/* * Vulkan Example - Shadow mapping for directional light sources * * Copyright (C) 2016 by Sascha Willems - www.saschawillems.de * * This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT) */ #include #include #include #include #include #define GLM_FORCE_RADIANS #define GLM_FORCE_DEPTH_ZERO_TO_ONE #include #include #include #include "vulkanexamplebase.h" #include "vulkanMeshLoader.hpp" #define VERTEX_BUFFER_BIND_ID 0 #define ENABLE_VALIDATION false // 16 bits of depth is enough for such a small scene #define DEPTH_FORMAT VK_FORMAT_D16_UNORM // Shadowmap properties #if defined(__ANDROID__) #define SHADOWMAP_DIM 1024 #else #define SHADOWMAP_DIM 2048 #endif #define SHADOWMAP_FILTER VK_FILTER_LINEAR // Offscreen frame buffer properties #define FB_DIM SHADOWMAP_DIM #define FB_COLOR_FORMAT VK_FORMAT_R8G8B8A8_UNORM // Vertex layout for this example std::vector vertexLayout = { vkMeshLoader::VERTEX_LAYOUT_POSITION, vkMeshLoader::VERTEX_LAYOUT_UV, vkMeshLoader::VERTEX_LAYOUT_COLOR, vkMeshLoader::VERTEX_LAYOUT_NORMAL }; class VulkanExample : public VulkanExampleBase { public: bool displayShadowMap = false; bool lightPOV = false; // Keep depth range as small as possible // for better shadow map precision float zNear = 1.0f; float zFar = 96.0f; // Depth bias (and slope) are used to avoid shadowing artefacts // Constant depth bias factor (always applied) float depthBiasConstant = 1.25f; // Slope depth bias factor, applied depending on polygon's slope float depthBiasSlope = 1.75f; glm::vec3 lightPos = glm::vec3(); float lightFOV = 45.0f; struct { vkMeshLoader::MeshBuffer scene; vkMeshLoader::MeshBuffer quad; } meshes; struct { VkPipelineVertexInputStateCreateInfo inputState; std::vector bindingDescriptions; std::vector attributeDescriptions; } vertices; vkTools::UniformData uniformDataVS; struct { vkTools::UniformData scene; vkTools::UniformData offscreen; } uniformData; struct { glm::mat4 projection; glm::mat4 model; } uboVSquad; struct { glm::mat4 projection; glm::mat4 view; glm::mat4 model; glm::mat4 depthBiasMVP; glm::vec3 lightPos; } uboVSscene; struct { glm::mat4 depthMVP; } uboOffscreenVS; struct { VkPipeline quad; VkPipeline offscreen; VkPipeline scene; } pipelines; struct { VkPipelineLayout quad; VkPipelineLayout offscreen; } pipelineLayouts; struct { VkDescriptorSet offscreen; VkDescriptorSet scene; } descriptorSets; VkDescriptorSet descriptorSet; VkDescriptorSetLayout descriptorSetLayout; // Framebuffer for offscreen rendering struct FrameBufferAttachment { VkImage image; VkDeviceMemory mem; VkImageView view; }; struct FrameBuffer { int32_t width, height; VkFramebuffer frameBuffer; FrameBufferAttachment color, depth; VkRenderPass renderPass; VkSampler depthSampler; } offScreenFrameBuf; VkCommandBuffer offScreenCmdBuffer = VK_NULL_HANDLE; // Semaphore used to synchronize offscreen rendering before using it's texture target for sampling VkSemaphore offscreenSemaphore = VK_NULL_HANDLE; VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION) { zoom = -20.0f; rotation = { -15.0f, -390.0f, 0.0f }; enableTextOverlay = true; title = "Vulkan Example - Projected shadow mapping"; timerSpeed *= 0.5f; } ~VulkanExample() { // Clean up used Vulkan resources // Note : Inherited destructor cleans up resources stored in base class // Frame buffer // Color attachment vkDestroyImageView(device, offScreenFrameBuf.color.view, nullptr); vkDestroyImage(device, offScreenFrameBuf.color.image, nullptr); vkFreeMemory(device, offScreenFrameBuf.color.mem, nullptr); // Depth attachment vkDestroyImageView(device, offScreenFrameBuf.depth.view, nullptr); vkDestroyImage(device, offScreenFrameBuf.depth.image, nullptr); vkFreeMemory(device, offScreenFrameBuf.depth.mem, nullptr); vkDestroyFramebuffer(device, offScreenFrameBuf.frameBuffer, nullptr); vkDestroyRenderPass(device, offScreenFrameBuf.renderPass, nullptr); vkDestroyPipeline(device, pipelines.quad, nullptr); vkDestroyPipeline(device, pipelines.offscreen, nullptr); vkDestroyPipeline(device, pipelines.scene, nullptr); vkDestroyPipelineLayout(device, pipelineLayouts.quad, nullptr); vkDestroyPipelineLayout(device, pipelineLayouts.offscreen, nullptr); vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr); // Meshes