/* * Vulkan Example - Skeletal animation * * Copyright (C) 2016 by Sascha Willems - www.saschawillems.de * * This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT) */ #include #include #include #include #include #include #define GLM_FORCE_RADIANS #define GLM_FORCE_DEPTH_ZERO_TO_ONE #include #include #include #include #include #include #include #include #include "vulkanexamplebase.h" #include "VulkanBuffer.hpp" #include "VulkanTexture.hpp" #include "VulkanModel.hpp" #define VERTEX_BUFFER_BIND_ID 0 #define ENABLE_VALIDATION false // Vertex layout used in this example struct Vertex { glm::vec3 pos; glm::vec3 normal; glm::vec2 uv; glm::vec3 color; // Max. four bones per vertex float boneWeights[4]; uint32_t boneIDs[4]; }; // Vertex layout for the models vks::VertexLayout vertexLayout = vks::VertexLayout({ vks::VERTEX_COMPONENT_POSITION, vks::VERTEX_COMPONENT_NORMAL, vks::VERTEX_COMPONENT_UV, vks::VERTEX_COMPONENT_COLOR, vks::VERTEX_COMPONENT_DUMMY_VEC4, vks::VERTEX_COMPONENT_DUMMY_VEC4, }); // Maximum number of bones per mesh // Must not be higher than same const in skinning shader #define MAX_BONES 64 // Maximum number of bones per vertex #define MAX_BONES_PER_VERTEX 4 // Skinned mesh class // Per-vertex bone IDs and weights struct VertexBoneData { std::array IDs; std::array weights; // Ad bone weighting to vertex info void add(uint32_t boneID, float weight) { for (uint32_t i = 0; i < MAX_BONES_PER_VERTEX; i++) { if (weights[i] == 0.0f) { IDs[i] = boneID; weights[i] = weight; return; } } } }; // Stores information on a single bone struct BoneInfo { aiMatrix4x4 offset; aiMatrix4x4 finalTransformation; BoneInfo() { offset = aiMatrix4x4(); finalTransformation = aiMatrix4x4(); }; }; class SkinnedMesh { public: // Bone related stuff // Maps bone name with index std::map boneMapping; // Bone details std::vector boneInfo; // Number of bones present uint32_t numBones = 0; // Root inverese transform matrix aiMatrix4x4 globalInverseTransform; // Per-vertex bone info std::vector bones; // Bone transformations std::vector boneTransforms; // Modifier for the animation float animationSpeed = 0.75f; // Currently active animation aiAnimation* pAnimation; // Vulkan buffers vks::Model vertexBuffer; // Store reference to the ASSIMP scene for accessing properties of it during animation Assimp::Importer Importer; const aiScene* scene; // Set active animation by index void setAnimation(uint32_t animationIndex) { assert(animationIndex < scene->mNumAnimations); pAnimation = scene->mAnimations[animationIndex]; } // Load bone information from ASSIMP mesh void loadBones(const aiMesh* pMesh, uint32_t vertexOffset, std::vector& Bones) { for (uint32_t i = 0; i < pMesh->mNumBones; i++) { uint32_t index = 0; assert(pMesh->mNumBones <= MAX_BONES); std::string name(pMesh->mBones[i]->mName.data); if (boneMapping.find(name) == boneMapping.end()) { // Bone not present, add new one index = numBones; numBones++; BoneInfo bone; boneInfo.push_back(bone); boneInfo[index].offset = pMesh->mBones[i]->mOffsetMatrix; boneMapping[name] = index; } else { index = boneMapping[name]; } for (uint32_t j = 0; j < pMesh->mBones[i]->mNumWeights; j++) { uint32_t vertexID = vertexOffset + pMesh->mBones[i]->mWeights[j].mVertexId; Bones[vertexID].add(index, pMesh->mBones[i]->mWeights[j].mWeight); } } boneTransforms.resize(numBones); } // Recursive bone transformation for given animation time void update(float time) { float TicksPerSecond = (float)(scene->mAnimations[0]->mTicksPerSecond != 0 ? scene->mAnimations[0]->mTicksPerSecond : 25.0f); float TimeInTicks = time * TicksPerSecond; float AnimationTime = fmod(TimeInTicks, (float)scene->mAnimations[0]->mDuration); aiMatrix4x4 identity = aiMatrix4x4(); readNodeHierarchy(AnimationTime, scene->mRootNode, identity); for (uint32_t i = 0; i < boneTransforms.size(); i++) { boneTransforms[i] = boneInfo[i].finalTransformation; } } ~SkinnedMesh() { vertexBuffer.vertices.destroy(); vertexBuffer.indices.destroy(); } private: // Find animation for a given node const aiNodeAnim* findNodeAnim(const aiAnimation* animation, const std::string nodeName) { for (uint32_t i = 0; i < animation->mNumChannels; i++) { const aiNodeAnim* nodeAnim = animation->mChannels[i]; if (std::string(nodeAnim->mNodeName.data) == nodeName) { return nodeAnim; } } return nullptr; } // Returns a 4x4 matrix with interpolated translation between current and next frame aiMatrix4x4 interpolateTranslation(float time, const aiNodeAnim* pNodeAnim) { aiVector3D translation; if (pNodeAnim->mNumPositionKeys == 1) { translation = pNodeAnim->mPositionKeys[0].mValue; } else { uint32_t frameIndex = 0; for (uint32_t i = 0; i < pNodeAnim->mNumPositionKeys - 1; i++) { if (time < (float)pNodeAnim->mPositionKeys[i + 1].mTime) { frameIndex = i; break; } } aiVectorKey currentFrame = pNodeAnim->mPositionKeys[frameIndex]; aiVectorKey nextFrame = pNodeAnim->mPositionKeys[(frameIndex + 1) % pNodeAnim->mNumPositionKeys]; float delta = (time - (float)currentFrame.mTime) / (float)(nextFrame.mTime - currentFrame.mTime); const aiVector3D& start = currentFrame.mValue; const aiVector3D& end = nextFrame.mValue; translation = (start + delta * (end - start)); } aiMatrix4x4 mat; aiMatrix4x4::Translation(translation, mat); return mat; } // Returns a 4x4 matrix with interpolated rotation between current and next frame aiMatrix4x4 interpolateRotation(float time, const aiNodeAnim* pNodeAnim) { aiQuaternion rotation; if (pNodeAnim->mNumRotationKeys == 1) { rotation = pNodeAnim->mRotationKeys[0].mValue; } else { uint32_t frameIndex = 0; for (uint32_t i = 0; i < pNodeAnim->mNumRotationKeys - 1; i++) { if (time < (float)pNodeAnim->mRotationKeys[i + 1].mTime) { frameIndex = i; break; } } aiQuatKey currentFrame = pNodeAnim->mRotationKeys[frameIndex]; aiQuatKey nextFrame = pNodeAnim->mRotationKeys[(frameIndex + 1) % pNodeAnim->mNumRotationKeys]; float delta = (time - (float)currentFrame.mTime) / (float)(nextFrame.mTime - currentFrame.mTime); const aiQuaternion& start = currentFrame.mValue; const aiQuaternion& end = nextFrame.mValue; aiQuaternion::Interpolate(rotation, start, end, delta); rotation.Normalize(); } aiMatrix4x4 mat(rotation.GetMatrix()); return mat; } // Returns a 4x4 matrix with interpolated scaling between current and next frame aiMatrix4x4 interpolateScale(float time, const aiNodeAnim* pNodeAnim) { aiVector3D scale; if (pNodeAnim->mNumScalingKeys == 1) { scale = pNodeAnim->mScalingKeys[0].mValue; } else { uint32_t frameIndex = 0; for (uint32_t i = 0; i < pNodeAnim->mNumScalingKeys - 1; i++) { if (time < (float)pNodeAnim->mScalingKeys[i + 1].mTime) { frameIndex = i; break; } } aiVectorKey currentFrame = pNodeAnim->mScalingKeys[frameIndex]; aiVectorKey nextFrame = pNodeAnim->mScalingKeys[(frameIndex + 1) % pNodeAnim->mNumScalingKeys]; float delta = (time - (float)currentFrame.mTime) / (float)(nextFrame.mTime - currentFrame.mTime); const aiVector3D& start = currentFrame.mValue; const aiVector3D& end = nextFrame.mValue; scale = (start + delta * (end - start)); } aiMatrix4x4 mat; aiMatrix4x4::Scaling(scale, mat); return mat; } // Get node hierarchy for current animation time void readNodeHierarchy(float AnimationTime, const aiNode* pNode, const aiMatrix4x4& ParentTransform) { std::string NodeName(pNode->mName.data); aiMatrix4x4 NodeTransformation(pNode->mTransformation); const aiNodeAnim* pNodeAnim = findNodeAnim(pAnimation, NodeName); if (pNodeAnim) { // Get interpolated matrices between current and next frame aiMatrix4x4 matScale = interpolateScale(AnimationTime, pNodeAnim); aiMatrix4x4 matRotation = interpolateRotation(AnimationTime, pNodeAnim); aiMatrix4x4 matTranslation = interpolateTranslation(AnimationTime, pNodeAnim); NodeTransformation = matTranslation * matRotation * matScale; } aiMatrix4x4 GlobalTransformation = ParentTransform * NodeTransformation; if (boneMapping.find(NodeName) != boneMapping.end()) { uint32_t BoneIndex = boneMapping[NodeName]; boneInfo[BoneIndex].finalTransformation = globalInverseTransform * GlobalTransformation * boneInfo[BoneIndex].offset; } for (uint32_t i = 0; i < pNode->mNumChildren; i++) { readNodeHierarchy(AnimationTime, pNode->mChildren[i], GlobalTransformation); } } }; class VulkanExample : public VulkanExampleBase { public: struct { vks::Texture2D colorMap; vks::Texture2D floor; } textures; SkinnedMesh *skinnedMesh = nullptr; struct { vks::Buffer mesh; vks::Buffer floor; } uniformBuffers; struct { glm::mat4 projection; glm::mat4 view; glm::mat4 model; glm::mat4 bones[MAX_BONES]; glm::vec4 lightPos = glm::vec4(0.0f, -250.0f, 250.0f, 1.0); glm::vec4 viewPos; } uboVS; struct { glm::mat4 projection; glm::mat4 view; glm::mat4 model; glm::vec4 lightPos = glm::vec4(0.0, 0.0f, -25.0f, 1.0); glm::vec4 viewPos; glm::vec2 uvOffset; } uboFloor; struct { VkPipeline skinning; VkPipeline texture; } pipelines; struct { vks::Model floor; } models; VkPipelineLayout pipelineLayout; VkDescriptorSet descriptorSet; VkDescriptorSetLayout descriptorSetLayout; struct { VkDescriptorSet skinning; VkDescriptorSet floor; } descriptorSets; float runningTime = 0.0f; VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION) { title = "Skeletal animation (GPU skinning)"; settings.overlay = true; camera.type = Camera::CameraType::lookat; camera.setPerspective(60.0f, (float)width / (float)height, 1.0f, 512.0f); camera.setRotation(glm::vec3(-182.5f, -38.5f, 180.0f)); camera.setRotation(glm::vec3(0.0f, 135.0f, 0.0f)); camera.setPosition(glm::vec3(0.0f, 0.0f, -20.0f)); } ~VulkanExample() { // Clean up used Vulkan resources // Note : Inherited destructor cleans up resources stored in base class vkDestroyPipeline(device, pipelines.skinning, nullptr); vkDestroyPipeline(device, pipelines.texture, nullptr); vkDestroyPipelineLayout(device, pipelineLayout, nullptr); vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr); textures.colorMap.destroy(); textures.floor.destroy(); uniformBuffers.mesh.destroy(); uniformBuffers.floor.destroy(); models.floor.destroy(); delete(skinnedMesh); } // Enable physical device features required for this example virtual void getEnabledFeatures() { // Enable anisotropic filtering if supported if (deviceFeatures.samplerAnisotropy) { enabledFeatures.samplerAnisotropy = VK_TRUE; } // Enable texture compression if (deviceFeatures.textureCompressionBC) { enabledFeatures.textureCompressionBC = VK_TRUE; } else if (deviceFeatures.textureCompressionASTC_LDR) { enabledFeatures.textureCompressionASTC_LDR = VK_TRUE; } else if (deviceFeatures.textureCompressionETC2) { enabledFeatures.textureCompressionETC2 = VK_TRUE; } } void buildCommandBuffers() { VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo(); VkClearValue clearValues[2]; clearValues[0].color = { { 0.0f, 0.0f, 0.0f, 0.0f} }; clearValues[1].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo(); renderPassBeginInfo.renderPass = renderPass; renderPassBeginInfo.renderArea.offset.x = 0; renderPassBeginInfo.renderArea.offset.y = 0; renderPassBeginInfo.renderArea.extent.width = width; renderPassBeginInfo.renderArea.extent.height = height; renderPassBeginInfo.clearValueCount = 2; renderPassBeginInfo.pClearValues = clearValues; for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) { renderPassBeginInfo.framebuffer = frameBuffers[i]; VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo)); vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f); vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0); vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor); VkDeviceSize offsets[1] = { 0 }; // Skinned mesh vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.skinning); vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &skinnedMesh->vertexBuffer.vertices.buffer, offsets); vkCmdBindIndexBuffer(drawCmdBuffers[i], skinnedMesh->vertexBuffer.indices.buffer, 0, VK_INDEX_TYPE_UINT32); vkCmdDrawIndexed(drawCmdBuffers[i], skinnedMesh->vertexBuffer.indexCount, 1, 0, 0, 0); // Floor vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets.floor, 0, NULL); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.texture); vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &models.floor.vertices.buffer, offsets); vkCmdBindIndexBuffer(drawCmdBuffers[i], models.floor.indices.buffer, 0, VK_INDEX_TYPE_UINT32); vkCmdDrawIndexed(drawCmdBuffers[i], models.floor.indexCount, 1, 0, 0, 0); drawUI(drawCmdBuffers[i]); vkCmdEndRenderPass(drawCmdBuffers[i]); VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i])); } } // Load a mesh based on data read via assimp void loadMesh() { skinnedMesh = new SkinnedMesh(); std::string filename = getAssetPath() + "models/goblin.dae"; #if defined(__ANDROID__) // Meshes are stored inside the apk on Android (compressed) // So they need to be loaded via the asset manager AAsset* asset = AAssetManager_open(androidApp->activity->assetManager, filename.c_str(), AASSET_MODE_STREAMING); assert(asset); size_t size = AAsset_getLength(asset); assert(size > 0); void *meshData = malloc(size); AAsset_read(asset, meshData, size); AAsset_close(asset); skinnedMesh->scene = skinnedMesh->Importer.ReadFileFromMemory(meshData, size, 0); free(meshData); #else skinnedMesh->scene = skinnedMesh->Importer.ReadFile(filename.c_str(), 0); #endif skinnedMesh->setAnimation(0); // Setup bones // One vertex bone info structure per vertex uint32_t vertexCount(0); for (uint32_t m = 0; m < skinnedMesh->scene->mNumMeshes; m++) { vertexCount += skinnedMesh->scene->mMeshes[m]->mNumVertices; }; skinnedMesh->bones.resize(vertexCount); // Store global inverse transform matrix of root node skinnedMesh->globalInverseTransform = skinnedMesh->scene->mRootNode->mTransformation; skinnedMesh->globalInverseTransform.Inverse(); // Load bones (weights and IDs) uint32_t vertexBase(0); for (uint32_t m = 0; m < skinnedMesh->scene->mNumMeshes; m++) { aiMesh *paiMesh = skinnedMesh->scene->mMeshes[m]; if (paiMesh->mNumBones > 0) { skinnedMesh->loadBones(paiMesh, vertexBase, skinnedMesh->bones); } vertexBase += skinnedMesh->scene->mMeshes[m]->mNumVertices; } // Generate vertex buffer std::vector vertexBuffer; // Iterate through all meshes in the file and extract the vertex information used in this demo vertexBase = 0; for (uint32_t m = 0; m < skinnedMesh->scene->mNumMeshes; m++) { for (uint32_t v = 0; v < skinnedMesh->scene->mMeshes[m]->mNumVertices; v++) { Vertex vertex; vertex.pos = glm::make_vec3(&skinnedMesh->scene->mMeshes[m]->mVertices[v].x); vertex.normal = glm::make_vec3(&skinnedMesh->scene->mMeshes[m]->mNormals[v].x); vertex.uv = glm::make_vec2(&skinnedMesh->scene->mMeshes[m]->mTextureCoords[0][v].x); vertex.color = (skinnedMesh->scene->mMeshes[m]->HasVertexColors(0)) ? glm::make_vec3(&skinnedMesh->scene->mMeshes[m]->mColors[0][v].r) : glm::vec3(1.0f); // Fetch bone weights and IDs for (uint32_t j = 0; j < MAX_BONES_PER_VERTEX; j++) { vertex.boneWeights[j] = skinnedMesh->bones[vertexBase + v].weights[j]; vertex.boneIDs[j] = skinnedMesh->bones[vertexBase + v].IDs[j]; } vertexBuffer.push_back(vertex); } vertexBase += skinnedMesh->scene->mMeshes[m]->mNumVertices; } VkDeviceSize vertexBufferSize = vertexBuffer.size() * sizeof(Vertex); // Generate index buffer from loaded mesh file std::vector indexBuffer; for (uint32_t m = 0; m < skinnedMesh->scene->mNumMeshes; m++) { uint32_t indexBase = static_cast(indexBuffer.size()); for (uint32_t f = 0; f < skinnedMesh->scene->mMeshes[m]->mNumFaces; f++) { for (uint32_t i = 0; i < 3; i++) { indexBuffer.push_back(skinnedMesh->scene->mMeshes[m]->mFaces[f].mIndices[i] + indexBase); } } } VkDeviceSize