/* * Vulkan Example - Texture loading (and display) example (including mip maps) * * Copyright (C) 2016 by Sascha Willems - www.saschawillems.de * * This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT) */ #include #include #include #include #include #define GLM_FORCE_RADIANS #define GLM_FORCE_DEPTH_ZERO_TO_ONE #include #include #include #include "vulkanexamplebase.h" #define VERTEX_BUFFER_BIND_ID 0 #define ENABLE_VALIDATION false // Vertex layout for this example struct Vertex { float pos[3]; float uv[2]; float normal[3]; }; class VulkanExample : public VulkanExampleBase { public: // Contains all Vulkan objects that are required to store and use a texture // Note that this repository contains a texture loader (vulkantextureloader.h) // that encapsulates texture loading functionality in a class that is used // in subsequent demos struct Texture { VkSampler sampler; VkImage image; VkImageLayout imageLayout; VkDeviceMemory deviceMemory; VkImageView view; uint32_t width, height; uint32_t mipLevels; } texture; struct { VkBuffer buf; VkDeviceMemory mem; VkPipelineVertexInputStateCreateInfo inputState; std::vector bindingDescriptions; std::vector attributeDescriptions; } vertices; struct { int count; VkBuffer buf; VkDeviceMemory mem; } indices; vkTools::UniformData uniformDataVS; struct { glm::mat4 projection; glm::mat4 model; glm::vec4 viewPos; float lodBias = 0.0f; } uboVS; struct { VkPipeline solid; } pipelines; VkPipelineLayout pipelineLayout; VkDescriptorSet descriptorSet; VkDescriptorSetLayout descriptorSetLayout; VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION) { zoom = -2.5f; rotation = { 0.0f, 15.0f, 0.0f }; title = "Vulkan Example - Texturing"; } ~VulkanExample() { // Clean up used Vulkan resources // Note : Inherited destructor cleans up resources stored in base class // Clean up texture resources vkDestroyImageView(device, texture.view, nullptr); vkDestroyImage(device, texture.image, nullptr); vkDestroySampler(device, texture.sampler, nullptr); vkFreeMemory(device, texture.deviceMemory, nullptr); vkDestroyPipeline(device, pipelines.solid, nullptr); vkDestroyPipelineLayout(device, pipelineLayout, nullptr); vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr); vkDestroyBuffer(device, vertices.buf, nullptr); vkFreeMemory(device, vertices.mem, nullptr); vkDestroyBuffer(device, indices.buf, nullptr); vkFreeMemory(device, indices.mem, nullptr); vkDestroyBuffer(device, uniformDataVS.buffer, nullptr); vkFreeMemory(device, uniformDataVS.memory, nullptr); } // Create an image memory barrier for changing the layout of // an image and put it into an active command buffer void setImageLayout(VkCommandBuffer cmdBuffer, VkImage image, VkImageAspectFlags aspectMask, VkImageLayout oldImageLayout, VkImageLayout newImageLayout, uint32_t mipLevel, uint32_t mipLevelCount) { // Create an image barrier object VkImageMemoryBarrier imageMemoryBarrier = vkTools::initializers::imageMemoryBarrier();; imageMemoryBarrier.oldLayout = oldImageLayout; imageMemoryBarrier.newLayout = newImageLayout; imageMemoryBarrier.image = image; imageMemoryBarrier.subresourceRange.aspectMask = aspectMask; imageMemoryBarrier.subresourceRange.baseMipLevel = mipLevel; imageMemoryBarrier.subresourceRange.levelCount = mipLevelCount; imageMemoryBarrier.subresourceRange.layerCount = 1; // Only sets masks for layouts used in this example // For a more complete version that can be used with // other layouts see vkTools::setImageLayout // Source layouts (new) if (oldImageLayout == VK_IMAGE_LAYOUT_PREINITIALIZED) { imageMemoryBarrier.srcAccessMask = VK_ACCESS_HOST_WRITE_BIT | VK_ACCESS_TRANSFER_WRITE_BIT; } // Target layouts (new) // New layout is transfer destination (copy, blit) // Make sure any reads from and writes to the image have been finished if (newImageLayout == VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL) { imageMemoryBarrier.dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT | VK_ACCESS_HOST_WRITE_BIT | VK_ACCESS_TRANSFER_WRITE_BIT; } // New layout is shader read (sampler, input attachment) // Make sure any writes to the image have been finished if (newImageLayout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL) { imageMemoryBarrier.srcAccessMask = VK_ACCESS_HOST_WRITE_BIT | VK_ACCESS_TRANSFER_WRITE_BIT; imageMemoryBarrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT; } // New layout is transfer source (copy, blit) // Make sure any reads from and writes to the image have been finished if (newImageLayout == VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL) { imageMemoryBarrier.dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT | VK_ACCESS_HOST_WRITE_BIT | VK_ACCESS_TRANSFER_WRITE_BIT; } // Put barrier on top VkPipelineStageFlags srcStageFlags = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT; VkPipelineStageFlags destStageFlags = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT; // Put barrier inside setup command buffer vkCmdPipelineBarrier( cmdBuffer, srcStageFlags, destStageFlags, VK_FLAGS_NONE, 0, nullptr, 0, nullptr, 1, &imageMemoryBarrier); } void loadTexture(std::string fileName, VkFormat format, bool forceLinearTiling) { #if defined(__ANDROID__) // Textures are stored inside the apk on Android (compressed) // So they need to be loaded via the asset manager AAsset* asset = AAssetManager_open(androidApp->activity->assetManager, fileName.c_str(), AASSET_MODE_STREAMING); assert(asset); size_t size = AAsset_getLength(asset); assert(size > 0); void *textureData = malloc(size); AAsset_read(asset, textureData, size); AAsset_close(asset); gli::texture2D tex2D(gli::load((const char*)textureData, size)); #else gli::texture2D tex2D(gli::load(fileName)); #endif assert(!tex2D.empty()); VkFormatProperties formatProperties; texture.width = tex2D[0].dimensions().x; texture.height = tex2D[0].dimensions().y; texture.mipLevels = tex2D.levels(); // Get device properites for the requested texture format vkGetPhysicalDeviceFormatProperties(physicalDevice, format, &formatProperties); // Only use linear tiling if requested (and supported by the device) // Support for linear tiling is mostly limited, so prefer to use // optimal tiling instead // On most implementations linear tiling will only support a very // limited amount of formats and features (mip maps, cubemaps, arrays, etc.) VkBool32 useStaging = true; // Only use linear tiling if forced if (forceLinearTiling) { // Don't use linear if format is not supported for (linear) shader sampling useStaging = !(formatProperties.linearTilingFeatures & VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT); } VkMemoryAllocateInfo memAllocInfo = vkTools::initializers::memoryAllocateInfo(); VkMemoryRequirements memReqs = {}; if (useStaging) { // Create a host-visible staging buffer that contains the raw image data VkBuffer stagingBuffer; VkDeviceMemory stagingMemory; VkBufferCreateInfo bufferCreateInfo = vkTools::initializers::bufferCreateInfo(); bufferCreateInfo.size = tex2D.size(); // This buffer is used as a transfer source for the buffer copy bufferCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT; bufferCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; VK_CHECK_RESULT(vkCreateBuffer(device, &bufferCreateInfo, nullptr, &stagingBuffer)); // Get memory requirements for the staging buffer (alignment, memory type bits) vkGetBufferMemoryRequirements(device, stagingBuffer, &memReqs); memAllocInfo.allocationSize = memReqs.size; // Get memory type index for a host visible buffer getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &memAllocInfo.memoryTypeIndex); VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &stagingMemory)); VK_CHECK_RESULT(vkBindBufferMemory(device, stagingBuffer, stagingMemory, 0)); // Copy texture data into staging buffer uint8_t *data; VK_CHECK_RESULT(vkMapMemory(device, stagingMemory, 0, memReqs.size, 0, (void **)&data)); memcpy(data, tex2D.data(), tex2D.size()); vkUnmapMemory(device, stagingMemory); // Setup buffer copy regions for each mip level std::vector bufferCopyRegions; uint32_t offset = 0; for (uint32_t i = 0; i < texture.mipLevels; i++) { VkBufferImageCopy bufferCopyRegion = {}; bufferCopyRegion.