vkMeshLoader::freeMeshBufferResources(device, &meshes.scene); vkMeshLoader::freeMeshBufferResources(device, &meshes.quad); // Uniform buffers vkTools::destroyUniformData(device, &uniformDataVS); vkTools::destroyUniformData(device, &uniformData.offscreen); vkTools::destroyUniformData(device, &uniformData.scene); vkFreeCommandBuffers(device, cmdPool, 1, &offScreenCmdBuffer); vkDestroySemaphore(device, offscreenSemaphore, nullptr); } // Set up a separate render pass for the offscreen frame buffer // This is necessary as the offscreen frame buffer attachments // use formats different to the ones from the visible frame buffer // and at least the depth one may not be compatible void prepareOffscreenRenderpass() { VkAttachmentDescription attDesc[2]; attDesc[0].format = FB_COLOR_FORMAT; attDesc[0].samples = VK_SAMPLE_COUNT_1_BIT; attDesc[0].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; attDesc[0].storeOp = VK_ATTACHMENT_STORE_OP_STORE; attDesc[0].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; attDesc[0].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; attDesc[0].initialLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; attDesc[0].finalLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; attDesc[0].flags = VK_FLAGS_NONE; attDesc[1].format = DEPTH_FORMAT; attDesc[1].samples = VK_SAMPLE_COUNT_1_BIT; attDesc[1].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; // Since we need to copy the depth attachment contents to our texture // used for shadow mapping we must use STORE_OP_STORE to make sure that // the depth attachment contents are preserved after rendering to it // has finished attDesc[1].storeOp = VK_ATTACHMENT_STORE_OP_STORE; attDesc[1].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; attDesc[1].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; attDesc[1].initialLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; attDesc[1].finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; attDesc[1].flags = VK_FLAGS_NONE; VkAttachmentReference colorReference = {}; colorReference.attachment = 0; colorReference.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; VkAttachmentReference depthReference = {}; depthReference.attachment = 1; depthReference.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; VkSubpassDescription subpass = {}; subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS; subpass.colorAttachmentCount = 1; subpass.pColorAttachments = &colorReference; subpass.pDepthStencilAttachment = &depthReference; VkRenderPassCreateInfo renderPassCreateInfo = vkTools::initializers::renderPassCreateInfo(); renderPassCreateInfo.attachmentCount = 2; renderPassCreateInfo.pAttachments = attDesc; renderPassCreateInfo.subpassCount = 1; renderPassCreateInfo.pSubpasses = &subpass; VK_CHECK_RESULT(vkCreateRenderPass(device, &renderPassCreateInfo, nullptr, &offScreenFrameBuf.renderPass)); } void prepareOffscreenFramebuffer() { offScreenFrameBuf.width = FB_DIM; offScreenFrameBuf.height = FB_DIM; VkFormat fbColorFormat = FB_COLOR_FORMAT; // Color attachment VkImageCreateInfo image = vkTools::initializers::imageCreateInfo(); image.imageType = VK_IMAGE_TYPE_2D; image.format = fbColorFormat; image.extent.width = offScreenFrameBuf.width; image.extent.height = offScreenFrameBuf.height; image.extent.depth = 1; image.mipLevels = 1; image.arrayLayers = 1; image.samples = VK_SAMPLE_COUNT_1_BIT; image.tiling = VK_IMAGE_TILING_OPTIMAL; // Image of the framebuffer is blit source image.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT; VkMemoryAllocateInfo memAlloc = vkTools::initializers::memoryAllocateInfo(); VkMemoryRequirements memReqs; VkImageViewCreateInfo colorImageView = vkTools::initializers::imageViewCreateInfo(); colorImageView.viewType = VK_IMAGE_VIEW_TYPE_2D; colorImageView.format = fbColorFormat; colorImageView.flags = 0; colorImageView.subresourceRange = {}; colorImageView.