/* * Vulkan Example - Different command buffer update strategies * * While for many basic example workloads command buffers are prebuilt and just reused, * in a real-life setting command buffers are usually recreated all the time * This sample will demonstrate different command buffer update scenarios * * Copyright (C) 2018 by Sascha Willems - www.saschawillems.de * * This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT) */ #include #include #include #include #include #define GLM_FORCE_RADIANS #define GLM_FORCE_DEPTH_ZERO_TO_ONE #include #include #include #include "vulkanexamplebase.h" #include "VulkanBuffer.hpp" #include "VulkanModel.hpp" #define ENABLE_VALIDATION false class VulkanExample : public VulkanExampleBase { public: // Vertex layout for the models vks::VertexLayout vertexLayout = vks::VertexLayout({ vks::VERTEX_COMPONENT_POSITION, vks::VERTEX_COMPONENT_NORMAL, vks::VERTEX_COMPONENT_UV, vks::VERTEX_COMPONENT_COLOR, }); struct { vks::Model scene; } models; struct UBOVS { glm::mat4 projection; glm::mat4 model; } uboVS; vks::Buffer uniformBuffer; VkPipelineLayout pipelineLayout; VkPipeline pipeline; VkDescriptorSetLayout descriptorSetLayout; VkDescriptorSet descriptorSet; // Single command buffer scenario VkFence waitFence; VkCommandPool commandPool; VkCommandBuffer commandBuffer; /// @todo: Multiple command buffers ("render ahead") /// @todo: Only update command buffer(s) if scene changed /// @todo: dynamic scene with frustum culling (maybe terrain + simple trees) std::array pushConstants; VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION) { rotationSpeed = 0.5f; timerSpeed *= 0.5f; title = "Command buffers"; settings.overlay = false; camera.type = Camera::CameraType::lookat; camera.position = { 0.0f, 0.0f, -30.0f }; camera.setRotation(glm::vec3(-32.5f, 45.0f, 0.0f)); camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 64.0f); } ~VulkanExample() { vkDestroyPipeline(device, pipeline, nullptr); vkDestroyPipelineLayout(device, pipelineLayout, nullptr); vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr); models.scene.destroy(); uniformBuffer.destroy(); } void setupDescriptors() { // Pool std::vector poolSizes = { vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1), }; VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes.size(), poolSizes.data(), 1); VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool)); // Layouts std::vector setLayoutBindings = { vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0), }; VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout)); VkPipelineLayoutCreateInfo pipelineLayoutCI = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayout, 1); VkPushConstantRange pushConstantRange = vks::initializers::pushConstantRange(VK_SHADER_STAGE_VERTEX_BIT, sizeof(pushConstants), 0); pipelineLayoutCI.pushConstantRangeCount = 1; pipelineLayoutCI.pPushConstantRanges = &pushConstantRange; VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCI, nullptr, &pipelineLayout)); // Descriptors VkDescriptorSetAllocateInfo descriptorSetAI = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1); VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &descriptorSetAI, &descriptorSet)); VkWriteDescriptorSet writeDescriptorSet = vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffer.descriptor); vkUpdateDescriptorSets(device, 1, &writeDescriptorSet, 0, nullptr); } void preparePipelines() { VkPipelineInputAssemblyStateCreateInfo inputAssemblyStateCI = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE); VkPipelineRasterizationStateCreateInfo rasterizationStateCI = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_CLOCKWISE, 0); VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE); VkPipelineColorBlendStateCreateInfo colorBlendStateCI = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState); VkPipelineDepthStencilStateCreateInfo depthStencilStateCI = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL); VkPipelineViewportStateCreateInfo viewportStateCI = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0); VkPipelineMultisampleStateCreateInfo multisampleStateCI = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0); std::vector dynamicStates = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR }; VkPipelineDynamicStateCreateInfo dynamicStateCI = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStates); // Vertex bindings and attributes std::vector vertexInputBindings = { vks::initializers::vertexInputBindingDescription(0, vertexLayout.stride(), VK_VERTEX_INPUT_RATE_VERTEX) }; std::vector vertexInputAttributes = { vks::initializers::vertexInputAttributeDescription(0, 0, VK_FORMAT_R32G32B32_SFLOAT, 0), // Location 0 : Position vks::initializers::vertexInputAttributeDescription(0, 1, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 3), // Location 1 : Normal vks::initializers::vertexInputAttributeDescription(0, 2, VK_FORMAT_R32G32_SFLOAT, sizeof(float) * 6), // Location 3 : UV vks::initializers::vertexInputAttributeDescription(0, 3, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 8) // Location 3 : Cpöpr }; VkPipelineVertexInputStateCreateInfo vertexInputState = vks::initializers::pipelineVertexInputStateCreateInfo(); vertexInputState.vertexBindingDescriptionCount = static_cast(vertexInputBindings.size()); vertexInputState.pVertexBindingDescriptions = vertexInputBindings.data(); vertexInputState.vertexAttributeDescriptionCount = static_cast(vertexInputAttributes.size()); vertexInputState.pVertexAttributeDescriptions = vertexInputAttributes.data(); // Load shaders std::array shaderStages = { loadShader(getAssetPath() + "shaders/pushconstants/lights.vert.spv", VK_SHADER_STAGE_VERTEX_BIT), loadShader(getAssetPath() + "shaders/pushconstants/lights.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT) }; VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass, 0); pipelineCI.pVertexInputState = &vertexInputState; pipelineCI.pInputAssemblyState = &inputAssemblyStateCI; pipelineCI.pRasterizationState = &rasterizationStateCI; pipelineCI.pColorBlendState = &colorBlendStateCI; pipelineCI.pMultisampleState = &multisampleStateCI; pipelineCI.pViewportState = &viewportStateCI; pipelineCI.pDepthStencilState = &depthStencilStateCI; pipelineCI.pDynamicState = &dynamicStateCI; pipelineCI.stageCount = shaderStages.size(); pipelineCI.pStages = shaderStages.data(); VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipeline)); } void prepareUniformBuffers() { // Vertex shader uniform buffer block VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBuffer, sizeof(uboVS))); // Map persistent VK_CHECK_RESULT(uniformBuffer.map()); updateUniformBuffers(); } void updateUniformBuffers() { uboVS.projection = camera.matrices.perspective; uboVS.model = camera.matrices.view; memcpy(uniformBuffer.mapped, &uboVS, sizeof(uboVS)); } void recordCommandBuffer() { // A fence is used to wait until this command buffer has finished execution and is no longer in-flight // Command buffers can only be re-recorded or destroyed if they are not in-flight VK_CHECK_RESULT(vkWaitForFences(device, 1, &waitFence, VK_TRUE, UINT64_MAX)); VK_CHECK_RESULT(vkResetFences(device, 1, &waitFence)); VkClearValue clearValues[2]; clearValues[0].color = defaultClearColor; clearValues[1].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo(); renderPassBeginInfo.renderPass = renderPass; renderPassBeginInfo.renderArea.offset.x = 0; renderPassBeginInfo.renderArea.offset.y = 0; renderPassBeginInfo.renderArea.extent.width = width; renderPassBeginInfo.renderArea.extent.height = height; renderPassBeginInfo.clearValueCount = 2; renderPassBeginInfo.pClearValues = clearValues; renderPassBeginInfo.framebuffer = frameBuffers[currentBuffer]; VkCommandBufferBeginInfo commandBufferBeginInfo = vks::initializers::commandBufferBeginInfo(); VK_CHECK_RESULT(vkBeginCommandBuffer(commandBuffer, &commandBufferBeginInfo)); vkCmdBeginRenderPass(commandBuffer, &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f); vkCmdSetViewport(commandBuffer, 0, 1, &viewport); VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0); vkCmdSetScissor(commandBuffer, 0, 1, &scissor); // Update light positions // w component = light radius scale const float r = 7.5f; const float sin_t = sin(glm::radians(timer * 360)); const float cos_t = cos(glm::radians(timer * 360)); const float y = 4.0f; pushConstants[0] = glm::vec4(r * 1.1 * sin_t, y, r * 1.1 * cos_t, 1.0f); pushConstants[1] = glm::vec4(-r * sin_t, y, -r * cos_t, 1.0f); pushConstants[2] = glm::vec4(r * 0.85f * sin_t, y, -sin_t * 2.5f, 1.5f); pushConstants[3] = glm::vec4(0.0f, y, r * 1.25f * cos_t, 1.5f); pushConstants[4] = glm::vec4(r * 2.25f * cos_t, y, 0.0f, 1.25f); pushConstants[5] = glm::vec4(r * 2.5f * cos_t, y, r * 2.5f * sin_t, 1.25f); // Submit via push constant (rather than a UBO) vkCmdPushConstants( commandBuffer, pipelineLayout, VK_SHADER_STAGE_VERTEX_BIT, 0, sizeof(pushConstants), pushConstants.data()); vkCmdBindPipeline(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline); vkCmdBindDescriptorSets(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL); VkDeviceSize offsets[1] = { 0 }; vkCmdBindVertexBuffers(commandBuffer, 0, 1, &models.scene.vertices.buffer, offsets); vkCmdBindIndexBuffer(commandBuffer, models.scene.indices.buffer, 0, VK_INDEX_TYPE_UINT32); vkCmdDrawIndexed(commandBuffer, models.scene.indexCount, 1, 0, 0, 0); //drawUI(commandBuffer); vkCmdEndRenderPass(commandBuffer); VK_CHECK_RESULT(vkEndCommandBuffer(commandBuffer)); } void draw() { // Acquire the next image from the swap chain { VkResult acquire = swapChain.acquireNextImage(semaphores.presentComplete, ¤tBuffer); if ((acquire == VK_ERROR_OUT_OF_DATE_KHR) || (acquire == VK_SUBOPTIMAL_KHR)) { windowResize(); } else { VK_CHECK_RESULT(acquire); } } // (Re-)record command buffer if (!paused) { recordCommandBuffer(); } // Command buffer to be sumitted to the queue submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &commandBuffer; // Submit to queue VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, waitFence)); // Present { VkResult present = swapChain.queuePresent(queue, currentBuffer, semaphores.renderComplete); if (!((present == VK_SUCCESS) || (present == VK_SUBOPTIMAL_KHR))) { if (present == VK_ERROR_OUT_OF_DATE_KHR) { windowResize(); return; } else { VK_CHECK_RESULT(present); } } } } void loadAssets() { models.scene.loadFromFile(getAssetPath() + "models/samplescene.dae", vertexLayout, 0.35f, vulkanDevice, queue); } void prepare() { VulkanExampleBase::prepare(); /* Single command buffer, single thread scenario */ // A fence is need to check for command buffer completion before we can recreate it VkFenceCreateInfo fenceCI{ VK_STRUCTURE_TYPE_FENCE_CREATE_INFO, nullptr, VK_FENCE_CREATE_SIGNALED_BIT }; VK_CHECK_RESULT(vkCreateFence(device, &fenceCI, nullptr, &waitFence)); // Create a single command pool for the applications main thread VkCommandPoolCreateInfo commandPoolCI{}; commandPoolCI.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO; /// @todo: Comment flags commandPoolCI.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT; commandPoolCI.queueFamilyIndex = vulkanDevice->queueFamilyIndices.graphics; VK_CHECK_RESULT(vkCreateCommandPool(device, &commandPoolCI, nullptr, &commandPool)); // Create a single command buffer that is recorded every frame VkCommandBufferAllocateInfo cmdBufAllocateInfo = vks::initializers::commandBufferAllocateInfo(commandPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY, 1); VK_CHECK_RESULT(vkAllocateCommandBuffers(device, &cmdBufAllocateInfo, &commandBuffer)); loadAssets(); prepareUniformBuffers(); setupDescriptors(); preparePipelines(); prepared = true; } virtual void render() { if (!prepared) { return; } draw(); if (camera.updated) { updateUniformBuffers(); } } }; VULKAN_EXAMPLE_MAIN()