if (!prepared) return; updateUniformBuffers(); draw(); } }; VULKAN_EXAMPLE_MAIN()