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; bufferCopyRegion.imageSubresource.mipLevel = i; bufferCopyRegion.imageSubresource.baseArrayLayer = 0; bufferCopyRegion.imageSubresource.layerCount = 1; bufferCopyRegion.imageExtent.width = tex2D[i].dimensions().x; bufferCopyRegion.imageExtent.height = tex2D[i].dimensions().y; bufferCopyRegion.imageExtent.depth = 1; bufferCopyRegion.bufferOffset = offset; bufferCopyRegions.push_back(bufferCopyRegion); offset += tex2D[i].size(); } // Create optimal tiled target image VkImageCreateInfo imageCreateInfo = vkTools::initializers::imageCreateInfo(); imageCreateInfo.imageType = VK_IMAGE_TYPE_2D; imageCreateInfo.format = format; imageCreateInfo.mipLevels = texture.mipLevels; imageCreateInfo.arrayLayers = 1; imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT; imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL; imageCreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT; imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_PREINITIALIZED; imageCreateInfo.extent = { texture.width, texture.height, 1 }; imageCreateInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT; VK_CHECK_RESULT(vkCreateImage(device, &imageCreateInfo, nullptr, &texture.image)); vkGetImageMemoryRequirements(device, texture.image, &memReqs); memAllocInfo.allocationSize = memReqs.size; memAllocInfo.memoryTypeIndex = getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &texture.deviceMemory)); VK_CHECK_RESULT(vkBindImageMemory(device, texture.image, texture.deviceMemory, 0)); VkCommandBuffer copyCmd = VulkanExampleBase::createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true); // Image barrier for optimal image (target) // Optimal image will be used as destination for the copy setImageLayout( copyCmd, texture.image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_PREINITIALIZED, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 0, texture.mipLevels); // Copy mip levels from staging buffer vkCmdCopyBufferToImage( copyCmd, stagingBuffer, texture.image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, bufferCopyRegions.size(), bufferCopyRegions.data() ); // Change texture image layout to shader read after all mip levels have been copied texture.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; setImageLayout( copyCmd, texture.image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, texture.imageLayout, 0, texture.mipLevels); VulkanExampleBase::flushCommandBuffer(copyCmd, queue, true); // Clean up staging resources vkFreeMemory(device, stagingMemory, nullptr); vkDestroyBuffer(device, stagingBuffer, nullptr); } else { // Prefer using optimal tiling, as linear tiling // may support only a small set of features // depending on implementation (e.g. no mip maps, only one layer, etc.) VkImage mappableImage; VkDeviceMemory mappableMemory; // Load mip map level 0 to linear tiling image VkImageCreateInfo imageCreateInfo = vkTools::initializers::imageCreateInfo(); imageCreateInfo.imageType = VK_IMAGE_TYPE_2D; imageCreateInfo.format = format; imageCreateInfo.mipLevels = 1; imageCreateInfo.arrayLayers = 1; imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT; imageCreateInfo.tiling = VK_IMAGE_TILING_LINEAR; imageCreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT; imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_PREINITIALIZED; imageCreateInfo.extent = { texture.width, texture.height, 1 }; VK_CHECK_RESULT(vkCreateImage(device, &imageCreateInfo, nullptr, &mappableImage)); // Get memory requirements for this image // like size and alignment vkGetImageMemoryRequirements(device, mappableImage, &memReqs); // Set memory allocation size to required memory size memAllocInfo.allocationSize = memReqs.size; // Get memory type that can be mapped to host memory getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &memAllocInfo.memoryTypeIndex); // Allocate host memory VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &mappableMemory)); // Bind allocated image for use VK_CHECK_RESULT(vkBindImageMemory(device, mappableImage, mappableMemory, 0)); // Get sub resource layout // Mip map count, array layer, etc. VkImageSubresource subRes = {}; subRes.