/* * Vulkan Example - Cube map texture loading and displaying * * Copyright (C) 2016 by Sascha Willems - www.saschawillems.de * * This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT) */ #include #include #include #include #include #define GLM_FORCE_RADIANS #define GLM_FORCE_DEPTH_ZERO_TO_ONE #include #include #include #include #include "vulkanexamplebase.h" #define VERTEX_BUFFER_BIND_ID 0 #define ENABLE_VALIDATION false // Vertex layout for this example std::vector vertexLayout = { vkMeshLoader::VERTEX_LAYOUT_POSITION, vkMeshLoader::VERTEX_LAYOUT_NORMAL, vkMeshLoader::VERTEX_LAYOUT_UV }; class VulkanExample : public VulkanExampleBase { public: vkTools::VulkanTexture cubeMap; struct { VkPipelineVertexInputStateCreateInfo inputState; std::vector bindingDescriptions; std::vector attributeDescriptions; } vertices; struct { vkMeshLoader::MeshBuffer skybox, object; } meshes; struct { vkTools::UniformData objectVS; vkTools::UniformData skyboxVS; } uniformData; struct { glm::mat4 projection; glm::mat4 model; } uboVS; struct { VkPipeline skybox; VkPipeline reflect; } pipelines; struct { VkDescriptorSet object; VkDescriptorSet skybox; } descriptorSets; VkPipelineLayout pipelineLayout; VkDescriptorSetLayout descriptorSetLayout; VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION) { zoom = -4.0f; rotationSpeed = 0.25f; rotation = { -2.25f, -35.0f, 0.0f }; title = "Vulkan Example - Cube map"; } ~VulkanExample() { // Clean up used Vulkan resources // Note : Inherited destructor cleans up resources stored in base class // Clean up texture resources vkDestroyImageView(device, cubeMap.view, nullptr); vkDestroyImage(device, cubeMap.image, nullptr); vkDestroySampler(device, cubeMap.sampler, nullptr); vkFreeMemory(device, cubeMap.deviceMemory, nullptr); vkDestroyPipeline(device, pipelines.skybox, nullptr); vkDestroyPipeline(device, pipelines.reflect, nullptr); vkDestroyPipelineLayout(device, pipelineLayout, nullptr); vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr); vkMeshLoader::freeMeshBufferResources(device, &meshes.object); vkMeshLoader::freeMeshBufferResources(device, &meshes.skybox); vkTools::destroyUniformData(device, &uniformData.objectVS); vkTools::destroyUniformData(device, &uniformData.skyboxVS); } void loadCubemap(std::string filename, VkFormat format, bool forceLinearTiling) { #if defined(__ANDROID__) // Textures are stored inside the apk on Android (compressed) // So they need to be loaded via the asset manager AAsset* asset = AAssetManager_open(androidApp->activity->assetManager, filename.c_str(), AASSET_MODE_STREAMING); assert(asset); size_t size = AAsset_getLength(asset); assert(size > 0); void *textureData = malloc(size); AAsset_read(asset, textureData, size); AAsset_close(asset); gli::textureCube texCube(gli::load((const char*)textureData, size)); #else gli::textureCube texCube(gli::load(filename)); #endif assert(!texCube.empty()); cubeMap.width = texCube[0].dimensions().x; cubeMap.height = texCube[0].dimensions().y; VkMemoryAllocateInfo memAllocInfo = vkTools::initializers::memoryAllocateInfo(); VkMemoryRequirements memReqs; // Create a host-visible staging buffer that contains the raw image data VkBuffer stagingBuffer; VkDeviceMemory stagingMemory; VkBufferCreateInfo bufferCreateInfo = vkTools::initializers::bufferCreateInfo(); bufferCreateInfo.size = texCube.size(); // This buffer is used as a transfer source for the buffer copy bufferCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT; bufferCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; vkTools::checkResult(vkCreateBuffer(device, &bufferCreateInfo, nullptr, &stagingBuffer)); // Get memory requirements for the staging buffer (alignment, memory type bits) vkGetBufferMemoryRequirements(device, stagingBuffer, &memReqs); memAllocInfo.allocationSize = memReqs.size; // Get memory type index for a host visible buffer memAllocInfo.memoryTypeIndex = getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT); vkTools::checkResult(vkAllocateMemory(device, &memAllocInfo, nullptr, &stagingMemory)); vkTools::checkResult(vkBindBufferMemory(device, stagingBuffer, stagingMemory, 0)); // Copy texture data into staging buffer uint8_t *data; vkTools::checkResult(vkMapMemory(device, stagingMemory, 0, memReqs.size, 0, (void **)&data)); memcpy(data, texCube.data(), texCube.size()); vkUnmapMemory(device, stagingMemory); // Setup buffer copy regions for all cube faces std::vector bufferCopyRegions; uint32_t offset = 0; for (uint32_t face = 0; face < 6; face++) { VkBufferImageCopy bufferCopyRegion = {}; bufferCopyRegion.