/* * Vulkan Example - Texture loading (and display) example (including mip maps) * * Copyright (C) 2016 by Sascha Willems - www.saschawillems.de * * This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT) */ #include #include #include #include #include #define GLM_FORCE_RADIANS #define GLM_FORCE_DEPTH_ZERO_TO_ONE #include #include #include #include #include "vulkanexamplebase.h" #include "VulkanDevice.hpp" #include "VulkanBuffer.hpp" #define VERTEX_BUFFER_BIND_ID 0 #define ENABLE_VALIDATION false // Vertex layout for this example struct Vertex { float pos[3]; float uv[2]; float normal[3]; }; class VulkanExample : public VulkanExampleBase { public: // Contains all Vulkan objects that are required to store and use a texture // Note that this repository contains a texture class (VulkanTexture.hpp) that encapsulates texture loading functionality in a class that is used in subsequent demos struct Texture { VkSampler sampler; VkImage image; VkImageLayout imageLayout; VkDeviceMemory deviceMemory; VkImageView view; uint32_t width, height; uint32_t mipLevels; } texture; struct { VkPipelineVertexInputStateCreateInfo inputState; std::vector bindingDescriptions; std::vector attributeDescriptions; } vertices; vks::Buffer vertexBuffer; vks::Buffer indexBuffer; uint32_t indexCount; vks::Buffer uniformBufferVS; struct { glm::mat4 projection; glm::mat4 model; glm::vec4 viewPos; float lodBias = 0.0f; } uboVS; struct { VkPipeline solid; } pipelines; VkPipelineLayout pipelineLayout; VkDescriptorSet descriptorSet; VkDescriptorSetLayout descriptorSetLayout; VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION) { zoom = -2.5f; rotation = { 0.0f, 15.0f, 0.0f }; title = "Vulkan Example - Texturing"; enableTextOverlay = true; } ~VulkanExample() { // Clean up used Vulkan resources // Note : Inherited destructor cleans up resources stored in base class destroyTextureImage(texture); vkDestroyPipeline(device, pipelines.solid, nullptr); vkDestroyPipelineLayout(device, pipelineLayout, nullptr); vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr); vertexBuffer.destroy(); indexBuffer.destroy(); uniformBufferVS.destroy(); } // Create an image memory barrier for changing the layout of // an image and put it into an active command buffer void setImageLayout(VkCommandBuffer cmdBuffer, VkImage image, VkImageAspectFlags aspectMask, VkImageLayout oldImageLayout, VkImageLayout newImageLayout, VkImageSubresourceRange subresourceRange) { // Create an image barrier object VkImageMemoryBarrier imageMemoryBarrier = vks::initializers::imageMemoryBarrier();; imageMemoryBarrier.oldLayout = oldImageLayout; imageMemoryBarrier.newLayout = newImageLayout; imageMemoryBarrier.image = image; imageMemoryBarrier.subresourceRange = subresourceRange; // Only sets masks for layouts used in this example // For a more complete version that can be used with other layouts see vks::tools::setImageLayout // Source layouts (old) switch (oldImageLayout) { case VK_IMAGE_LAYOUT_UNDEFINED: // Only valid as initial layout, memory contents are not preserved // Can be accessed directly, no source dependency required imageMemoryBarrier.srcAccessMask = 0; break; case VK_IMAGE_LAYOUT_PREINITIALIZED: // Only valid as initial layout for linear images, preserves memory contents // Make sure host writes to the image have been finished imageMemoryBarrier.srcAccessMask = VK_ACCESS_HOST_WRITE_BIT; break; case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL: // Old layout is transfer destination // Make sure any writes to the image have been finished imageMemoryBarrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT; break; } // Target layouts (new) switch (newImageLayout) { case VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL: // Transfer source (copy, blit) // Make sure any reads from the image have been finished imageMemoryBarrier.dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT; break; case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL: // Transfer destination (copy, blit) // Make sure any writes to the image have been finished imageMemoryBarrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT; break; case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL: // Shader read (sampler, input attachment) imageMemoryBarrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT; break; } // Put barrier on top of pipeline VkPipelineStageFlags