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; colorImageView.subresourceRange.baseMipLevel = 0; colorImageView.subresourceRange.levelCount = 1; colorImageView.subresourceRange.baseArrayLayer = 0; colorImageView.subresourceRange.layerCount = 1; VK_CHECK_RESULT(vkCreateImage(device, &image, nullptr, &offScreenFrameBuf.color.image)); vkGetImageMemoryRequirements(device, offScreenFrameBuf.color.image, &memReqs); memAlloc.allocationSize = memReqs.size; memAlloc.memoryTypeIndex = getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &offScreenFrameBuf.color.mem)); VK_CHECK_RESULT(vkBindImageMemory(device, offScreenFrameBuf.color.image, offScreenFrameBuf.color.mem, 0)); VkCommandBuffer layoutCmd = VulkanExampleBase::createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true); vkTools::setImageLayout( layoutCmd, offScreenFrameBuf.color.image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL); colorImageView.image = offScreenFrameBuf.color.image; VK_CHECK_RESULT(vkCreateImageView(device, &colorImageView, nullptr, &offScreenFrameBuf.color.view)); // Depth stencil attachment image.format = DEPTH_FORMAT; // We will sample directly from the depth attachment for the shadow mapping image.usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | VK_IMAGE_USAGE_SAMPLED_BIT; VkImageViewCreateInfo depthStencilView = vkTools::initializers::imageViewCreateInfo(); depthStencilView.viewType = VK_IMAGE_VIEW_TYPE_2D; depthStencilView.format = DEPTH_FORMAT; depthStencilView.subresourceRange = {}; depthStencilView.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT; depthStencilView.subresourceRange.baseMipLevel = 0; depthStencilView.subresourceRange.levelCount = 1; depthStencilView.subresourceRange.baseArrayLayer = 0; depthStencilView.subresourceRange.layerCount = 1; VK_CHECK_RESULT(vkCreateImage(device, &image, nullptr, &offScreenFrameBuf.depth.image)); vkGetImageMemoryRequirements(device, offScreenFrameBuf.depth.image, &memReqs); memAlloc.allocationSize = memReqs.size; memAlloc.memoryTypeIndex = getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &offScreenFrameBuf.depth.mem)); VK_CHECK_RESULT(vkBindImageMemory(device, offScreenFrameBuf.depth.image, offScreenFrameBuf.depth.mem, 0)); // Set the initial layout to shader read instead of attachment // This is done as teh render loop does the actualy image layout transitions vkTools::setImageLayout( layoutCmd, offScreenFrameBuf.depth.image, VK_IMAGE_ASPECT_DEPTH_BIT, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL); VulkanExampleBase::flushCommandBuffer(layoutCmd, queue, true); depthStencilView.image = offScreenFrameBuf.depth.image; VK_CHECK_RESULT(vkCreateImageView(device, &depthStencilView, nullptr, &offScreenFrameBuf.depth.view)); // Create sampler used to sample from depth attachment // in shadowing fragment shader VkSamplerCreateInfo sampler = vkTools::initializers::samplerCreateInfo(); sampler.magFilter = SHADOWMAP_FILTER; sampler.minFilter = SHADOWMAP_FILTER; sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR; sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE; sampler.addressModeV = sampler.addressModeU; sampler.addressModeW = sampler.addressModeU; sampler.mipLodBias = 0.0f; sampler.maxAnisotropy = 0; sampler.minLod = 0.0f; sampler.maxLod = 1.0f; sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE; VK_CHECK_RESULT(vkCreateSampler(device, &sampler, nullptr, &offScreenFrameBuf.depthSampler)); VkImageView attachments[2]; attachments[0] = offScreenFrameBuf.color.view; attachments[1] = offScreenFrameBuf.depth.view; prepareOffscreenRenderpass(); // Create frame buffer VkFramebufferCreateInfo fbufCreateInfo = vkTools::initializers::framebufferCreateInfo(); fbufCreateInfo.renderPass = offScreenFrameBuf.renderPass; fbufCreateInfo.attachmentCount = 2; fbufCreateInfo.pAttachments = attachments; fbufCreateInfo.width = offScreenFrameBuf.width; fbufCreateInfo.height = offScreenFrameBuf.height; fbufCreateInfo.layers = 1; VK_CHECK_RESULT(vkCreateFramebuffer(device, &fbufCreateInfo, nullptr, &offScreenFrameBuf.frameBuffer)); } void buildOffscreenCommandBuffer() { if (offScreenCmdBuffer == VK_NULL_HANDLE) { offScreenCmdBuffer = VulkanExampleBase::createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, false); } // Create a semaphore used to synchronize offscreen rendering and usage VkSemaphoreCreateInfo semaphoreCreateInfo = vkTools::initializers::semaphoreCreateInfo(); VK_CHECK_RESULT(vkCreateSemaphore(device, &semaphoreCreateInfo, nullptr, &offscreenSemaphore)); VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo(); VkClearValue clearValues[2]; clearValues[0].color = { { 0.0f, 0.0f, 0.0f, 1.0f } }; clearValues[1].