/* * Vulkan Example - Dynamic terrain tessellation * * Copyright (C) 2016 by Sascha Willems - www.saschawillems.de * * This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT) */ #include #include #include #include #include #include #define GLM_FORCE_RADIANS #define GLM_FORCE_DEPTH_ZERO_TO_ONE #include #include #include #include #include "vulkanexamplebase.h" #include "frustum.hpp" #define VERTEX_BUFFER_BIND_ID 0 #define ENABLE_VALIDATION false // Vertex layout for this example std::vector vertexLayout = { vkMeshLoader::VERTEX_LAYOUT_POSITION, vkMeshLoader::VERTEX_LAYOUT_NORMAL, vkMeshLoader::VERTEX_LAYOUT_UV }; class VulkanExample : public VulkanExampleBase { private: struct { vkTools::VulkanTexture heightMap; vkTools::VulkanTexture skySphere; vkTools::VulkanTexture terrainArray; } textures; public: bool wireframe = false; bool tessellation = true; struct { VkPipelineVertexInputStateCreateInfo inputState; std::vector bindingDescriptions; std::vector attributeDescriptions; } vertices; struct { vkMeshLoader::MeshBuffer terrain; vkMeshLoader::MeshBuffer skysphere; } meshes; struct { vkTools::UniformData terrainTessellation; vkTools::UniformData skysphereVertex; } uniformData; // Shared values for tessellation control and evaluation stages struct { glm::mat4 projection; glm::mat4 modelview; glm::vec4 lightPos = glm::vec4(-48.0f, -40.0f, 46.0f, 0.0f); glm::vec4 frustumPlanes[6]; float displacementFactor = 32.0f; float tessellationFactor = 0.75f; glm::vec2 viewportDim; // Desired size of tessellated quad patch edge float tessellatedEdgeSize = 20.0f; } uboTess; // Skysphere vertex shader stage struct { glm::mat4 mvp; } uboVS; struct { VkPipeline terrain; VkPipeline wireframe; VkPipeline skysphere; } pipelines; struct { VkDescriptorSetLayout terrain; VkDescriptorSetLayout skysphere; } descriptorSetLayouts; struct { VkPipelineLayout terrain; VkPipelineLayout skysphere; } pipelineLayouts; struct { VkDescriptorSet terrain; VkDescriptorSet skysphere; } descriptorSets; // Pipeline statistics struct { VkBuffer buffer; VkDeviceMemory memory; } queryResult; VkQueryPool queryPool; uint64_t pipelineStats[2] = { 0 }; // View frustum passed to tessellation control shader for culling vkTools::Frustum frustum; VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION) { enableTextOverlay = true; title = "Vulkan Example - Dynamic terrain tessellation"; camera.type = Camera::CameraType::firstperson; camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 512.0f); camera.setRotation(glm::vec3(-11.0f, 56.0f, 0.0f)); camera.setTranslation(glm::vec3(60.0f, 20.5f, -44.0f)); camera.movementSpeed = 7.5f; // Support for tessellation shaders is optional, so check first //if (!deviceFeatures.tessellationShader) //{ // vkTools::exitFatal("Selected GPU does not support tessellation shaders!", "Feature not supported"); //} } ~VulkanExample() { // Clean up used Vulkan resources // Note : Inherited destructor cleans up resources stored in base class vkDestroyPipeline(device, pipelines.terrain, nullptr); vkDestroyPipeline(device, pipelines.wireframe, nullptr); vkDestroyPipeline(device, pipelines.skysphere, nullptr); vkDestroyPipelineLayout(device, pipelineLayouts.skysphere, nullptr); vkDestroyPipelineLayout(device, pipelineLayouts.terrain, nullptr); vkDestroyDescriptorSetLayout(device, descriptorSetLayouts.terrain, nullptr); vkDestroyDescriptorSetLayout(device, descriptorSetLayouts.skysphere, nullptr); vkMeshLoader::freeMeshBufferResources(device, &meshes.terrain); vkMeshLoader::freeMeshBufferResources(device, &meshes.skysphere); vkDestroyBuffer(device, uniformData.terrainTessellation.buffer, nullptr); vkFreeMemory(device, uniformData.terrainTessellation.memory, nullptr); vkDestroyBuffer(device, uniformData.skysphereVertex.buffer, nullptr); vkFreeMemory(device, uniformData.skysphereVertex.memory, nullptr); textureLoader->destroyTexture(textures.heightMap); textureLoader->destroyTexture(textures.skySphere); textureLoader->destroyTexture(textures.terrainArray); vkDestroyQueryPool(device, queryPool, nullptr); vkDestroyBuffer(device, queryResult.buffer, nullptr); vkFreeMemory(device, queryResult.memory, nullptr); } // Setup