srcStageFlags = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT; VkPipelineStageFlags destStageFlags = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT; // Put barrier inside setup command buffer vkCmdPipelineBarrier( cmdBuffer, srcStageFlags, destStageFlags, VK_FLAGS_NONE, 0, nullptr, 0, nullptr, 1, &imageMemoryBarrier); } void loadTexture(std::string fileName, VkFormat format, bool forceLinearTiling) { #if defined(__ANDROID__) // Textures are stored inside the apk on Android (compressed) // So they need to be loaded via the asset manager AAsset* asset = AAssetManager_open(androidApp->activity->assetManager, fileName.c_str(), AASSET_MODE_STREAMING); assert(asset); size_t size = AAsset_getLength(asset); assert(size > 0); void *textureData = malloc(size); AAsset_read(asset, textureData, size); AAsset_close(asset); gli::texture2d tex2D(gli::load((const char*)textureData, size)); #else gli::texture2d tex2D(gli::load(fileName)); #endif assert(!tex2D.empty()); VkFormatProperties formatProperties; texture.width = static_cast(tex2D[0].extent().x); texture.height = static_cast(tex2D[0].extent().y); texture.mipLevels = static_cast(tex2D.levels()); // Get device properites for the requested texture format vkGetPhysicalDeviceFormatProperties(physicalDevice, format, &formatProperties); // Only use linear tiling if requested (and supported by the device) // Support for linear tiling is mostly limited, so prefer to use // optimal tiling instead // On most implementations linear tiling will only support a very // limited amount of formats and features (mip maps, cubemaps, arrays, etc.) VkBool32 useStaging = true; // Only use linear tiling if forced if (forceLinearTiling) { // Don't use linear if format is not supported for (linear) shader sampling useStaging = !(formatProperties.linearTilingFeatures & VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT); } VkMemoryAllocateInfo memAllocInfo = vks::initializers::memoryAllocateInfo(); VkMemoryRequirements memReqs = {}; if (useStaging) { // Create a host-visible staging buffer that contains the raw image data VkBuffer stagingBuffer; VkDeviceMemory stagingMemory; VkBufferCreateInfo bufferCreateInfo = vks::initializers::bufferCreateInfo(); bufferCreateInfo.size = tex2D.size(); // This buffer is used as a transfer source for the buffer copy bufferCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT; bufferCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; VK_CHECK_RESULT(vkCreateBuffer(device, &bufferCreateInfo, nullptr, &stagingBuffer)); // Get memory requirements for the staging buffer (alignment, memory type bits) vkGetBufferMemoryRequirements(device, stagingBuffer, &memReqs); memAllocInfo.allocationSize = memReqs.size; // Get memory type index for a host visible buffer memAllocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT); VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &stagingMemory)); VK_CHECK_RESULT(vkBindBufferMemory(device, stagingBuffer, stagingMemory, 0)); // Copy texture data into staging buffer uint8_t *data; VK_CHECK_RESULT(vkMapMemory(device, stagingMemory, 0, memReqs.size, 0, (void **)&data)); memcpy(data, tex2D.data(), tex2D.size()); vkUnmapMemory(device, stagingMemory); // Setup buffer copy regions for each mip level std::vector bufferCopyRegions; uint32_t offset = 0; for (uint32_t i = 0; i < texture.mipLevels; i++) { VkBufferImageCopy bufferCopyRegion = {}; bufferCopyRegion.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; bufferCopyRegion.imageSubresource.mipLevel = i; bufferCopyRegion.imageSubresource.baseArrayLayer = 0; bufferCopyRegion.imageSubresource.layerCount = 1; bufferCopyRegion.imageExtent.width = static_cast(tex2D[i].extent().x); bufferCopyRegion.imageExtent.height = static_cast(tex2D[i].extent().y); bufferCopyRegion.imageExtent.depth = 1; bufferCopyRegion.bufferOffset = offset; bufferCopyRegions.push_back(bufferCopyRegion); offset += static_cast(tex2D[i].size()); } // Create optimal tiled target image VkImageCreateInfo imageCreateInfo = vks::initializers::imageCreateInfo(); imageCreateInfo.imageType = VK_IMAGE_TYPE_2D; imageCreateInfo.format = format; imageCreateInfo.mipLevels = texture.mipLevels; imageCreateInfo.arrayLayers = 1; imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT; imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL; imageCreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT; imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; // Set