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; VkSubresourceLayout subResLayout; void *data; // Get sub resources layout // Includes row pitch, size offsets, etc. vkGetImageSubresourceLayout(device, mappableImage, &subRes, &subResLayout); // Map image memory VK_CHECK_RESULT(vkMapMemory(device, mappableMemory, 0, memReqs.size, 0, &data)); // Copy image data into memory memcpy(data, tex2D[subRes.mipLevel].data(), tex2D[subRes.mipLevel].size()); vkUnmapMemory(device, mappableMemory); // Linear tiled images don't need to be staged // and can be directly used as textures texture.image = mappableImage; texture.deviceMemory = mappableMemory; texture.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; VkCommandBuffer copyCmd = VulkanExampleBase::createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true); // Setup image memory barrier transfer image to shader read layout setImageLayout( copyCmd, texture.image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_PREINITIALIZED, texture.imageLayout, 0, 1); VulkanExampleBase::flushCommandBuffer(copyCmd, queue, true); } // Create sampler // In Vulkan textures are accessed by samplers // This separates all the sampling information from the // texture data // This means you could have multiple sampler objects // for the same texture with different settings // Similar to the samplers available with OpenGL 3.3 VkSamplerCreateInfo sampler = vkTools::initializers::samplerCreateInfo(); sampler.magFilter = VK_FILTER_LINEAR; sampler.minFilter = VK_FILTER_LINEAR; sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR; sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT; sampler.addressModeV = VK_SAMPLER_ADDRESS_MODE_REPEAT; sampler.addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT; sampler.mipLodBias = 0.0f; sampler.compareOp = VK_COMPARE_OP_NEVER; sampler.minLod = 0.0f; // Max level-of-detail should match mip level count sampler.maxLod = (useStaging) ? (float)texture.mipLevels : 0.0f; // Enable anisotropic filtering sampler.maxAnisotropy = 8; sampler.anisotropyEnable = VK_TRUE; sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE; VK_CHECK_RESULT(vkCreateSampler(device, &sampler, nullptr, &texture.sampler)); // Create image view // Textures are not directly accessed by the shaders and // are abstracted by image views containing additional // information and sub resource ranges VkImageViewCreateInfo view = vkTools::initializers::imageViewCreateInfo(); view.image = VK_NULL_HANDLE; view.viewType = VK_IMAGE_VIEW_TYPE_2D; view.format = format; view.components = { VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A }; view.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; view.subresourceRange.baseMipLevel = 0; view.subresourceRange.baseArrayLayer = 0; view.subresourceRange.layerCount = 1; // Linear tiling usually won't support mip maps // Only set mip map count if optimal tiling is used view.subresourceRange.levelCount = (useStaging) ? texture.mipLevels : 1; view.image = texture.image; VK_CHECK_RESULT(vkCreateImageView(device, &view, nullptr, &texture.view)); } // Free staging resources used while creating a texture void destroyTextureImage(Texture texture) { vkDestroyImage(device, texture.image, nullptr); vkFreeMemory(device, texture.deviceMemory, nullptr); } void buildCommandBuffers() { VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo(); VkClearValue clearValues[2]; clearValues[0].color = defaultClearColor; clearValues[1].