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo(); renderPassBeginInfo.renderPass = offScreenFrameBuf.renderPass; renderPassBeginInfo.framebuffer = offScreenFrameBuf.frameBuffer; renderPassBeginInfo.renderArea.offset.x = 0; renderPassBeginInfo.renderArea.offset.y = 0; renderPassBeginInfo.renderArea.extent.width = offScreenFrameBuf.width; renderPassBeginInfo.renderArea.extent.height = offScreenFrameBuf.height; renderPassBeginInfo.clearValueCount = 2; renderPassBeginInfo.pClearValues = clearValues; VK_CHECK_RESULT(vkBeginCommandBuffer(offScreenCmdBuffer, &cmdBufInfo)); // Change back layout of the depth attachment after sampling in the fragment shader vkTools::setImageLayout( offScreenCmdBuffer, offScreenFrameBuf.depth.image, VK_IMAGE_ASPECT_DEPTH_BIT, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL); VkViewport viewport = vkTools::initializers::viewport((float)offScreenFrameBuf.width, (float)offScreenFrameBuf.height, 0.0f, 1.0f); vkCmdSetViewport(offScreenCmdBuffer, 0, 1, &viewport); VkRect2D scissor = vkTools::initializers::rect2D(offScreenFrameBuf.width, offScreenFrameBuf.height, 0, 0); vkCmdSetScissor(offScreenCmdBuffer, 0, 1, &scissor); // Set depth bias (aka "Polygon offset") // Required to avoid shadow mapping artefacts vkCmdSetDepthBias( offScreenCmdBuffer, depthBiasConstant, 0.0f, depthBiasSlope); vkCmdBeginRenderPass(offScreenCmdBuffer, &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); vkCmdBindPipeline(offScreenCmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.offscreen); vkCmdBindDescriptorSets(offScreenCmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.offscreen, 0, 1, &descriptorSets.offscreen, 0, NULL); VkDeviceSize offsets[1] = { 0 }; vkCmdBindVertexBuffers(offScreenCmdBuffer, VERTEX_BUFFER_BIND_ID, 1, &meshes.scene.vertices.buf, offsets); vkCmdBindIndexBuffer(offScreenCmdBuffer, meshes.scene.indices.buf, 0, VK_INDEX_TYPE_UINT32); vkCmdDrawIndexed(offScreenCmdBuffer, meshes.scene.indexCount, 1, 0, 0, 0); vkCmdEndRenderPass(offScreenCmdBuffer); // Change back layout of the depth attachment after sampling in the fragment shader vkTools::setImageLayout( offScreenCmdBuffer, offScreenFrameBuf.depth.image, VK_IMAGE_ASPECT_DEPTH_BIT, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL); VK_CHECK_RESULT(vkEndCommandBuffer(offScreenCmdBuffer)); } void buildCommandBuffers() { VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo(); VkClearValue clearValues[2]; clearValues[0].color = defaultClearColor; clearValues[1].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo(); renderPassBeginInfo.renderPass = renderPass; renderPassBeginInfo.renderArea.offset.x = 0; renderPassBeginInfo.renderArea.offset.y = 0; renderPassBeginInfo.renderArea.extent.width = width; renderPassBeginInfo.renderArea.extent.height = height; renderPassBeginInfo.clearValueCount = 2; renderPassBeginInfo.pClearValues = clearValues; for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) { // Set target frame buffer renderPassBeginInfo.framebuffer = frameBuffers[i]; VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo)); vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); VkViewport viewport = vkTools::initializers::viewport((float)width, (float)height, 0.0f, 1.0f); vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); VkRect2D scissor = vkTools::initializers::rect2D(width, height, 0, 0); vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor); VkDeviceSize offsets[1] = { 0 }; vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.quad, 0, 1, &descriptorSet, 0, NULL); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.quad); // Visualize shadow map if (displayShadowMap) { vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &meshes.quad.vertices.buf, offsets); vkCmdBindIndexBuffer(drawCmdBuffers[i], meshes.quad.indices.buf, 0, VK_INDEX_TYPE_UINT32); vkCmdDrawIndexed(drawCmdBuffers[i], meshes.quad.indexCount, 1, 0, 0, 0); } // 3D scene vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.quad, 0, 1, &descriptorSets.scene, 0, NULL); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.scene); vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &meshes.scene.vertices.buf, offsets); vkCmdBindIndexBuffer(drawCmdBuffers[i], meshes.scene.indices.buf, 