initial layout of the image to undefined imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; imageCreateInfo.extent = { texture.width, texture.height, 1 }; imageCreateInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT; VK_CHECK_RESULT(vkCreateImage(device, &imageCreateInfo, nullptr, &texture.image)); vkGetImageMemoryRequirements(device, texture.image, &memReqs); memAllocInfo.allocationSize = memReqs.size; memAllocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &texture.deviceMemory)); VK_CHECK_RESULT(vkBindImageMemory(device, texture.image, texture.deviceMemory, 0)); VkCommandBuffer copyCmd = VulkanExampleBase::createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true); // Image barrier for optimal image // The sub resource range describes the regions of the image we will be transition VkImageSubresourceRange subresourceRange = {}; // Image only contains color data subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; // Start at first mip level subresourceRange.baseMipLevel = 0; // We will transition on all mip levels subresourceRange.levelCount = texture.mipLevels; // The 2D texture only has one layer subresourceRange.layerCount = 1; // Optimal image will be used as destination for the copy, so we must transfer from our // initial undefined image layout to the transfer destination layout setImageLayout( copyCmd, texture.image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, subresourceRange); // Copy mip levels from staging buffer vkCmdCopyBufferToImage( copyCmd, stagingBuffer, texture.image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, static_cast(bufferCopyRegions.size()), bufferCopyRegions.data()); // Change texture image layout to shader read after all mip levels have been copied texture.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; setImageLayout( copyCmd, texture.image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, texture.imageLayout, subresourceRange); VulkanExampleBase::flushCommandBuffer(copyCmd, queue, true); // Clean up staging resources vkFreeMemory(device, stagingMemory, nullptr); vkDestroyBuffer(device, stagingBuffer, nullptr); } else { // Prefer using optimal tiling, as linear tiling // may support only a small set of features // depending on implementation (e.g. no mip maps, only one layer, etc.) VkImage mappableImage; VkDeviceMemory mappableMemory; // Load mip map level 0 to linear tiling image VkImageCreateInfo imageCreateInfo = vks::initializers::imageCreateInfo(); imageCreateInfo.imageType = VK_IMAGE_TYPE_2D; imageCreateInfo.format = format; imageCreateInfo.mipLevels = 1; imageCreateInfo.arrayLayers = 1; imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT; imageCreateInfo.tiling = VK_IMAGE_TILING_LINEAR; imageCreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT; imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_PREINITIALIZED; imageCreateInfo.extent = { texture.width, texture.height, 1 }; VK_CHECK_RESULT(vkCreateImage(device, &imageCreateInfo, nullptr, &mappableImage)); // Get memory requirements for this image // like size and alignment vkGetImageMemoryRequirements(device, mappableImage, &memReqs); // Set memory allocation size to required memory size memAllocInfo.allocationSize = memReqs.size; // Get memory type that can be mapped to host memory memAllocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT); // Allocate host memory VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &mappableMemory)); // Bind allocated image for use VK_CHECK_RESULT(vkBindImageMemory(device, mappableImage, mappableMemory, 0)); // Get sub resource layout // Mip map count, array layer, etc. VkImageSubresource subRes = {}; subRes.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; VkSubresourceLayout subResLayout; void *data; // Get sub resources layout // Includes row pitch, size offsets, etc. vkGetImageSubresourceLayout(device, mappableImage, &subRes, &subResLayout); // Map image memory VK_CHECK_RESULT(vkMapMemory(device, mappableMemory, 0, memReqs.size, 0, &data)); // Copy image data into memory memcpy(data, tex2D[subRes.mipLevel].data(), tex2D[subRes.mipLevel].size()); vkUnmapMemory(device, mappableMemory); // Linear tiled images don't need to be staged // and can be directly used as textures texture.image = mappableImage; texture.deviceMemory = mappableMemory; texture.