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo(); renderPassBeginInfo.renderPass = renderPass; renderPassBeginInfo.renderArea.offset.x = 0; renderPassBeginInfo.renderArea.offset.y = 0; renderPassBeginInfo.renderArea.extent.width = width; renderPassBeginInfo.renderArea.extent.height = height; renderPassBeginInfo.clearValueCount = 2; renderPassBeginInfo.pClearValues = clearValues; for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) { // Set target frame buffer renderPassBeginInfo.framebuffer = frameBuffers[i]; VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo)); vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); VkViewport viewport = vkTools::initializers::viewport((float)width, (float)height, 0.0f, 1.0f); vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); VkRect2D scissor = vkTools::initializers::rect2D(width, height, 0, 0); vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor); vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.solid); VkDeviceSize offsets[1] = { 0 }; vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &vertices.buf, offsets); vkCmdBindIndexBuffer(drawCmdBuffers[i], indices.buf, 0, VK_INDEX_TYPE_UINT32); vkCmdDrawIndexed(drawCmdBuffers[i], indices.count, 1, 0, 0, 0); vkCmdEndRenderPass(drawCmdBuffers[i]); VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i])); } } void draw() { // Get next image in the swap chain (back/front buffer) VK_CHECK_RESULT(swapChain.acquireNextImage(semaphores.presentComplete, ¤tBuffer)); submitPostPresentBarrier(swapChain.buffers[currentBuffer].image); // Command buffer to be sumitted to the queue submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer]; // Submit to queue VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE)); submitPrePresentBarrier(swapChain.buffers[currentBuffer].image); VK_CHECK_RESULT(swapChain.queuePresent(queue, currentBuffer, semaphores.renderComplete)); VK_CHECK_RESULT(vkQueueWaitIdle(queue)); } void generateQuad() { // Setup vertices for a single uv-mapped quad #define DIM 1.0f #define NORMAL { 0.0f, 0.0f, 1.0f } std::vector vertexBuffer = { { { DIM, DIM, 0.0f }, { 1.0f, 1.0f }, NORMAL }, { { -DIM, DIM, 0.0f }, { 0.0f, 1.0f }, NORMAL }, { { -DIM, -DIM, 0.0f }, { 0.0f, 0.0f }, NORMAL }, { { DIM, -DIM, 0.0f }, { 1.0f, 0.0f }, NORMAL } }; #undef dim #undef normal createBuffer( VK_BUFFER_USAGE_VERTEX_BUFFER_BIT, vertexBuffer.size() * sizeof(Vertex), vertexBuffer.data(), &vertices.buf, &vertices.mem); // Setup indices std::vector indexBuffer = { 0,1,2, 2,3,0 }; indices.count = indexBuffer.size(); createBuffer( VK_BUFFER_USAGE_INDEX_BUFFER_BIT, indexBuffer.size() * sizeof(uint32_t), indexBuffer.data(), &indices.buf, &indices.mem); } void setupVertexDescriptions() { // Binding description vertices.bindingDescriptions.resize(1); vertices.bindingDescriptions[0] = vkTools::initializers::vertexInputBindingDescription( VERTEX_BUFFER_BIND_ID, sizeof(Vertex), VK_VERTEX_INPUT_RATE_VERTEX); // Attribute descriptions // Describes memory layout and shader positions vertices.attributeDescriptions.resize(3); // Location 0 : Position vertices.attributeDescriptions[0] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 0, VK_FORMAT_R32G32B32_SFLOAT, 0); // Location 1 : Texture coordinates vertices.attributeDescriptions[1] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 1, VK_FORMAT_R32G32_SFLOAT, sizeof(float) * 3); // Location 1 : Vertex normal vertices.attributeDescriptions[2] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 2, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 5); vertices.inputState = vkTools::initializers::pipelineVertexInputStateCreateInfo(); vertices.inputState.vertexBindingDescriptionCount = vertices.bindingDescriptions.size(); vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data(); vertices.inputState.vertexAttributeDescriptionCount = vertices.attributeDescriptions.size(); vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data(); } void