/* Copyright (c) 2025, Sascha Willems * * SPDX-License-Identifier: MIT * */ import payload; struct Attributes { float2 bary; }; RaytracingAccelerationStructure accelStruct; RWTexture2D image; struct UBO { float4x4 viewInverse; float4x4 projInverse; float4 lightPos; int vertexSize; }; ConstantBuffer ubo; StructuredBuffer vertices; StructuredBuffer indices; struct Vertex { float3 pos; float3 normal; float2 uv; float4 color; float4 _pad0; float4 _pad1; }; Vertex unpack(uint index) { // Unpack the vertices from the SSBO using the glTF vertex structure // The multiplier is the size of the vertex divided by four float components (=16 bytes) const int m = ubo.vertexSize / 16; float4 d0 = vertices[m * index + 0]; float4 d1 = vertices[m * index + 1]; float4 d2 = vertices[m * index + 2]; Vertex v; v.pos = d0.xyz; v.normal = float3(d0.w, d1.x, d1.y); v.color = float4(d2.x, d2.y, d2.z, 1.0); return v; } [shader("raygeneration")] void raygenerationMain() { uint3 LaunchID = DispatchRaysIndex(); uint3 LaunchSize = DispatchRaysDimensions(); const float2 pixelCenter = float2(LaunchID.xy) + float2(0.5, 0.5); const float2 inUV = pixelCenter / float2(LaunchSize.xy); float2 d = inUV * 2.0 - 1.0; float4 target = mul(ubo.projInverse, float4(d.x, d.y, 1, 1)); RayDesc rayDesc; rayDesc.Origin = mul(ubo.viewInverse, float4(0, 0, 0, 1)).xyz; rayDesc.Direction = mul(ubo.viewInverse, float4(normalize(target.xyz), 0)).xyz; rayDesc.TMin = 0.001; rayDesc.TMax = 10000.0; Payload payload; TraceRay(accelStruct, RAY_FLAG_FORCE_OPAQUE, 0xff, 0, 0, 0, rayDesc, payload); image[int2(LaunchID.xy)] = float4(payload.hitValue, 0.0); } [shader("closesthit")] void closesthitMain(inout Payload payload, in Attributes attribs) { uint PrimitiveID = PrimitiveIndex(); int3 index = int3(indices[3 * PrimitiveID], indices[3 * PrimitiveID + 1], indices[3 * PrimitiveID + 2]); Vertex v0 = unpack(index.x); Vertex v1 = unpack(index.y); Vertex v2 = unpack(index.z); // Interpolate normal const float3 barycentricCoords = float3(1.0f - attribs.bary.x - attribs.bary.y, attribs.bary.x, attribs.bary.y); float3 normal = normalize(v0.normal * barycentricCoords.x + v1.normal * barycentricCoords.y + v2.normal * barycentricCoords.z); // Basic lighting float3 lightVector = normalize(ubo.lightPos.xyz); float dot_product = max(dot(lightVector, normal), 0.2); payload.hitValue = v0.color.rgb * dot_product; RayDesc rayDesc; rayDesc.Origin = WorldRayOrigin() + WorldRayDirection() * RayTCurrent(); rayDesc.Direction = lightVector; rayDesc.TMin = 0.001; rayDesc.TMax = 100.0; payload.shadowed = true; // Offset indices to match shadow hit/miss index TraceRay(accelStruct, RAY_FLAG_ACCEPT_FIRST_HIT_AND_END_SEARCH | RAY_FLAG_FORCE_OPAQUE | RAY_FLAG_SKIP_CLOSEST_HIT_SHADER, 0xff, 0, 0, 1, rayDesc, payload); if (payload.shadowed) { payload.hitValue *= 0.3; } } [shader("miss")] void missMain(inout Payload payload) { payload.hitValue = float3(0.0, 0.0, 0.2); }