pool and buffer for storing pipeline statistics results void setupQueryResultBuffer() { uint32_t bufSize = 2 * sizeof(uint64_t); VkMemoryRequirements memReqs; VkMemoryAllocateInfo memAlloc = vkTools::initializers::memoryAllocateInfo(); VkBufferCreateInfo bufferCreateInfo = vkTools::initializers::bufferCreateInfo( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT, bufSize); // Results are saved in a host visible buffer for easy access by the application VK_CHECK_RESULT(vkCreateBuffer(device, &bufferCreateInfo, nullptr, &queryResult.buffer)); vkGetBufferMemoryRequirements(device, queryResult.buffer, &memReqs); memAlloc.allocationSize = memReqs.size; memAlloc.memoryTypeIndex = getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT); VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &queryResult.memory)); VK_CHECK_RESULT(vkBindBufferMemory(device, queryResult.buffer, queryResult.memory, 0)); // Create query pool VkQueryPoolCreateInfo queryPoolInfo = {}; queryPoolInfo.sType = VK_STRUCTURE_TYPE_QUERY_POOL_CREATE_INFO; queryPoolInfo.queryType = VK_QUERY_TYPE_PIPELINE_STATISTICS; queryPoolInfo.pipelineStatistics = VK_QUERY_PIPELINE_STATISTIC_VERTEX_SHADER_INVOCATIONS_BIT | VK_QUERY_PIPELINE_STATISTIC_TESSELLATION_EVALUATION_SHADER_INVOCATIONS_BIT; queryPoolInfo.queryCount = 2; VK_CHECK_RESULT(vkCreateQueryPool(device, &queryPoolInfo, NULL, &queryPool)); } // Retrieves the results of the pipeline statistics query submitted to the command buffer void getQueryResults() { // We use vkGetQueryResults to copy the results into a host visible buffer vkGetQueryPoolResults( device, queryPool, 0, 1, sizeof(pipelineStats), pipelineStats, sizeof(uint64_t), VK_QUERY_RESULT_64_BIT); } void loadTextures() { textureLoader->loadTexture(getAssetPath() + "textures/skysphere_bc3.ktx", VK_FORMAT_BC3_UNORM_BLOCK, &textures.skySphere); // Height data is stored in a one-channel texture textureLoader->loadTexture(getAssetPath() + "textures/terrain_heightmap_r16.ktx", VK_FORMAT_R16_UNORM, &textures.heightMap); // Terrain textures are stored in a texture array with layers corresponding to terrain height textureLoader->loadTextureArray(getAssetPath() + "textures/terrain_texturearray_bc3.ktx", VK_FORMAT_BC3_UNORM_BLOCK, &textures.terrainArray); VkSamplerCreateInfo samplerInfo = vkTools::initializers::samplerCreateInfo(); // Setup a mirroring sampler for the height map vkDestroySampler(device, textures.heightMap.sampler, nullptr); samplerInfo.magFilter = VK_FILTER_LINEAR; samplerInfo.minFilter = VK_FILTER_LINEAR; samplerInfo.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR; samplerInfo.addressModeU = VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT; samplerInfo.addressModeV = samplerInfo.addressModeU; samplerInfo.addressModeW = samplerInfo.addressModeU; samplerInfo.compareOp = VK_COMPARE_OP_NEVER; samplerInfo.minLod = 0.0f; samplerInfo.maxLod = (float)textures.heightMap.mipLevels; samplerInfo.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE; VK_CHECK_RESULT(vkCreateSampler(device, &samplerInfo, nullptr, &textures.heightMap.sampler)); textures.heightMap.descriptor.sampler = textures.heightMap.sampler; // Setup a repeating sampler for the terrain texture layers vkDestroySampler(device, textures.terrainArray.sampler, nullptr); samplerInfo = vkTools::initializers::samplerCreateInfo(); samplerInfo.magFilter = VK_FILTER_LINEAR; samplerInfo.minFilter = VK_FILTER_LINEAR; samplerInfo.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR; samplerInfo.