0, VK_INDEX_TYPE_UINT32); vkCmdDrawIndexed(drawCmdBuffers[i], meshes.scene.indexCount, 1, 0, 0, 0); vkCmdEndRenderPass(drawCmdBuffers[i]); VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i])); } } void loadMeshes() { loadMesh(getAssetPath() + "models/vulkanscene_shadow.dae", &meshes.scene, vertexLayout, 4.0f); } void generateQuad() { // Setup vertices for a single uv-mapped quad struct Vertex { float pos[3]; float uv[2]; float col[3]; float normal[3]; }; #define QUAD_COLOR_NORMAL { 1.0f, 1.0f, 1.0f }, { 0.0f, 0.0f, 1.0f } std::vector vertexBuffer = { { { 1.0f, 1.0f, 0.0f },{ 1.0f, 1.0f }, QUAD_COLOR_NORMAL }, { { 0.0f, 1.0f, 0.0f },{ 0.0f, 1.0f }, QUAD_COLOR_NORMAL }, { { 0.0f, 0.0f, 0.0f },{ 0.0f, 0.0f }, QUAD_COLOR_NORMAL }, { { 1.0f, 0.0f, 0.0f },{ 1.0f, 0.0f }, QUAD_COLOR_NORMAL } }; #undef QUAD_COLOR_NORMAL createBuffer( VK_BUFFER_USAGE_VERTEX_BUFFER_BIT, vertexBuffer.size() * sizeof(Vertex), vertexBuffer.data(), &meshes.quad.vertices.buf, &meshes.quad.vertices.mem); // Setup indices std::vector indexBuffer = { 0,1,2, 2,3,0 }; meshes.quad.indexCount = indexBuffer.size(); createBuffer( VK_BUFFER_USAGE_INDEX_BUFFER_BIT, indexBuffer.size() * sizeof(uint32_t), indexBuffer.data(), &meshes.quad.indices.buf, &meshes.quad.indices.mem); } void setupVertexDescriptions() { // Binding description vertices.bindingDescriptions.resize(1); vertices.bindingDescriptions[0] = vkTools::initializers::vertexInputBindingDescription( VERTEX_BUFFER_BIND_ID, vkMeshLoader::vertexSize(vertexLayout), VK_VERTEX_INPUT_RATE_VERTEX); // Attribute descriptions vertices.attributeDescriptions.resize(4); // Location 0 : Position vertices.attributeDescriptions[0] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 0, VK_FORMAT_R32G32B32_SFLOAT, 0); // Location 1 : Texture coordinates vertices.attributeDescriptions[1] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 1, VK_FORMAT_R32G32_SFLOAT, sizeof(float) * 3); // Location 2 : Color vertices.attributeDescriptions[2] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 2, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 5); // Location 3 : Normal vertices.attributeDescriptions[3] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 3, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 8); vertices.inputState = vkTools::initializers::pipelineVertexInputStateCreateInfo(); vertices.inputState.vertexBindingDescriptionCount = vertices.bindingDescriptions.size(); vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data(); vertices.inputState.vertexAttributeDescriptionCount = vertices.attributeDescriptions.size(); vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data(); } void setupDescriptorPool() { // Example uses three ubos and two image samplers std::vector poolSizes = { vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 6), vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 4) }; VkDescriptorPoolCreateInfo descriptorPoolInfo = vkTools::initializers::descriptorPoolCreateInfo( poolSizes.size(), poolSizes.data(), 3); VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool)); } void setupDescriptorSetLayout() { // Textured quad pipeline layout std::vector setLayoutBindings = { // Binding 0 : Vertex shader uniform buffer vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0), // Binding 1 : Fragment shader image sampler vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1) }; VkDescriptorSetLayoutCreateInfo descriptorLayout = vkTools::initializers::descriptorSetLayoutCreateInfo( setLayoutBindings.data(), setLayoutBindings.size()); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout)); VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = vkTools::initializers::pipelineLayoutCreateInfo( &descriptorSetLayout, 1); VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayouts.quad)); // Offscreen pipeline layout VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayouts.offscreen)); } void setupDescriptorSets() { // Textured quad descriptor set VkDescriptorSetAllocateInfo allocInfo = vkTools::initializers::descriptorSetAllocateInfo( descriptorPool, &descriptorSetLayout, 1); VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet)); // Image descriptor for the shadow map attachment VkDescriptorImageInfo texDescriptor = vkTools::initializers::descriptorImageInfo( offScreenFrameBuf.depthSampler, offScreenFrameBuf.depth.view, VK_IMAGE_LAYOUT_GENERAL); std::vector writeDescriptorSets = { // Binding 0 : Vertex shader uniform buffer vkTools::initializers::writeDescriptorSet( descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformDataVS.descriptor), // Binding 1 : Fragment shader texture sampler vkTools::initializers::writeDescriptorSet( descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &texDescriptor) }; vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL); // Offscreen VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.offscreen)); std::vector offScreenWriteDescriptorSets = { // Binding 0 : Vertex shader uniform buffer vkTools::initializers::writeDescriptorSet( descriptorSets.offscreen, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformData.offscreen.descriptor), }; vkUpdateDescriptorSets(device, offScreenWriteDescriptorSets.size(), offScreenWriteDescriptorSets.data(), 0, NULL); // 3D scene VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.scene)); // Image descriptor for the shadow map attachment texDescriptor.sampler = offScreenFrameBuf.depthSampler; texDescriptor.imageView = offScreenFrameBuf.depth.view; std::vector sceneDescriptorSets = { // Binding 0 : Vertex shader uniform buffer vkTools::initializers::writeDescriptorSet( descriptorSets.scene, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformData.scene.descriptor), // Binding 1 : Fragment shader shadow sampler vkTools::initializers::writeDescriptorSet( descriptorSets.scene, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &texDescriptor) }; vkUpdateDescriptorSets(device, sceneDescriptorSets.size(), sceneDescriptorSets.data(), 0, NULL); } void preparePipelines() { VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vkTools::initializers::pipelineInputAssemblyStateCreateInfo( VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE); VkPipelineRasterizationStateCreateInfo rasterizationState = vkTools::initializers::pipelineRasterizationStateCreateInfo( VK_POLYGON_MODE_FILL, VK_CULL_MODE_NONE, VK_FRONT_FACE_CLOCKWISE, 0); VkPipelineColorBlendAttachmentState blendAttachmentState = vkTools::initializers::pipelineColorBlendAttachmentState( 0xf, VK_FALSE); VkPipelineColorBlendStateCreateInfo colorBlendState = vkTools::initializers::pipelineColorBlendStateCreateInfo( 1, &blendAttachmentState); VkPipelineDepthStencilStateCreateInfo depthStencilState = vkTools::initializers::pipelineDepthStencilStateCreateInfo( VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL); VkPipelineViewportStateCreateInfo viewportState = vkTools::initializers::pipelineViewportStateCreateInfo(1, 1, 0); VkPipelineMultisampleStateCreateInfo multisampleState = vkTools::initializers::pipelineMultisampleStateCreateInfo( VK_SAMPLE_COUNT_1_BIT, 0); std::vector dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR }; VkPipelineDynamicStateCreateInfo dynamicState = vkTools::initializers::pipelineDynamicStateCreateInfo( dynamicStateEnables.data(), dynamicStateEnables.size(), 0); // Solid rendering pipeline // Load shaders std::array shaderStages; shaderStages[0] = loadShader(getAssetPath() + "shaders/shadowmapping/quad.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getAssetPath() + "shaders/shadowmapping/quad.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); VkGraphicsPipelineCreateInfo pipelineCreateInfo = vkTools::initializers::pipelineCreateInfo( pipelineLayouts.quad, renderPass, 0); pipelineCreateInfo.pVertexInputState = &vertices.inputState; pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState; pipelineCreateInfo.pRasterizationState = &rasterizationState; pipelineCreateInfo.pColorBlendState = &colorBlendState; pipelineCreateInfo.pMultisampleState = &multisampleState; pipelineCreateInfo.pViewportState = &viewportState; pipelineCreateInfo.pDepthStencilState = &depthStencilState; pipelineCreateInfo.pDynamicState = &dynamicState; pipelineCreateInfo.stageCount = shaderStages.size(); pipelineCreateInfo.pStages = shaderStages.data(); VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.quad)); // 3D scene shaderStages[0] = loadShader(getAssetPath() + "shaders/shadowmapping/scene.