// Copyright 2020 Google LLC struct InPayload { [[vk::location(0)]] float3 hitValue; }; struct InOutPayload { [[vk::location(2)]] bool shadowed; }; RaytracingAccelerationStructure topLevelAS : register(t0); struct CameraProperties { float4x4 viewInverse; float4x4 projInverse; float4 lightPos; }; cbuffer cam : register(b2) { CameraProperties cam; }; StructuredBuffer vertices : register(t3); StructuredBuffer indices : register(t4); struct Vertex { float3 pos; float3 normal; float3 color; float2 uv; float _pad0; }; Vertex unpack(uint index) { float4 d0 = vertices[3 * index + 0]; float4 d1 = vertices[3 * index + 1]; float4 d2 = vertices[3 * index + 2]; Vertex v; v.pos = d0.xyz; v.normal = float3(d0.w, d1.x, d1.y); v.color = float3(d1.z, d1.w, d2.x); return v; } [shader("closesthit")] void main(in InPayload inPayload, inout InOutPayload inOutPayload, in float3 attribs) { uint PrimitiveID = PrimitiveIndex(); int3 index = int3(indices[3 * PrimitiveID], indices[3 * PrimitiveID + 1], indices[3 * PrimitiveID + 2]); Vertex v0 = unpack(index.x); Vertex v1 = unpack(index.y); Vertex v2 = unpack(index.z); // Interpolate normal const float3 barycentricCoords = float3(1.0f - attribs.x - attribs.y, attribs.x, attribs.y); float3 normal = normalize(v0.normal * barycentricCoords.x + v1.normal * barycentricCoords.y + v2.normal * barycentricCoords.z); // Basic lighting float3 lightVector = normalize(cam.lightPos.xyz); float dot_product = max(dot(lightVector, normal), 0.2); inPayload.hitValue = v0.color * dot_product; RayDesc rayDesc; rayDesc.Origin = WorldRayOrigin() + WorldRayDirection() * RayTCurrent(); rayDesc.Direction = lightVector; rayDesc.TMin = 0.001; rayDesc.TMax = 100.0; inOutPayload.shadowed = true; // Offset indices to match shadow hit/miss index TraceRay(topLevelAS, RAY_FLAG_ACCEPT_FIRST_HIT_AND_END_SEARCH | RAY_FLAG_FORCE_OPAQUE | RAY_FLAG_SKIP_CLOSEST_HIT_SHADER, 0xff, 1, 0, 1, rayDesc, inOutPayload); if (inOutPayload.shadowed) { inPayload.hitValue *= 0.3; } }