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT; samplerInfo.addressModeV = samplerInfo.addressModeU; samplerInfo.addressModeW = samplerInfo.addressModeU; samplerInfo.compareOp = VK_COMPARE_OP_NEVER; samplerInfo.minLod = 0.0f; samplerInfo.maxLod = (float)textures.terrainArray.mipLevels; samplerInfo.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE; if (deviceFeatures.samplerAnisotropy) { samplerInfo.maxAnisotropy = 4.0f; samplerInfo.anisotropyEnable = VK_TRUE; } VK_CHECK_RESULT(vkCreateSampler(device, &samplerInfo, nullptr, &textures.terrainArray.sampler)); textures.terrainArray.descriptor.sampler = textures.terrainArray.sampler; } void reBuildCommandBuffers() { if (!checkCommandBuffers()) { destroyCommandBuffers(); createCommandBuffers(); } buildCommandBuffers(); } void buildCommandBuffers() { VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo(); VkClearValue clearValues[2]; clearValues[0].color = defaultClearColor; clearValues[0].color = { {0.2f, 0.2f, 0.2f, 0.0f} }; clearValues[1].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo(); renderPassBeginInfo.renderPass = renderPass; renderPassBeginInfo.renderArea.offset.x = 0; renderPassBeginInfo.renderArea.offset.y = 0; renderPassBeginInfo.renderArea.extent.width = width; renderPassBeginInfo.renderArea.extent.height = height; renderPassBeginInfo.clearValueCount = 2; renderPassBeginInfo.pClearValues = clearValues; for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) { renderPassBeginInfo.framebuffer = frameBuffers[i]; VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo)); vkCmdResetQueryPool(drawCmdBuffers[i], queryPool, 0, 2); vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); VkViewport viewport = vkTools::initializers::viewport((float)width, (float)height, 0.0f, 1.0f); vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); VkRect2D scissor = vkTools::initializers::rect2D(width, height, 0, 0); vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor); vkCmdSetLineWidth(drawCmdBuffers[i], 1.0f); VkDeviceSize offsets[1] = { 0 }; // Skysphere vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.skysphere); vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.skysphere, 0, 1, &descriptorSets.skysphere, 0, NULL); vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &meshes.skysphere.vertices.buf, offsets); vkCmdBindIndexBuffer(drawCmdBuffers[i], meshes.skysphere.indices.buf, 0, VK_INDEX_TYPE_UINT32); vkCmdDrawIndexed(drawCmdBuffers[i], meshes.skysphere.indexCount, 1, 0, 0, 0); // Terrrain // Begin pipeline statistics query vkCmdBeginQuery(drawCmdBuffers[i], queryPool, 0, VK_QUERY_CONTROL_PRECISE_BIT); // Render vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, wireframe ? pipelines.wireframe : pipelines.terrain); vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.terrain, 0, 1, &descriptorSets.terrain, 0, NULL); vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &meshes.terrain.vertices.buf, offsets); vkCmdBindIndexBuffer(drawCmdBuffers[i], meshes.terrain.indices.buf, 0, VK_INDEX_TYPE_UINT32); vkCmdDrawIndexed(drawCmdBuffers[i], meshes.terrain.indexCount, 1, 0, 0, 0); // End pipeline statistics query vkCmdEndQuery(drawCmdBuffers[i], queryPool, 0); vkCmdEndRenderPass(drawCmdBuffers[i]); VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i])); } } void loadMeshes() { loadMesh(getAssetPath() + "models/geosphere.obj", &meshes.skysphere, vertexLayout, 1.0f); } // Encapsulate height map data for easy sampling struct HeightMap { private: uint16_t *heightdata; uint32_t dim; uint32_t scale; public: HeightMap(std::string filename, uint32_t patchsize) { gli::texture2D heightTex(gli::load(filename)); dim = static_cast(heightTex.dimensions().x); heightdata = new uint16_t[dim * dim]; memcpy(heightdata, heightTex.data(), heightTex.size()); this->scale = dim / patchsize; }; ~HeightMap() { delete[] heightdata; } float getHeight(uint32_t x, uint32_t y) { glm::ivec2 rpos = glm::ivec2(x, y) * glm::ivec2(scale); rpos.x = std::max(0, std::min(rpos.x, (int)dim-1)); rpos.y = std::max(0, std::min(rpos.y, (int)dim-1)); rpos /= glm::ivec2(scale); return *(heightdata + (rpos.x + rpos.y * dim) * scale) / 65535.0f; } }; // Generate a terrain quad patch for feeding to the tessellation control shader void generateTerrain() { struct Vertex { glm::vec3 pos; glm::vec3 normal; glm::vec2 uv; }; #define PATCH_SIZE 64 #define UV_SCALE 1.0f Vertex *vertices = new Vertex[PATCH_SIZE * PATCH_SIZE * 4]; const float wx = 2.0f; const float wy = 2.0f; for (auto x = 0; x < PATCH_SIZE; x++) { for (auto y = 0; y < PATCH_SIZE; y++) { uint32_t index = (x + y * PATCH_SIZE); vertices[index].pos[0] = x * wx + wx / 2.0f - (float)PATCH_SIZE * wx / 2.0f; vertices[index].pos[1] = 0.0f; vertices[index].pos[2] = y * wy + wy / 2.0f - (float)PATCH_SIZE * wy / 2.0f; vertices[index].uv = glm::vec2((float)x / PATCH_SIZE, (float)y / PATCH_SIZE) * UV_SCALE; } } // Calculate normals from height map using a sobel filter HeightMap heightMap(getAssetPath() + "textures/terrain_heightmap_r16.ktx", PATCH_SIZE); for (auto x = 0; x < PATCH_SIZE; x++) { for (auto y = 0; y < PATCH_SIZE; y++) { // Get height samples centered around current position float heights[3][3]; for (auto hx = -1; hx <= 1; hx++) { for (auto hy = -1; hy <= 1; hy++) { heights[hx+1][hy+1] = heightMap.getHeight(x + hx, y + hy); } } // Calcualte the normal glm::vec3 normal; // Gx sobel filter normal.x = heights[0][0] - heights[2][0] + 2.0f * heights[0][1] - 2.0f * heights[2][1] + heights[0][2] - heights[2][2]; // Gy sobel filter normal.z = heights[0][0] + 2.0f * heights[1][0] + heights[2][0] - heights[0][2] - 2.0f * heights[1][2] - heights[2][2]; // Calculate missing up component of the normal using the filtered x and y axis // The first value controls the bump strength normal.y = 0.25f * sqrt( 1.0f - normal.x * normal.x - normal.z * normal.z); vertices[x + y * PATCH_SIZE].normal = glm::normalize(normal * glm::vec3(2.0f, 1.0f, 2.0f)); } } // Indices const uint32_t w = (PATCH_SIZE - 1); uint32_t *indices = new uint32_t[w * w * 4]; for (auto x = 0; x < w; x++) { for (auto y = 0; y < w; y++) { uint32_t index = (x + y * w) * 4; indices[index] = (x + y * PATCH_SIZE); indices[index + 1] = indices[index] + PATCH_SIZE; indices[index + 2] = indices[index + 1] + 1; indices[index + 3] = indices[index] + 1; } } meshes.terrain.indexCount = (PATCH_SIZE - 1) * (PATCH_SIZE - 1) * 4; uint32_t vertexBufferSize = (PATCH_SIZE * PATCH_SIZE * 4) * sizeof(Vertex); uint32_t indexBufferSize = (w * w * 4) * sizeof(uint32_t); struct { VkBuffer buffer; VkDeviceMemory memory; } vertexStaging, indexStaging; // Create staging buffers // Vertex data createBuffer( VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, vertexBufferSize, vertices, &vertexStaging.buffer, &vertexStaging.memory); // Index data createBuffer( VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, indexBufferSize, indices, &indexStaging.buffer, &indexStaging.memory); createBuffer( VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, vertexBufferSize, nullptr, &meshes.terrain.vertices.buf, &meshes.terrain.vertices.mem); createBuffer( VK_BUFFER_USAGE_INDEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, indexBufferSize, nullptr, &meshes.terrain.indices.buf, &meshes.terrain.indices.mem); // Copy from staging buffers VkCommandBuffer copyCmd = VulkanExampleBase::createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true); VkBufferCopy copyRegion = {}; copyRegion.size = vertexBufferSize; vkCmdCopyBuffer( copyCmd, vertexStaging.buffer, meshes.terrain.vertices.buf, 1, ©Region); copyRegion.size = indexBufferSize; vkCmdCopyBuffer( copyCmd, indexStaging.buffer, meshes.terrain.indices.buf, 