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getAssetPath() + "shaders/shadowmapping/scene.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); rasterizationState.cullMode = VK_CULL_MODE_BACK_BIT; VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.scene)); // Offscreen pipeline shaderStages[0] = loadShader(getAssetPath() + "shaders/shadowmapping/offscreen.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getAssetPath() + "shaders/shadowmapping/offscreen.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); // Cull front faces depthStencilState.depthCompareOp = VK_COMPARE_OP_LESS_OR_EQUAL; // Enable depth bias rasterizationState.depthBiasEnable = VK_TRUE; // Add depth bias to dynamic state, so we can change it at runtime dynamicStateEnables.push_back(VK_DYNAMIC_STATE_DEPTH_BIAS); dynamicState = vkTools::initializers::pipelineDynamicStateCreateInfo( dynamicStateEnables.data(), dynamicStateEnables.size(), 0); pipelineCreateInfo.layout = pipelineLayouts.offscreen; pipelineCreateInfo.renderPass = offScreenFrameBuf.renderPass; VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.offscreen)); } // Prepare and initialize uniform buffer containing shader uniforms void prepareUniformBuffers() { // Debug quad vertex shader uniform buffer block createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, sizeof(uboVSscene), nullptr, &uniformDataVS.buffer, &uniformDataVS.memory, &uniformDataVS.descriptor); // Offsvreen vertex shader uniform buffer block createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, sizeof(uboOffscreenVS), nullptr, &uniformData.offscreen.buffer, &uniformData.offscreen.memory, &uniformData.offscreen.descriptor); // Scene vertex shader uniform buffer block createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, sizeof(uboVSscene), nullptr, &uniformData.scene.buffer, &uniformData.scene.memory, &uniformData.scene.descriptor); updateLight(); updateUniformBufferOffscreen(); updateUniformBuffers(); } void updateLight() { // Animate the light source lightPos.x = cos(glm::radians(timer * 360.0f)) * 40.0f; lightPos.y = -50.0f + sin(glm::radians(timer * 360.0f)) * 20.0f; lightPos.z = 25.0f + sin(glm::radians(timer * 360.0f)) * 5.0f; } void updateUniformBuffers() { // Shadow map debug quad float AR = (float)height / (float)width; uboVSquad.projection = glm::ortho(2.5f / AR, 0.0f, 0.0f, 2.5f, -1.0f, 1.0f); uboVSquad.model = glm::mat4(); uint8_t *pData; VK_CHECK_RESULT(vkMapMemory(device, uniformDataVS.memory, 0, sizeof(uboVSquad), 0, (void **)&pData)); memcpy(pData, &uboVSquad, sizeof(uboVSquad)); vkUnmapMemory(device, uniformDataVS.memory); // 3D scene uboVSscene.projection = glm::perspective(glm::radians(45.0f), (float)width / (float)height, zNear, zFar); uboVSscene.view = glm::translate(glm::mat4(), glm::vec3(0.0f, 0.0f, zoom)); uboVSscene.view = glm::rotate(uboVSscene.view, glm::radians(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f)); uboVSscene.view = glm::rotate(uboVSscene.view, glm::radians(rotation.y), glm::vec3(0.0f, 1.0f, 0.0f)); uboVSscene.view = glm::rotate(uboVSscene.view, glm::radians(rotation.z), glm::vec3(0.0f, 0.0f, 1.0f)); uboVSscene.model = glm::mat4(); uboVSscene.lightPos = lightPos; // Render scene from light's point of view if (lightPOV) { uboVSscene.projection = glm::perspective(glm::radians(lightFOV), (float)width / (float)height, zNear, zFar); uboVSscene.view = glm::lookAt(lightPos, glm::vec3(0.0f), glm::vec3(0.0f, 1.0f, 0.0f)); } uboVSscene.depthBiasMVP = uboOffscreenVS.depthMVP; VK_CHECK_RESULT(vkMapMemory(device, uniformData.scene.memory, 0, sizeof(uboVSscene), 0, (void **)&pData)); memcpy(pData, &uboVSscene, sizeof(uboVSscene)); vkUnmapMemory(device, uniformData.scene.memory); } void updateUniformBufferOffscreen() { // Matrix from light's point of view glm::mat4 depthProjectionMatrix = glm::perspective(glm::radians(lightFOV), 1.0f, zNear, zFar); glm::mat4 depthViewMatrix = glm::lookAt(lightPos, glm::vec3(0.0f), glm::vec3(0, 1, 0)); glm::mat4 depthModelMatrix = glm::mat4(); uboOffscreenVS.depthMVP = depthProjectionMatrix * depthViewMatrix * depthModelMatrix; uint8_t *pData; VK_CHECK_RESULT(vkMapMemory(device, uniformData.offscreen.memory, 0, sizeof(uboOffscreenVS), 0, (void **)&pData)); memcpy(pData, &uboOffscreenVS, sizeof(uboOffscreenVS)); vkUnmapMemory(device, uniformData.offscreen.memory); } void draw() { VulkanExampleBase::prepareFrame(); // The scene render command buffer has to wait for the offscreen // rendering (and transfer) to be finished before using // the shadow map, so we need to synchronize // We use an additional semaphore for this // Offscreen rendering // Wait for swap chain presentation to finish submitInfo.pWaitSemaphores = &semaphores.presentComplete; // Signal ready with offscreen semaphore submitInfo.pSignalSemaphores = &offscreenSemaphore; // Submit work submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &offScreenCmdBuffer; VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE)); // Scene rendering // Wait for offscreen semaphore submitInfo.pWaitSemaphores = &offscreenSemaphore; // Signal ready with render complete semaphpre submitInfo.pSignalSemaphores = &semaphores.renderComplete; // Submit work submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer]; VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE)); VulkanExampleBase::submitFrame(); } void prepare() { VulkanExampleBase::prepare(); generateQuad(); loadMeshes(); prepareOffscreenFramebuffer(); setupVertexDescriptions(); prepareUniformBuffers(); setupDescriptorSetLayout(); preparePipelines(); setupDescriptorPool(); setupDescriptorSets(); buildCommandBuffers(); buildOffscreenCommandBuffer(); prepared = true; } virtual void render() { if (!prepared) return; draw(); if (!paused) { updateLight(); updateUniformBufferOffscreen(); updateUniformBuffers(); } } virtual void viewChanged() { updateUniformBufferOffscreen(); updateUniformBuffers(); } void toggleShadowMapDisplay() { displayShadowMap = !displayShadowMap; buildCommandBuffers(); } void toogleLightPOV() { lightPOV = !lightPOV; viewChanged(); } virtual void keyPressed(uint32_t keyCode) { switch (keyCode) { case 0x53: case GAMEPAD_BUTTON_A: toggleShadowMapDisplay(); break; case 0x4C: case GAMEPAD_BUTTON_X: toogleLightPOV(); break; } } virtual void getOverlayText(VulkanTextOverlay *textOverlay) { #if defined(__ANDROID__) textOverlay->addText("Press \"Button A\" to toggle shadow map", 5.0f, 85.0f, VulkanTextOverlay::alignLeft); textOverlay->addText("Press \"Button X\" to toggle light's pov", 5.0f, 100.0f, VulkanTextOverlay::alignLeft); #else textOverlay->addText("Press \"s\" to toggle shadow map", 5.0f, 85.0f, VulkanTextOverlay::alignLeft); textOverlay->addText("Press \"l\" to toggle light's pov", 5.0f, 100.0f, VulkanTextOverlay::alignLeft); #endif } }; VulkanExample *vulkanExample; #if defined(_WIN32) LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam) { if (vulkanExample != NULL) { vulkanExample->handleMessages(hWnd, uMsg, wParam, lParam); } return (DefWindowProc(hWnd, uMsg, wParam, lParam)); } #elif defined(__linux__) && !defined(__ANDROID__) static void handleEvent(const xcb_generic_event_t *event) { if (vulkanExample != NULL) { vulkanExample->handleEvent(event); } } #endif // Main entry point #if defined(_WIN32) // Windows entry point int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR pCmdLine, int nCmdShow) #elif defined(__ANDROID__) // Android entry point void android_main(android_app* state) #elif defined(__linux__) // Linux entry point int main(const int argc, const char *argv[]) #endif { #if defined(__ANDROID__) // Removing this may cause the compiler to omit the main entry point // which would make the application crash at start app_dummy(); #endif vulkanExample = new VulkanExample(); #if defined(_WIN32) vulkanExample->setupWindow(hInstance, WndProc); #elif defined(__ANDROID__) // Attach vulkan example to global android application state state->userData = vulkanExample; state->onAppCmd = VulkanExample::handleAppCommand; state->onInputEvent = VulkanExample::handleAppInput; vulkanExample->androidApp = state; #elif defined(__linux__) vulkanExample->setupWindow(); #endif #if !defined(__ANDROID__) vulkanExample->initSwapchain(); vulkanExample->prepare(); #endif vulkanExample->renderLoop(); delete(vulkanExample); #if !defined(__ANDROID__) return 0; #endif }