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; bufferCopyRegion.imageSubresource.mipLevel = 0; bufferCopyRegion.imageSubresource.baseArrayLayer = face; bufferCopyRegion.imageSubresource.layerCount = 1; bufferCopyRegion.imageExtent.width = texCube[face].dimensions().x; bufferCopyRegion.imageExtent.height = texCube[face].dimensions().y; bufferCopyRegion.imageExtent.depth = 1; bufferCopyRegion.bufferOffset = offset; bufferCopyRegions.push_back(bufferCopyRegion); offset += texCube[face].size(); } // Create optimal tiled target image VkImageCreateInfo imageCreateInfo = vkTools::initializers::imageCreateInfo(); imageCreateInfo.imageType = VK_IMAGE_TYPE_2D; imageCreateInfo.format = format; imageCreateInfo.mipLevels = 1; imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT; imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL; imageCreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT; imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_PREINITIALIZED; imageCreateInfo.extent = { cubeMap.width, cubeMap.height, 1 }; imageCreateInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT; // Cube faces count as array layers in Vulkan imageCreateInfo.arrayLayers = 6; // This flag is required for cube map images imageCreateInfo.flags = VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT; VK_CHECK_RESULT(vkCreateImage(device, &imageCreateInfo, nullptr, &cubeMap.image)); vkGetImageMemoryRequirements(device, cubeMap.image, &memReqs); memAllocInfo.allocationSize = memReqs.size; memAllocInfo.memoryTypeIndex = getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &cubeMap.deviceMemory)); VK_CHECK_RESULT(vkBindImageMemory(device, cubeMap.image, cubeMap.deviceMemory, 0)); VkCommandBuffer copyCmd = VulkanExampleBase::createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true); // Image barrier for optimal image (target) // Set initial layout for all array layers (faces) of the optimal (target) tiled texture VkImageSubresourceRange subresourceRange = {}; subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; subresourceRange.baseMipLevel = 0; subresourceRange.levelCount = 1; subresourceRange.layerCount = 6; vkTools::setImageLayout( copyCmd, cubeMap.image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_PREINITIALIZED, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, subresourceRange); // Copy the cube map faces from the staging buffer to the optimal tiled image vkCmdCopyBufferToImage( copyCmd, stagingBuffer, cubeMap.image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, bufferCopyRegions.size(), bufferCopyRegions.data() ); // Change texture image layout to shader read after all faces have been copied cubeMap.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; vkTools::setImageLayout( copyCmd, cubeMap.image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, cubeMap.imageLayout, subresourceRange); VulkanExampleBase::flushCommandBuffer(copyCmd, queue, true); // Create sampler VkSamplerCreateInfo sampler = vkTools::initializers::samplerCreateInfo(); sampler.magFilter = VK_FILTER_LINEAR; sampler.minFilter = VK_FILTER_LINEAR; sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR; sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE; sampler.addressModeV = sampler.addressModeU; sampler.addressModeW = sampler.addressModeU; sampler.mipLodBias = 0.0f; sampler.maxAnisotropy = 8; sampler.compareOp = VK_COMPARE_OP_NEVER; sampler.minLod = 0.0f; sampler.maxLod = 0.0f; sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE; VK_CHECK_RESULT(vkCreateSampler(device, &sampler, nullptr, &cubeMap.sampler)); // Create image view VkImageViewCreateInfo view = vkTools::initializers::imageViewCreateInfo(); // Cube map view type view.viewType = VK_IMAGE_VIEW_TYPE_CUBE; view.format = format; view.components = { VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A }; view.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 }; // 6 array layers (faces) view.subresourceRange.layerCount = 6; view.image = cubeMap.image; VK_CHECK_RESULT(vkCreateImageView(device, &view, nullptr, &cubeMap.view)); // Clean up staging resources vkFreeMemory(device, stagingMemory, nullptr); vkDestroyBuffer(device, stagingBuffer, nullptr); } void buildCommandBuffers() { VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo(); VkClearValue clearValues[2]; clearValues[0].color = defaultClearColor; clearValues[1].