1, ©Region); VulkanExampleBase::flushCommandBuffer(copyCmd, queue, true); vkDestroyBuffer(device, vertexStaging.buffer, nullptr); vkFreeMemory(device, vertexStaging.memory, nullptr); vkDestroyBuffer(device, indexStaging.buffer, nullptr); vkFreeMemory(device, indexStaging.memory, nullptr); delete[] vertices; delete[] indices; } void setupVertexDescriptions() { // Binding description vertices.bindingDescriptions.resize(1); vertices.bindingDescriptions[0] = vkTools::initializers::vertexInputBindingDescription( VERTEX_BUFFER_BIND_ID, vkMeshLoader::vertexSize(vertexLayout), VK_VERTEX_INPUT_RATE_VERTEX); // Attribute descriptions // Describes memory layout and shader positions vertices.attributeDescriptions.resize(3); // Location 0 : Position vertices.attributeDescriptions[0] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 0, VK_FORMAT_R32G32B32_SFLOAT, 0); // Location 1 : Normals vertices.attributeDescriptions[1] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 1, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 3); // Location 2 : Texture coordinates vertices.attributeDescriptions[2] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 2, VK_FORMAT_R32G32_SFLOAT, sizeof(float) * 6); vertices.inputState = vkTools::initializers::pipelineVertexInputStateCreateInfo(); vertices.inputState.vertexBindingDescriptionCount = static_cast(vertices.bindingDescriptions.size()); vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data(); vertices.inputState.vertexAttributeDescriptionCount = static_cast(vertices.attributeDescriptions.size()); vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data(); } void setupDescriptorPool() { std::vector poolSizes = { vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 3), vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 3) }; VkDescriptorPoolCreateInfo descriptorPoolInfo = vkTools::initializers::descriptorPoolCreateInfo( static_cast(poolSizes.size()), poolSizes.data(), 2); VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool)); } void setupDescriptorSetLayouts() { VkDescriptorSetLayoutCreateInfo descriptorLayout; VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo; std::vector setLayoutBindings; // Terrain setLayoutBindings = { // Binding 0 : Shared Tessellation shader ubo vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT | VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT, 0), // Binding 1 : Height map vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT | VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT | VK_SHADER_STAGE_FRAGMENT_BIT, 1), // Binding 3 : Terrain texture array layers vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 2), }; descriptorLayout = vkTools::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings.data(), static_cast(setLayoutBindings.size())); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayouts.terrain)); pipelineLayoutCreateInfo = vkTools::initializers::pipelineLayoutCreateInfo(&descriptorSetLayouts.terrain, 1); VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &pipelineLayouts.terrain)); // Skysphere setLayoutBindings = { // Binding 0 : Vertex shader ubo vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0), // Binding 1 : Color map vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1), }; descriptorLayout = vkTools::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings.data(), static_cast(setLayoutBindings.size())); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayouts.skysphere)); pipelineLayoutCreateInfo = vkTools::initializers::pipelineLayoutCreateInfo(&descriptorSetLayouts.skysphere, 1); VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &pipelineLayouts.skysphere)); } void setupDescriptorSets() { VkDescriptorSetAllocateInfo allocInfo; std::vector writeDescriptorSets; // Terrain allocInfo = vkTools::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayouts.terrain, 1); VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.terrain)); writeDescriptorSets = { // Binding 0 : Shared tessellation shader ubo vkTools::initializers::writeDescriptorSet( descriptorSets.terrain, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformData.terrainTessellation.descriptor), // Binding 1 : Displacement map vkTools::initializers::writeDescriptorSet( descriptorSets.terrain, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &textures.heightMap.descriptor), // Binding 2 : Color map (alpha channel) vkTools::initializers::writeDescriptorSet( descriptorSets.terrain, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2, &textures.terrainArray.descriptor), }; vkUpdateDescriptorSets(device, static_cast(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL); // Skysphere allocInfo = vkTools::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayouts.skysphere, 1); VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.skysphere)); writeDescriptorSets = { // Binding 0 : Vertex shader ubo vkTools::initializers::writeDescriptorSet( descriptorSets.skysphere, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformData.skysphereVertex.descriptor), // Binding 1 : Fragment shader color map vkTools::initializers::writeDescriptorSet( descriptorSets.skysphere, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &textures.skySphere.descriptor), }; vkUpdateDescriptorSets(device, static_cast(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL); } void preparePipelines() { VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vkTools::initializers::pipelineInputAssemblyStateCreateInfo( VK_PRIMITIVE_TOPOLOGY_PATCH_LIST, 0, VK_FALSE); VkPipelineRasterizationStateCreateInfo rasterizationState = vkTools::initializers::pipelineRasterizationStateCreateInfo( VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0); VkPipelineColorBlendAttachmentState blendAttachmentState = vkTools::initializers::pipelineColorBlendAttachmentState( 0xf, VK_FALSE); VkPipelineColorBlendStateCreateInfo colorBlendState = vkTools::initializers::pipelineColorBlendStateCreateInfo( 1, &blendAttachmentState); VkPipelineDepthStencilStateCreateInfo depthStencilState = vkTools::initializers::pipelineDepthStencilStateCreateInfo( VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL); VkPipelineViewportStateCreateInfo viewportState = vkTools::initializers::pipelineViewportStateCreateInfo(1, 1, 0); VkPipelineMultisampleStateCreateInfo multisampleState = vkTools::initializers::pipelineMultisampleStateCreateInfo( VK_SAMPLE_COUNT_1_BIT, 0); std::vector dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR, VK_DYNAMIC_STATE_LINE_WIDTH }; VkPipelineDynamicStateCreateInfo dynamicState = vkTools::initializers::pipelineDynamicStateCreateInfo( dynamicStateEnables.data(), static_cast(dynamicStateEnables.size()), 0); // We render the terrain as a grid of quad patches VkPipelineTessellationStateCreateInfo tessellationState = vkTools::initializers::pipelineTessellationStateCreateInfo(4); std::array shaderStages; // Terrain tessellation pipeline shaderStages[0] = loadShader(getAssetPath() + "shaders/terraintessellation/terrain.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getAssetPath() + "shaders/terraintessellation/terrain.