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; VkCommandBuffer copyCmd = VulkanExampleBase::createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true); // Setup image memory barrier transfer image to shader read layout // The sub resource range describes the regions of the image we will be transition VkImageSubresourceRange subresourceRange = {}; // Image only contains color data subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; // Start at first mip level subresourceRange.baseMipLevel = 0; // Only one mip level, most implementations won't support more for linear tiled images subresourceRange.levelCount = 1; // The 2D texture only has one layer subresourceRange.layerCount = 1; setImageLayout( copyCmd, texture.image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_PREINITIALIZED, texture.imageLayout, subresourceRange); VulkanExampleBase::flushCommandBuffer(copyCmd, queue, true); } // Create sampler // In Vulkan textures are accessed by samplers // This separates all the sampling information from the // texture data // This means you could have multiple sampler objects // for the same texture with different settings // Similar to the samplers available with OpenGL 3.3 VkSamplerCreateInfo sampler = vks::initializers::samplerCreateInfo(); sampler.magFilter = VK_FILTER_LINEAR; sampler.minFilter = VK_FILTER_LINEAR; sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR; sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT; sampler.addressModeV = VK_SAMPLER_ADDRESS_MODE_REPEAT; sampler.addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT; sampler.mipLodBias = 0.0f; sampler.compareOp = VK_COMPARE_OP_NEVER; sampler.minLod = 0.0f; // Set max level-of-detail to mip level count of the texture sampler.maxLod = (useStaging) ? (float)texture.mipLevels : 0.0f; // Enable anisotropic filtering // This feature is optional, so we must check if it's supported on the device if (vulkanDevice->features.samplerAnisotropy) { // Use max. level of anisotropy for this example sampler.maxAnisotropy = vulkanDevice->properties.limits.maxSamplerAnisotropy; sampler.anisotropyEnable = VK_TRUE; } else { // The device does not support anisotropic filtering sampler.maxAnisotropy = 1.0; sampler.anisotropyEnable = VK_FALSE; } sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE; VK_CHECK_RESULT(vkCreateSampler(device, &sampler, nullptr, &texture.sampler)); // Create image view // Textures are not directly accessed by the shaders and // are abstracted by image views containing additional // information and sub resource ranges VkImageViewCreateInfo view = vks::initializers::imageViewCreateInfo(); view.viewType = VK_IMAGE_VIEW_TYPE_2D; view.format = format; view.components = { VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A }; // The subresource range describes the set of mip levels (and array layers) that can be accessed through this image view // It's possible to create multiple image views for a single image referring to different (and/or overlapping) ranges of the image view.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; view.subresourceRange.baseMipLevel = 0; view.subresourceRange.baseArrayLayer = 0; view.subresourceRange.layerCount = 1; // Linear tiling usually won't support mip maps // Only set mip map count if optimal tiling is used view.subresourceRange.levelCount = (useStaging) ? texture.mipLevels : 1; // The view will be based on the texture's image view.image = texture.image; VK_CHECK_RESULT(vkCreateImageView(device, &view, nullptr, &texture.view)); } // Free all Vulkan resources used a texture object void destroyTextureImage(Texture texture) { vkDestroyImageView(device, texture.view, nullptr); vkDestroyImage(device, texture.image, nullptr); vkDestroySampler(device, texture.sampler, nullptr); vkFreeMemory(device, texture.deviceMemory, nullptr); } void buildCommandBuffers() { VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo(); VkClearValue clearValues[2]; clearValues[0].color = defaultClearColor; clearValues[1].