#version 450 layout (binding = 1) uniform sampler2D sColorMap; layout (binding = 2) uniform sampler2D sNormalHeightMap; layout (binding = 3) uniform UBO { float heightScale; float parallaxBias; float numLayers; int mappingMode; } ubo; layout (location = 0) in vec2 inUV; layout (location = 1) in vec3 inTangentLightPos; layout (location = 2) in vec3 inTangentViewPos; layout (location = 3) in vec3 inTangentFragPos; layout (location = 0) out vec4 outColor; vec2 parallax_uv(vec2 uv, vec3 view_dir, int type) { if (type == 2) { // Parallax mapping float depth = 1.0 - textureLod(sNormalHeightMap, uv, 0.0).a; vec2 p = view_dir.xy * (depth * (ubo.heightScale * 0.5) + ubo.parallaxBias) / view_dir.z; return uv - p; } else { float layer_depth = 1.0 / ubo.numLayers; float cur_layer_depth = 0.0; vec2 delta_uv = view_dir.xy * ubo.heightScale / (view_dir.z * ubo.numLayers); vec2 cur_uv = uv; float depth_from_tex = 1.0 - textureLod(sNormalHeightMap, cur_uv, 0.0).a; for (int i = 0; i < 32; i++) { cur_layer_depth += layer_depth; cur_uv -= delta_uv; depth_from_tex = 1.0 - textureLod(sNormalHeightMap, cur_uv, 0.0).a; if (depth_from_tex < cur_layer_depth) { break; } } if (type == 3) { // Steep parallax mapping return cur_uv; } else { // Parallax occlusion mapping vec2 prev_uv = cur_uv + delta_uv; float next = depth_from_tex - cur_layer_depth; float prev = 1.0 - textureLod(sNormalHeightMap, prev_uv, 0.0).a - cur_layer_depth + layer_depth; float weight = next / (next - prev); return mix(cur_uv, prev_uv, weight); } } } vec2 parallaxMapping(vec2 uv, vec3 viewDir) { float height = 1.0 - textureLod(sNormalHeightMap, uv, 0.0).a; vec2 p = viewDir.xy * (height * (ubo.heightScale * 0.5) + ubo.parallaxBias) / viewDir.z; return uv - p; } vec2 steepParallaxMapping(vec2 uv, vec3 viewDir) { float layerDepth = 1.0 / ubo.numLayers; float currLayerDepth = 0.0; vec2 deltaUV = viewDir.xy * ubo.heightScale / (viewDir.z * ubo.numLayers); vec2 currUV = uv; float height = 1.0 - textureLod(sNormalHeightMap, currUV, 0.0).a; for (int i = 0; i < ubo.numLayers; i++) { currLayerDepth += layerDepth; currUV -= deltaUV; height = 1.0 - textureLod(sNormalHeightMap, currUV, 0.0).a; if (height < currLayerDepth) { break; } } return currUV; } vec2 parallaxOcclusionMapping(vec2 uv, vec3 viewDir) { float layerDepth = 1.0 / ubo.numLayers; float currLayerDepth = 0.0; vec2 deltaUV = viewDir.xy * ubo.heightScale / (viewDir.z * ubo.numLayers); vec2 currUV = uv; float height = 1.0 - textureLod(sNormalHeightMap, currUV, 0.0).a; for (int i = 0; i < ubo.numLayers; i++) { currLayerDepth += layerDepth; currUV -= deltaUV; height = 1.0 - textureLod(sNormalHeightMap, currUV, 0.0).a; if (height < currLayerDepth) { break; } } vec2 prevUV = currUV + deltaUV; float nextDepth = height - currLayerDepth; float prevDepth = 1.0 - textureLod(sNormalHeightMap, prevUV, 0.0).a - currLayerDepth + layerDepth; return mix(currUV, prevUV, nextDepth / (nextDepth - prevDepth)); } void main(void) { vec3 V = normalize(inTangentViewPos - inTangentFragPos); vec2 uv = inUV; if (ubo.mappingMode == 0) { // Color only outColor = texture(sColorMap, inUV); } else { switch(ubo.mappingMode) { case 2: uv = parallaxMapping(inUV, V); break; case 3: uv = steepParallaxMapping(inUV, V); break; case 4: uv = parallaxOcclusionMapping(inUV, V); break; } // Discard fragments at texture border if (uv.x < 0.0 || uv.x > 1.0 || uv.y < 0.0 || uv.y > 1.0) { discard; } vec3 N = normalize(textureLod(sNormalHeightMap, uv, 0.0).rgb * 2.0 - 1.0); vec3 L = normalize(inTangentLightPos - inTangentFragPos); vec3 R = reflect(-L, N); vec3 H = normalize(L + V); vec3 color = texture(sColorMap, uv).rgb; vec3 ambient = 0.2 * color; vec3 diffuse = max(dot(L, N), 0.0) * color; vec3 specular = vec3(0.15) * pow(max(dot(N, H), 0.0), 32.0); outColor = vec4(ambient + diffuse + specular, 1.0f); } }