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo(); renderPassBeginInfo.renderPass = renderPass; renderPassBeginInfo.renderArea.offset.x = 0; renderPassBeginInfo.renderArea.offset.y = 0; renderPassBeginInfo.renderArea.extent.width = width; renderPassBeginInfo.renderArea.extent.height = height; renderPassBeginInfo.clearValueCount = 2; renderPassBeginInfo.pClearValues = clearValues; for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) { // Set target frame buffer renderPassBeginInfo.framebuffer = frameBuffers[i]; VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo)); vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); VkViewport viewport = vkTools::initializers::viewport((float)width, (float)height, 0.0f, 1.0f); vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); VkRect2D scissor = vkTools::initializers::rect2D(width, height, 0, 0); vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor); VkDeviceSize offsets[1] = { 0 }; // Skybox vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets.skybox, 0, NULL); vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &meshes.skybox.vertices.buf, offsets); vkCmdBindIndexBuffer(drawCmdBuffers[i], meshes.skybox.indices.buf, 0, VK_INDEX_TYPE_UINT32); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.skybox); vkCmdDrawIndexed(drawCmdBuffers[i], meshes.skybox.indexCount, 1, 0, 0, 0); // 3D object vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets.object, 0, NULL); vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &meshes.object.vertices.buf, offsets); vkCmdBindIndexBuffer(drawCmdBuffers[i], meshes.object.indices.buf, 0, VK_INDEX_TYPE_UINT32); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.reflect); vkCmdDrawIndexed(drawCmdBuffers[i], meshes.object.indexCount, 1, 0, 0, 0); vkCmdEndRenderPass(drawCmdBuffers[i]); VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i])); } } void draw() { // Get next image in the swap chain (back/front buffer) VK_CHECK_RESULT(swapChain.acquireNextImage(semaphores.presentComplete, ¤tBuffer)); submitPostPresentBarrier(swapChain.buffers[currentBuffer].image); // Command buffer to be sumitted to the queue submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer]; // Submit to queue VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE)); submitPrePresentBarrier(swapChain.buffers[currentBuffer].image); VK_CHECK_RESULT(swapChain.queuePresent(queue, currentBuffer, semaphores.renderComplete)); VK_CHECK_RESULT(vkQueueWaitIdle(queue)); } void loadMeshes() { loadMesh(getAssetPath() + "models/sphere.obj", &meshes.object, vertexLayout, 0.05f); loadMesh(getAssetPath() + "models/cube.obj", &meshes.skybox, vertexLayout, 0.05f); } void setupVertexDescriptions() { // Binding description vertices.bindingDescriptions.resize(1); vertices.bindingDescriptions[0] = vkTools::initializers::vertexInputBindingDescription( VERTEX_BUFFER_BIND_ID, vkMeshLoader::vertexSize(vertexLayout), VK_VERTEX_INPUT_RATE_VERTEX); // Attribute descriptions // Describes memory layout and shader positions vertices.attributeDescriptions.resize(3); // Location 0 : Position vertices.attributeDescriptions[0] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 0, VK_FORMAT_R32G32B32_SFLOAT, 0); // Location 1 : Normal vertices.attributeDescriptions[1] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 1, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 3); // Location 2 : Texture coordinates vertices.attributeDescriptions[2] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 2, VK_FORMAT_R32G32_SFLOAT, sizeof(float) * 5); vertices.inputState = vkTools::initializers::pipelineVertexInputStateCreateInfo(); vertices.inputState.vertexBindingDescriptionCount = vertices.bindingDescriptions.size(); vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data(); vertices.inputState.vertexAttributeDescriptionCount = vertices.attributeDescriptions.size(); vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data(); } void setupDescriptorPool() { std::vector poolSizes = { vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2), vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2) }; VkDescriptorPoolCreateInfo descriptorPoolInfo = vkTools::initializers::descriptorPoolCreateInfo( poolSizes.size(), poolSizes.data(), 2); VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool)); } void setupDescriptorSetLayout() { std::vector setLayoutBindings = { // Binding 0 : Vertex shader uniform buffer vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0), // Binding 1 : Fragment shader image sampler vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1) }; VkDescriptorSetLayoutCreateInfo descriptorLayout = vkTools::initializers::descriptorSetLayoutCreateInfo( setLayoutBindings.data(), setLayoutBindings.size()); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout)); VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = vkTools::initializers::pipelineLayoutCreateInfo( &descriptorSetLayout, 1); VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout)); } void setupDescriptorSets() { // Image descriptor for the cube map texture VkDescriptorImageInfo cubeMapDescriptor = vkTools::initializers::descriptorImageInfo( cubeMap.sampler, cubeMap.view, VK_IMAGE_LAYOUT_GENERAL); VkDescriptorSetAllocateInfo allocInfo = vkTools::initializers::descriptorSetAllocateInfo( descriptorPool, &descriptorSetLayout, 1); // 3D object descriptor set VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.object)); std::vector writeDescriptorSets = { // Binding 0 : Vertex shader uniform buffer vkTools::initializers::writeDescriptorSet( descriptorSets.object, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformData.objectVS.descriptor), // Binding 1 : Fragment shader cubemap sampler vkTools::initializers::writeDescriptorSet( descriptorSets.object, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &cubeMapDescriptor) }; vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL); // Sky box descriptor set VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.skybox)); writeDescriptorSets = { // Binding 0 : Vertex shader uniform buffer vkTools::initializers::writeDescriptorSet( descriptorSets.skybox, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformData.skyboxVS.descriptor), // Binding 1 : Fragment shader cubemap sampler vkTools::initializers::writeDescriptorSet( descriptorSets.skybox, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &cubeMapDescriptor) }; vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL); } void preparePipelines() { VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vkTools::initializers::pipelineInputAssemblyStateCreateInfo( VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE); VkPipelineRasterizationStateCreateInfo rasterizationState = vkTools::initializers::pipelineRasterizationStateCreateInfo( VK_POLYGON_MODE_FILL, VK_CULL_MODE_NONE, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0); VkPipelineColorBlendAttachmentState blendAttachmentState = vkTools::initializers::pipelineColorBlendAttachmentState( 0xf, VK_FALSE); VkPipelineColorBlendStateCreateInfo colorBlendState = vkTools::initializers::pipelineColorBlendStateCreateInfo( 1, &blendAttachmentState); VkPipelineDepthStencilStateCreateInfo depthStencilState = vkTools::initializers::pipelineDepthStencilStateCreateInfo( VK_TRUE, VK_FALSE, VK_COMPARE_OP_LESS_OR_EQUAL); VkPipelineViewportStateCreateInfo viewportState = vkTools::initializers::pipelineViewportStateCreateInfo(1, 1, 0); VkPipelineMultisampleStateCreateInfo multisampleState = vkTools::initializers::pipelineMultisampleStateCreateInfo( VK_SAMPLE_COUNT_1_BIT, 0); std::vector dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR }; VkPipelineDynamicStateCreateInfo dynamicState = vkTools::initializers::pipelineDynamicStateCreateInfo( dynamicStateEnables.data(), dynamicStateEnables.size(), 0); // Skybox pipeline (background cube) std::array shaderStages; shaderStages[0] = loadShader(getAssetPath() + "shaders/cubemap/skybox.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getAssetPath() + "shaders/cubemap/skybox.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); VkGraphicsPipelineCreateInfo pipelineCreateInfo = vkTools::initializers::pipelineCreateInfo( pipelineLayout, renderPass, 0); pipelineCreateInfo.pVertexInputState = &vertices.inputState; pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState; pipelineCreateInfo.pRasterizationState = &rasterizationState; pipelineCreateInfo.pColorBlendState = &colorBlendState; pipelineCreateInfo.pMultisampleState = &multisampleState; pipelineCreateInfo.pViewportState = &viewportState; pipelineCreateInfo.pDepthStencilState = &depthStencilState; pipelineCreateInfo.pDynamicState = &dynamicState; pipelineCreateInfo.stageCount = shaderStages.size(); pipelineCreateInfo.pStages = shaderStages.data(); VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.skybox)); // Cube map reflect pipeline shaderStages[0] = loadShader(getAssetPath() + "shaders/cubemap/reflect.