indexBufferSize = indexBuffer.size() * sizeof(uint32_t); skinnedMesh->vertexBuffer.indexCount = static_cast(indexBuffer.size()); struct { VkBuffer buffer; VkDeviceMemory memory; } vertexStaging, indexStaging; // Create staging buffers // Vertex data VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, vertexBufferSize, &vertexStaging.buffer, &vertexStaging.memory, vertexBuffer.data())); // Index data VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, indexBufferSize, &indexStaging.buffer, &indexStaging.memory, indexBuffer.data())); // Create device local buffers // Vertex buffer VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &skinnedMesh->vertexBuffer.vertices, vertexBufferSize)); // Index buffer VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_INDEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &skinnedMesh->vertexBuffer.indices, indexBufferSize)); // Copy from staging buffers VkCommandBuffer copyCmd = VulkanExampleBase::createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true); VkBufferCopy copyRegion = {}; copyRegion.size = vertexBufferSize; vkCmdCopyBuffer( copyCmd, vertexStaging.buffer, skinnedMesh->vertexBuffer.vertices.buffer, 1, ©Region); copyRegion.size = indexBufferSize; vkCmdCopyBuffer( copyCmd, indexStaging.buffer, skinnedMesh->vertexBuffer.indices.buffer, 1, ©Region); VulkanExampleBase::flushCommandBuffer(copyCmd, queue, true); vkDestroyBuffer(device, vertexStaging.buffer, nullptr); vkFreeMemory(device, vertexStaging.memory, nullptr); vkDestroyBuffer(device, indexStaging.buffer, nullptr); vkFreeMemory(device, indexStaging.memory, nullptr); } void loadAssets() { models.floor.loadFromFile(getAssetPath() + "models/plane_z.obj", vertexLayout, 512.0f, vulkanDevice, queue); // Textures std::string texFormatSuffix; VkFormat texFormat; // Get supported compressed texture format if (vulkanDevice->features.textureCompressionBC) { texFormatSuffix = "_bc3_unorm"; texFormat = VK_FORMAT_BC3_UNORM_BLOCK; } else if (vulkanDevice->features.textureCompressionASTC_LDR) { texFormatSuffix = "_astc_8x8_unorm"; texFormat = VK_FORMAT_ASTC_8x8_UNORM_BLOCK; } else if (vulkanDevice->features.textureCompressionETC2) { texFormatSuffix = "_etc2_unorm"; texFormat = VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK; } else { vks::tools::exitFatal("Device does not support any compressed texture format!", VK_ERROR_FEATURE_NOT_PRESENT); } textures.colorMap.loadFromFile(getAssetPath() + "textures/goblin" + texFormatSuffix + ".ktx", texFormat, vulkanDevice, queue); textures.floor.loadFromFile(getAssetPath() + "textures/trail" + texFormatSuffix + ".ktx", texFormat, vulkanDevice, queue); } void setupDescriptorPool() { // Example uses one ubo and one combined image sampler std::vector poolSizes = { vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2), vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2), }; VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo( poolSizes.size(), poolSizes.data(), 2); VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool)); } void setupDescriptorSetLayout() { std::vector setLayoutBindings = { // Binding 0 : Vertex shader uniform buffer vks::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0), // Binding 1 : Fragment shader combined sampler vks::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1), }; VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo( setLayoutBindings.data(), setLayoutBindings.size()); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout)); VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo( &descriptorSetLayout, 1); VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout)); } void setupDescriptorSet() { VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo( descriptorPool, &descriptorSetLayout, 1); VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet)); VkDescriptorImageInfo