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); shaderStages[2] = loadShader(getAssetPath() + "shaders/terraintessellation/terrain.tesc.spv", VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT); shaderStages[3] = loadShader(getAssetPath() + "shaders/terraintessellation/terrain.tese.spv", VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT); VkGraphicsPipelineCreateInfo pipelineCreateInfo = vkTools::initializers::pipelineCreateInfo( pipelineLayouts.terrain, renderPass, 0); pipelineCreateInfo.pVertexInputState = &vertices.inputState; pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState; pipelineCreateInfo.pRasterizationState = &rasterizationState; pipelineCreateInfo.pColorBlendState = &colorBlendState; pipelineCreateInfo.pMultisampleState = &multisampleState; pipelineCreateInfo.pViewportState = &viewportState; pipelineCreateInfo.pDepthStencilState = &depthStencilState; pipelineCreateInfo.pDynamicState = &dynamicState; pipelineCreateInfo.pTessellationState = &tessellationState; pipelineCreateInfo.stageCount = static_cast(shaderStages.size()); pipelineCreateInfo.pStages = shaderStages.data(); pipelineCreateInfo.renderPass = renderPass; VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.terrain)); // Terrain wireframe pipeline rasterizationState.polygonMode = VK_POLYGON_MODE_LINE; VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.wireframe)); // Skysphere pipeline rasterizationState.polygonMode = VK_POLYGON_MODE_FILL; // Revert to triangle list topology inputAssemblyState.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST; // Reset tessellation state pipelineCreateInfo.pTessellationState = nullptr; // Don't write to depth buffer depthStencilState.depthWriteEnable = VK_FALSE; pipelineCreateInfo.stageCount = 2; pipelineCreateInfo.layout = pipelineLayouts.skysphere; shaderStages[0] = loadShader(getAssetPath() + "shaders/terraintessellation/skysphere.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getAssetPath() + "shaders/terraintessellation/skysphere.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.skysphere)); } // Prepare and initialize uniform buffer containing shader uniforms void prepareUniformBuffers() { // Shared tessellation shader stages uniform buffer createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, sizeof(uboTess), nullptr, &uniformData.terrainTessellation.buffer, &uniformData.terrainTessellation.memory, &uniformData.terrainTessellation.descriptor); // Skysphere vertex shader uniform buffer createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, sizeof(uboVS), nullptr, &uniformData.skysphereVertex.buffer, &uniformData.skysphereVertex.memory, &uniformData.skysphereVertex.descriptor); updateUniformBuffers(); } void updateUniformBuffers() { // Tessellation uboTess.projection = camera.matrices.perspective; uboTess.modelview = camera.matrices.view * glm::mat4(); uboTess.lightPos.y = -0.5f - uboTess.displacementFactor; // todo: Not uesed yet uboTess.viewportDim = glm::vec2((float)width, (float)height); frustum.update(uboTess.projection * uboTess.modelview); memcpy(uboTess.frustumPlanes, frustum.planes.data(), sizeof(glm::vec4) * 6); float savedFactor = uboTess.tessellationFactor; if (!tessellation) { // Setting this to zero sets all tessellation factors to 1.0 in the shader uboTess.tessellationFactor = 0.0f; } uint8_t *pData; VK_CHECK_RESULT(vkMapMemory(device, uniformData.terrainTessellation.memory, 0, sizeof(uboTess), 0, (void **)&pData)); memcpy(pData, &uboTess, sizeof(uboTess)); vkUnmapMemory(device, uniformData.terrainTessellation.memory); if (!tessellation) { uboTess.tessellationFactor = savedFactor; } // Skysphere vertex shader uboVS.mvp = camera.matrices.perspective * glm::mat4(glm::mat3(camera.matrices.view)); VK_CHECK_RESULT(vkMapMemory(device, uniformData.skysphereVertex.memory, 0, sizeof(uboVS), 0, (void **)&pData)); memcpy(pData, &uboVS, sizeof(uboVS)); vkUnmapMemory(device, uniformData.skysphereVertex.memory); } void draw() { VulkanExampleBase::prepareFrame(); // Command buffer to be sumitted to the queue submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer]; // Submit to queue VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE)); // Read query results for displaying in next frame getQueryResults(); VulkanExampleBase::submitFrame(); } void