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getAssetPath() + "shaders/cubemap/reflect.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); depthStencilState.depthWriteEnable = VK_TRUE; VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.reflect)); } // Prepare and initialize uniform buffer containing shader uniforms void prepareUniformBuffers() { // 3D objact createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, sizeof(uboVS), &uboVS, &uniformData.objectVS.buffer, &uniformData.objectVS.memory, &uniformData.objectVS.descriptor); // Skybox createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, sizeof(uboVS), &uboVS, &uniformData.skyboxVS.buffer, &uniformData.skyboxVS.memory, &uniformData.skyboxVS.descriptor); } void updateUniformBuffers() { // 3D object glm::mat4 viewMatrix = glm::mat4(); uboVS.projection = glm::perspective(glm::radians(60.0f), (float)width / (float)height, 0.001f, 256.0f); viewMatrix = glm::translate(viewMatrix, glm::vec3(0.0f, 0.0f, zoom)); uboVS.model = glm::mat4(); uboVS.model = viewMatrix * glm::translate(uboVS.model, glm::vec3(0, 0, 0)); uboVS.model = glm::rotate(uboVS.model, glm::radians(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f)); uboVS.model = glm::rotate(uboVS.model, glm::radians(rotation.y), glm::vec3(0.0f, 1.0f, 0.0f)); uboVS.model = glm::rotate(uboVS.model, glm::radians(rotation.z), glm::vec3(0.0f, 0.0f, 1.0f)); uint8_t *pData; VK_CHECK_RESULT(vkMapMemory(device, uniformData.objectVS.memory, 0, sizeof(uboVS), 0, (void **)&pData)); memcpy(pData, &uboVS, sizeof(uboVS)); vkUnmapMemory(device, uniformData.objectVS.memory); // Skysphere viewMatrix = glm::mat4(); uboVS.projection = glm::perspective(glm::radians(60.0f), (float)width / (float)height, 0.001f, 256.0f); uboVS.model = glm::mat4(); uboVS.model = viewMatrix * glm::translate(uboVS.model, glm::vec3(0, 0, 0)); uboVS.model = glm::rotate(uboVS.model, glm::radians(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f)); uboVS.model = glm::rotate(uboVS.model, glm::radians(rotation.y), glm::vec3(0.0f, 1.0f, 0.0f)); uboVS.model = glm::rotate(uboVS.model, glm::radians(rotation.z), glm::vec3(0.0f, 0.0f, 1.0f)); VK_CHECK_RESULT(vkMapMemory(device, uniformData.skyboxVS.memory, 0, sizeof(uboVS), 0, (void **)&pData)); memcpy(pData, &uboVS, sizeof(uboVS)); vkUnmapMemory(device, uniformData.skyboxVS.memory); } void prepare() { VulkanExampleBase::prepare(); loadMeshes(); setupVertexDescriptions(); prepareUniformBuffers(); loadCubemap( getAssetPath() + "textures/cubemap_yokohama.ktx", VK_FORMAT_BC3_UNORM_BLOCK, false); setupDescriptorSetLayout(); preparePipelines(); setupDescriptorPool(); setupDescriptorSets(); buildCommandBuffers(); prepared = true; } virtual void render() { if (!prepared) return; vkDeviceWaitIdle(device); draw(); vkDeviceWaitIdle(device); updateUniformBuffers(); } virtual void viewChanged() { updateUniformBuffers(); } }; VulkanExample *vulkanExample; #if defined(_WIN32) LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam) { if (vulkanExample != NULL) { vulkanExample->handleMessages(hWnd, uMsg, wParam, lParam); } return (DefWindowProc(hWnd, uMsg, wParam, lParam)); } #elif defined(__linux__) && !defined(__ANDROID__) static void handleEvent(const xcb_generic_event_t *event) { if (vulkanExample != NULL) { vulkanExample->handleEvent(event); } } #endif // Main entry point #if defined(_WIN32) // Windows entry point int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR pCmdLine, int nCmdShow) #elif defined(__ANDROID__) // Android entry point void android_main(android_app* state) #elif defined(__linux__) // Linux entry point int main(const int argc, const char *argv[]) #endif { #if defined(__ANDROID__) // Removing this may cause the compiler to omit the main entry point // which would make the application crash at start app_dummy(); #endif vulkanExample = new VulkanExample(); #if defined(_WIN32) vulkanExample->setupWindow(hInstance, WndProc); #elif defined(__ANDROID__) // Attach vulkan example to global android application state state->userData = vulkanExample; state->onAppCmd = VulkanExample::handleAppCommand; state->onInputEvent = VulkanExample::handleAppInput; vulkanExample->androidApp = state; #elif defined(__linux__) vulkanExample->setupWindow(); #endif #if !defined(__ANDROID__) vulkanExample->initSwapchain(); vulkanExample->prepare(); #endif vulkanExample->renderLoop(); delete(vulkanExample); #if !defined(__ANDROID__) return 0; #endif }