setupDescriptorPool() { // Example uses one ubo and one image sampler std::vector poolSizes = { vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1), vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1) }; VkDescriptorPoolCreateInfo descriptorPoolInfo = vkTools::initializers::descriptorPoolCreateInfo( poolSizes.size(), poolSizes.data(), 2); VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool)); } void setupDescriptorSetLayout() { std::vector setLayoutBindings = { // Binding 0 : Vertex shader uniform buffer vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0), // Binding 1 : Fragment shader image sampler vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1) }; VkDescriptorSetLayoutCreateInfo descriptorLayout = vkTools::initializers::descriptorSetLayoutCreateInfo( setLayoutBindings.data(), setLayoutBindings.size()); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout)); VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = vkTools::initializers::pipelineLayoutCreateInfo( &descriptorSetLayout, 1); VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout)); } void setupDescriptorSet() { VkDescriptorSetAllocateInfo allocInfo = vkTools::initializers::descriptorSetAllocateInfo( descriptorPool, &descriptorSetLayout, 1); VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet)); // Image descriptor for the color map texture VkDescriptorImageInfo texDescriptor = vkTools::initializers::descriptorImageInfo( texture.sampler, texture.view, VK_IMAGE_LAYOUT_GENERAL); std::vector writeDescriptorSets = { // Binding 0 : Vertex shader uniform buffer vkTools::initializers::writeDescriptorSet( descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformDataVS.descriptor), // Binding 1 : Fragment shader texture sampler vkTools::initializers::writeDescriptorSet( descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &texDescriptor) }; vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL); } void preparePipelines() { VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vkTools::initializers::pipelineInputAssemblyStateCreateInfo( VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE); VkPipelineRasterizationStateCreateInfo rasterizationState = vkTools::initializers::pipelineRasterizationStateCreateInfo( VK_POLYGON_MODE_FILL, VK_CULL_MODE_NONE, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0); VkPipelineColorBlendAttachmentState blendAttachmentState = vkTools::initializers::pipelineColorBlendAttachmentState( 0xf, VK_FALSE); VkPipelineColorBlendStateCreateInfo colorBlendState = vkTools::initializers::pipelineColorBlendStateCreateInfo( 1, &blendAttachmentState); VkPipelineDepthStencilStateCreateInfo depthStencilState = vkTools::initializers::pipelineDepthStencilStateCreateInfo( VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL); VkPipelineViewportStateCreateInfo viewportState = vkTools::initializers::pipelineViewportStateCreateInfo(1, 1, 0); VkPipelineMultisampleStateCreateInfo multisampleState = vkTools::initializers::pipelineMultisampleStateCreateInfo( VK_SAMPLE_COUNT_1_BIT, 0); std::vector dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR }; VkPipelineDynamicStateCreateInfo dynamicState = vkTools::initializers::pipelineDynamicStateCreateInfo( dynamicStateEnables.data(), dynamicStateEnables.size(), 0); // Load shaders std::array shaderStages; shaderStages[0] = loadShader(getAssetPath() + "shaders/texture/texture.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getAssetPath() + "shaders/texture/texture.