texDescriptor = vks::initializers::descriptorImageInfo( textures.colorMap.sampler, textures.colorMap.view, VK_IMAGE_LAYOUT_GENERAL); std::vector writeDescriptorSets = { // Binding 0 : Vertex shader uniform buffer vks::initializers::writeDescriptorSet( descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.mesh.descriptor), // Binding 1 : Color map vks::initializers::writeDescriptorSet( descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &texDescriptor) }; vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL); // Floor VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.floor)); texDescriptor.imageView = textures.floor.view; texDescriptor.sampler = textures.floor.sampler; writeDescriptorSets.clear(); // Binding 0 : Vertex shader uniform buffer writeDescriptorSets.push_back( vks::initializers::writeDescriptorSet( descriptorSets.floor, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.floor.descriptor)); // Binding 1 : Color map writeDescriptorSets.push_back( vks::initializers::writeDescriptorSet( descriptorSets.floor, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &texDescriptor)); vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL); } void preparePipelines() { VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo( VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE); VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo( VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_CLOCKWISE, 0); VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState( 0xf, VK_FALSE); VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo( 1, &blendAttachmentState); VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo( VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL); VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0); VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo( VK_SAMPLE_COUNT_1_BIT, 0); std::vector dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR }; VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo( dynamicStateEnables.data(), dynamicStateEnables.size(), 0); // Skinned rendering pipeline std::array shaderStages; VkGraphicsPipelineCreateInfo pipelineCreateInfo = vks::initializers::pipelineCreateInfo( pipelineLayout, renderPass, 0); pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState; pipelineCreateInfo.pRasterizationState = &rasterizationState; pipelineCreateInfo.pColorBlendState = &colorBlendState; pipelineCreateInfo.pMultisampleState = &multisampleState; pipelineCreateInfo.pViewportState = &viewportState; pipelineCreateInfo.pDepthStencilState = &depthStencilState; pipelineCreateInfo.pDynamicState = &dynamicState; pipelineCreateInfo.stageCount = static_cast(shaderStages.size()); pipelineCreateInfo.pStages = shaderStages.data(); // Shared vertex inputs // Binding description VkVertexInputBindingDescription vertexInputBinding = vks::initializers::vertexInputBindingDescription(VERTEX_BUFFER_BIND_ID, sizeof(Vertex), VK_VERTEX_INPUT_RATE_VERTEX); // Attribute descriptions // Describes memory layout and shader positions std::vector vertexInputAttributes = { vks::initializers::vertexInputAttributeDescription(VERTEX_BUFFER_BIND_ID, 0, VK_FORMAT_R32G32B32_SFLOAT, 0), // Location 0: Position vks::initializers::vertexInputAttributeDescription(VERTEX_BUFFER_BIND_ID, 1, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 3), // Location 1: Normal vks::initializers::vertexInputAttributeDescription(VERTEX_BUFFER_BIND_ID, 2, VK_FORMAT_R32G32_SFLOAT, sizeof(float) * 6), // Location 2: Texture coordinates vks::initializers::vertexInputAttributeDescription(VERTEX_BUFFER_BIND_ID, 3, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 8), // Location 3: Color vks::initializers::vertexInputAttributeDescription(VERTEX_BUFFER_BIND_ID, 4, VK_FORMAT_R32G32B32A32_SFLOAT, sizeof(float) * 11), // Location 4: Bone weights