prepare() { VulkanExampleBase::prepare(); loadMeshes(); loadTextures(); generateTerrain(); setupQueryResultBuffer(); setupVertexDescriptions(); prepareUniformBuffers(); setupDescriptorSetLayouts(); preparePipelines(); setupDescriptorPool(); setupDescriptorSets(); buildCommandBuffers(); prepared = true; } virtual void render() { if (!prepared) return; draw(); } virtual void viewChanged() { updateUniformBuffers(); } void changeTessellationFactor(float delta) { uboTess.tessellationFactor += delta; uboTess.tessellationFactor = fmax(0.25f, fmin(uboTess.tessellationFactor, 4.0f)); updateUniformBuffers(); updateTextOverlay(); } void toggleWireframe() { wireframe = !wireframe; reBuildCommandBuffers(); updateUniformBuffers(); } void toggleTessellation() { tessellation = !tessellation; updateUniformBuffers(); } virtual void keyPressed(uint32_t keyCode) { switch (keyCode) { case 0x6B: case GAMEPAD_BUTTON_R1: changeTessellationFactor(0.05f); break; case 0x6D: case GAMEPAD_BUTTON_L1: changeTessellationFactor(-0.05f); break; case 0x46: case GAMEPAD_BUTTON_A: toggleWireframe(); break; case 0x54: case GAMEPAD_BUTTON_X: toggleTessellation(); break; } } virtual void getOverlayText(VulkanTextOverlay *textOverlay) { std::stringstream ss; ss << std::setprecision(2) << std::fixed << uboTess.tessellationFactor; #if defined(__ANDROID__) textOverlay->addText("Tessellation factor: " + ss.str() + " (Buttons L1/R1)", 5.0f, 85.0f, VulkanTextOverlay::alignLeft); textOverlay->addText("Press \"Button A\" to toggle wireframe", 5.0f, 100.0f, VulkanTextOverlay::alignLeft); textOverlay->addText("Press \"Button X\" to toggle tessellation", 5.0f, 115.0f, VulkanTextOverlay::alignLeft); #else textOverlay->addText("Tessellation factor: " + ss.str() + " (numpad +/-)", 5.0f, 85.0f, VulkanTextOverlay::alignLeft); textOverlay->addText("Press \"f\" to toggle wireframe", 5.0f, 100.0f, VulkanTextOverlay::alignLeft); textOverlay->addText("Press \"t\" to toggle tessellation", 5.0f, 115.0f, VulkanTextOverlay::alignLeft); #endif textOverlay->addText("pipeline stats:", width - 5.0f, 5.0f, VulkanTextOverlay::alignRight); textOverlay->addText("VS:" + std::to_string(pipelineStats[0]), width - 5.0f, 20.0f, VulkanTextOverlay::alignRight); textOverlay->addText("TE:" + std::to_string(pipelineStats[1]), width - 5.0f, 35.0f, VulkanTextOverlay::alignRight); } }; VulkanExample *vulkanExample; #if defined(_WIN32) LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam) { if (vulkanExample != NULL) { vulkanExample->handleMessages(hWnd, uMsg, wParam, lParam); } return (DefWindowProc(hWnd, uMsg, wParam, lParam)); } #elif defined(__linux__) && !defined(__ANDROID__) static void handleEvent(const xcb_generic_event_t *event) { if (vulkanExample != NULL) { vulkanExample->handleEvent(event); } } #endif // Main entry point #if defined(_WIN32) // Windows entry point int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR pCmdLine, int nCmdShow) #elif defined(__ANDROID__) // Android entry point void android_main(android_app* state) #elif defined(__linux__) // Linux entry point int main(const int argc, const char *argv[]) #endif { #if defined(__ANDROID__) // Removing this may cause the compiler to omit the main entry point // which would make the application crash at start app_dummy(); #endif vulkanExample = new VulkanExample(); #if defined(_WIN32) vulkanExample->setupWindow(hInstance, WndProc); #elif defined(__ANDROID__) // Attach vulkan example to global android application state state->userData = vulkanExample; state->onAppCmd = VulkanExample::handleAppCommand; state->onInputEvent = VulkanExample::handleAppInput; vulkanExample->androidApp = state; #elif defined(__linux__) vulkanExample->setupWindow(); #endif #if !defined(__ANDROID__) vulkanExample->initSwapchain(); vulkanExample->prepare(); #endif vulkanExample->renderLoop(); delete(vulkanExample); #if !defined(__ANDROID__) return 0; #endif }