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); VkGraphicsPipelineCreateInfo pipelineCreateInfo = vkTools::initializers::pipelineCreateInfo( pipelineLayout, renderPass, 0); pipelineCreateInfo.pVertexInputState = &vertices.inputState; pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState; pipelineCreateInfo.pRasterizationState = &rasterizationState; pipelineCreateInfo.pColorBlendState = &colorBlendState; pipelineCreateInfo.pMultisampleState = &multisampleState; pipelineCreateInfo.pViewportState = &viewportState; pipelineCreateInfo.pDepthStencilState = &depthStencilState; pipelineCreateInfo.pDynamicState = &dynamicState; pipelineCreateInfo.stageCount = shaderStages.size(); pipelineCreateInfo.pStages = shaderStages.data(); VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.solid)); } // Prepare and initialize uniform buffer containing shader uniforms void prepareUniformBuffers() { // Vertex shader uniform buffer block createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, sizeof(uboVS), &uboVS, &uniformDataVS.buffer, &uniformDataVS.memory, &uniformDataVS.descriptor); updateUniformBuffers(); } void updateUniformBuffers() { // Vertex shader uboVS.projection = glm::perspective(glm::radians(60.0f), (float)width / (float)height, 0.001f, 256.0f); glm::mat4 viewMatrix = glm::translate(glm::mat4(), glm::vec3(0.0f, 0.0f, zoom)); uboVS.model = viewMatrix * glm::translate(glm::mat4(), cameraPos); uboVS.model = glm::rotate(uboVS.model, glm::radians(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f)); uboVS.model = glm::rotate(uboVS.model, glm::radians(rotation.y), glm::vec3(0.0f, 1.0f, 0.0f)); uboVS.model = glm::rotate(uboVS.model, glm::radians(rotation.z), glm::vec3(0.0f, 0.0f, 1.0f)); uboVS.viewPos = glm::vec4(0.0f, 0.0f, -zoom, 0.0f); uint8_t *pData; VK_CHECK_RESULT(vkMapMemory(device, uniformDataVS.memory, 0, sizeof(uboVS), 0, (void **)&pData)); memcpy(pData, &uboVS, sizeof(uboVS)); vkUnmapMemory(device, uniformDataVS.memory); } void prepare() { VulkanExampleBase::prepare(); generateQuad(); setupVertexDescriptions(); prepareUniformBuffers(); loadTexture( getAssetPath() + "textures/pattern_02_bc2.ktx", VK_FORMAT_BC2_UNORM_BLOCK, false); setupDescriptorSetLayout(); preparePipelines(); setupDescriptorPool(); setupDescriptorSet(); buildCommandBuffers(); prepared = true; } virtual void render() { if (!prepared) return; draw(); } virtual void viewChanged() { vkDeviceWaitIdle(device); updateUniformBuffers(); } void changeLodBias(float delta) { uboVS.lodBias += delta; if (uboVS.lodBias < 0.0f) { uboVS.lodBias = 0.0f; } if (uboVS.lodBias > 8.0f) { uboVS.lodBias = 8.0f; } updateUniformBuffers(); } }; VulkanExample *vulkanExample; #if defined(_WIN32) LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam) { if (vulkanExample != NULL) { vulkanExample->handleMessages(hWnd, uMsg, wParam, lParam); if (uMsg == WM_KEYDOWN) { switch (wParam) { case VK_ADD: vulkanExample->changeLodBias(0.1f); break; case VK_SUBTRACT: vulkanExample->changeLodBias(-0.1f); break; } } } return (DefWindowProc(hWnd, uMsg, wParam, lParam)); } #elif defined(__linux__) && !defined(__ANDROID__) static void handleEvent(const xcb_generic_event_t *event) { if (vulkanExample != NULL) { vulkanExample->handleEvent(event); } } #endif // Main entry point #if defined(_WIN32) // Windows entry point int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR pCmdLine, int nCmdShow) #elif defined(__ANDROID__) // Android entry point void android_main(android_app* state) #elif defined(__linux__) // Linux entry point int main(const int argc, const char *argv[]) #endif { #if defined(__ANDROID__) // Removing this may cause the compiler to omit the main entry point // which would make the application crash at start app_dummy(); #endif vulkanExample = new VulkanExample(); #if defined(_WIN32) vulkanExample->setupWindow(hInstance, WndProc); #elif defined(__ANDROID__) // Attach vulkan example to global android application state state->userData = vulkanExample; state->onAppCmd = VulkanExample::handleAppCommand; state->onInputEvent = VulkanExample::handleAppInput; vulkanExample->androidApp = state; #elif defined(__linux__) vulkanExample->setupWindow(); #endif #if !defined(__ANDROID__) vulkanExample->initSwapchain(); vulkanExample->prepare(); #endif vulkanExample->renderLoop(); delete(vulkanExample); #if !defined(__ANDROID__) return 0; #endif }