vks::initializers::vertexInputAttributeDescription(VERTEX_BUFFER_BIND_ID, 5, VK_FORMAT_R32G32B32A32_SINT, sizeof(float) * 15), // Location 5: Bone IDs }; VkPipelineVertexInputStateCreateInfo vertexInputState = vks::initializers::pipelineVertexInputStateCreateInfo(); vertexInputState.vertexBindingDescriptionCount = 1; vertexInputState.pVertexBindingDescriptions = &vertexInputBinding; vertexInputState.vertexAttributeDescriptionCount = static_cast(vertexInputAttributes.size()); vertexInputState.pVertexAttributeDescriptions = vertexInputAttributes.data(); pipelineCreateInfo.pVertexInputState = &vertexInputState; // Skinned mesh rendering pipeline shaderStages[0] = loadShader(getAssetPath() + "shaders/skeletalanimation/mesh.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getAssetPath() + "shaders/skeletalanimation/mesh.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.skinning)); // Environment rendering pipeline shaderStages[0] = loadShader(getAssetPath() + "shaders/skeletalanimation/texture.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getAssetPath() + "shaders/skeletalanimation/texture.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.texture)); } // Prepare and initialize uniform buffer containing shader uniforms void prepareUniformBuffers() { // Mesh uniform buffer block vulkanDevice->createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBuffers.mesh, sizeof(uboVS)); // Map persistant VK_CHECK_RESULT(uniformBuffers.mesh.map()); // Floor uniform buffer block vulkanDevice->createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBuffers.floor, sizeof(uboFloor)); // Map persistant VK_CHECK_RESULT(uniformBuffers.floor.map()); updateUniformBuffers(true); } void updateUniformBuffers(bool viewChanged) { if (viewChanged) { const glm::vec3 scale = glm::vec3(0.0025f); uboVS.projection = camera.matrices.perspective; uboVS.view = camera.matrices.view; uboVS.viewPos = glm::vec4(camera.position, 0.0f) * glm::vec4(-1.0f); uboVS.model = glm::rotate(glm::mat4(1.0f), glm::radians(90.0f), glm::vec3(1.0f, 0.0f, 0.0f)); uboVS.model = glm::scale(uboVS.model, scale); uboFloor.projection = camera.matrices.perspective; uboFloor.view = camera.matrices.view; uboFloor.model = glm::translate(glm::mat4(1.0f), glm::vec3(0.0f, 4.5f, 0.0f)); uboFloor.model = glm::rotate(uboFloor.model, glm::radians(90.0f), glm::vec3(1.0f, 0.0f, 0.0f)); uboFloor.model = glm::scale(uboFloor.model, scale); uboFloor.viewPos = glm::vec4(camera.position, 0.0f) * glm::vec4(-1.0f); } // Update bones skinnedMesh->update(runningTime); for (uint32_t i = 0; i < skinnedMesh->boneTransforms.size(); i++) { uboVS.bones[i] = glm::transpose(glm::make_mat4(&skinnedMesh->boneTransforms[i].a1)); } uniformBuffers.mesh.copyTo(&uboVS, sizeof(uboVS)); // Update floor animation uboFloor.uvOffset.t -= 0.25f * skinnedMesh->animationSpeed * frameTimer; uniformBuffers.floor.copyTo(&uboFloor, sizeof(uboFloor)); } void draw() { VulkanExampleBase::prepareFrame(); submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer]; VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE)); VulkanExampleBase::submitFrame(); } void prepare() { VulkanExampleBase::prepare(); loadAssets(); loadMesh(); prepareUniformBuffers(); setupDescriptorSetLayout(); preparePipelines(); setupDescriptorPool(); setupDescriptorSet(); buildCommandBuffers(); prepared = true; } virtual void render() { if (!prepared) return; draw(); if (!paused) { runningTime += frameTimer * skinnedMesh->animationSpeed; updateUniformBuffers(false); } } virtual void viewChanged() { updateUniformBuffers(true); } void changeAnimationSpeed(float delta) { skinnedMesh->animationSpeed += delta; } virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay) { if (overlay->header("Settings")) { overlay->sliderFloat("Animation speed", &skinnedMesh->animationSpeed, 0.0f, 10.0f); } } }; VULKAN_EXAMPLE_MAIN()