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo(); renderPassBeginInfo.renderPass = renderPass; renderPassBeginInfo.renderArea.offset.x = 0; renderPassBeginInfo.renderArea.offset.y = 0; renderPassBeginInfo.renderArea.extent.width = width; renderPassBeginInfo.renderArea.extent.height = height; renderPassBeginInfo.clearValueCount = 2; renderPassBeginInfo.pClearValues = clearValues; for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) { // Set target frame buffer renderPassBeginInfo.framebuffer = frameBuffers[i]; VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo)); vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f); vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0); vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor); vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.solid); VkDeviceSize offsets[1] = { 0 }; vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &vertexBuffer.buffer, offsets); vkCmdBindIndexBuffer(drawCmdBuffers[i], indexBuffer.buffer, 0, VK_INDEX_TYPE_UINT32); vkCmdDrawIndexed(drawCmdBuffers[i], indexCount, 1, 0, 0, 0); vkCmdEndRenderPass(drawCmdBuffers[i]); VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i])); } } void draw() { VulkanExampleBase::prepareFrame(); // Command buffer to be sumitted to the queue submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer]; // Submit to queue VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE)); VulkanExampleBase::submitFrame(); } void generateQuad() { // Setup vertices for a single uv-mapped quad made from two triangles std::vector vertices = { { { 1.0f, 1.0f, 0.0f }, { 1.0f, 1.0f },{ 0.0f, 0.0f, 1.0f } }, { { -1.0f, 1.0f, 0.0f }, { 0.0f, 1.0f },{ 0.0f, 0.0f, 1.0f } }, { { -1.0f, -1.0f, 0.0f }, { 0.0f, 0.0f },{ 0.0f, 0.0f, 1.0f } }, { { 1.0f, -1.0f, 0.0f }, { 1.0f, 0.0f },{ 0.0f, 0.0f, 1.0f } } }; // Setup indices std::vector indices = { 0,1,2, 2,3,0 }; indexCount = static_cast(indices.size()); // Create buffers // For the sake of simplicity we won't stage the vertex data to the gpu memory // Vertex buffer VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_VERTEX_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &vertexBuffer, vertices.size() * sizeof(Vertex), vertices.data())); // Index buffer VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_INDEX_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &indexBuffer, indices.size() * sizeof(uint32_t), indices.data())); } void setupVertexDescriptions() { // Binding description vertices.bindingDescriptions.resize(1); vertices.bindingDescriptions[0] = vks::initializers::vertexInputBindingDescription( VERTEX_BUFFER_BIND_ID, sizeof(Vertex), VK_VERTEX_INPUT_RATE_VERTEX); // Attribute descriptions // Describes memory layout and shader positions vertices.attributeDescriptions.resize(3); // Location 0 : Position vertices.attributeDescriptions[0] = vks::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 0, VK_FORMAT_R32G32B32_SFLOAT, offsetof(Vertex, pos)); // Location 1 : Texture coordinates vertices.attributeDescriptions[1] = vks::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 1, VK_FORMAT_R32G32_SFLOAT, offsetof(Vertex, uv)); // Location 1 : Vertex normal vertices.attributeDescriptions[2] = vks::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 2, VK_FORMAT_R32G32B32_SFLOAT, offsetof(Vertex, normal)); vertices.inputState = vks::initializers::pipelineVertexInputStateCreateInfo(); vertices.inputState.vertexBindingDescriptionCount = static_cast(vertices.bindingDescriptions.size()); vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data(); vertices.inputState.vertexAttributeDescriptionCount = static_cast(vertices.attributeDescriptions.size()); vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data(); } void setupDescriptorPool() { // Example uses one ubo and one image sampler std::vector poolSizes = { vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1), vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1) }; VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo( static_cast(poolSizes.size()), poolSizes.data(), 2); VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool)); } void setupDescriptorSetLayout() { std::vector setLayoutBindings = { // Binding 0 : Vertex shader uniform buffer vks::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0), // Binding 1 : Fragment shader image sampler vks::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1) }; VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo( setLayoutBindings.data(), static_cast(setLayoutBindings.size())); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout)); VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo( &descriptorSetLayout, 1); VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout)); } void setupDescriptorSet() { VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo( descriptorPool, &descriptorSetLayout, 1); VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet)); // Setup a descriptor image info for the current texture to be used as a combined image sampler VkDescriptorImageInfo textureDescriptor; textureDescriptor.imageView = texture.view; // The image's view (images are never directly accessed by the shader, but rather through views defining subresources) textureDescriptor.sampler = texture.sampler; // The sampler (Telling the pipeline how to sample the texture, including repeat, border, etc.) textureDescriptor.imageLayout = texture.imageLayout; // The current layout of the image (Note: Should always fit the actual use, e.g. shader read) std::vector writeDescriptorSets = { // Binding 0 : Vertex shader uniform buffer vks::initializers::writeDescriptorSet( descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBufferVS.descriptor), // Binding 1 : Fragment shader texture sampler // Fragment shader: layout (binding = 1) uniform sampler2D samplerColor; vks::initializers::writeDescriptorSet( descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, // The descriptor set will use a combined image sampler (sampler and image could be split) 1, // Shader binding point 1 &textureDescriptor) // Pointer to the descriptor image for our texture }; vkUpdateDescriptorSets(device, static_cast(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL); } void preparePipelines() { VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo( VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE); VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo( VK_POLYGON_MODE_FILL, VK_CULL_MODE_NONE, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0); VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState( 0xf, VK_FALSE); VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo( 1, &blendAttachmentState); VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo( VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL); VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0); VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo( VK_SAMPLE_COUNT_1_BIT, 0); std::vector dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR }; VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo( dynamicStateEnables.data(), static_cast(dynamicStateEnables.size()), 0); // Load shaders std::array shaderStages; shaderStages[0] = loadShader(getAssetPath() + "shaders/texture/texture.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getAssetPath() + "shaders/texture/texture.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); VkGraphicsPipelineCreateInfo pipelineCreateInfo = vks::initializers::pipelineCreateInfo( pipelineLayout, renderPass, 0); pipelineCreateInfo.pVertexInputState = &vertices.inputState; pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState; pipelineCreateInfo.pRasterizationState = &rasterizationState; pipelineCreateInfo.pColorBlendState = &colorBlendState; pipelineCreateInfo.pMultisampleState = &multisampleState; pipelineCreateInfo.pViewportState = &viewportState; pipelineCreateInfo.pDepthStencilState = &depthStencilState; pipelineCreateInfo.pDynamicState = &dynamicState; pipelineCreateInfo.stageCount = static_cast(shaderStages.size()); pipelineCreateInfo.pStages = shaderStages.data(); VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.solid)); } // Prepare and initialize uniform buffer containing shader uniforms void prepareUniformBuffers() { // Vertex shader uniform buffer block VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBufferVS, sizeof(uboVS), &uboVS)); updateUniformBuffers(); } void updateUniformBuffers() { // Vertex shader uboVS.projection = glm::perspective(glm::radians(60.0f), (float)width / (float)height, 0.001f, 256.0f); glm::mat4 viewMatrix = glm::translate(glm::mat4(), glm::vec3(0.0f, 0.0f, zoom)); uboVS.model = viewMatrix * glm::translate(glm::mat4(), cameraPos); uboVS.model = glm::rotate(uboVS.model, glm::radians(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f)); uboVS.model = glm::rotate(uboVS.model, glm::radians(rotation.y), glm::vec3(0.0f, 1.0f, 0.0f)); uboVS.model = glm::rotate(uboVS.model, glm::radians(rotation.z), glm::vec3(0.0f, 0.0f, 1.0f)); uboVS.viewPos = glm::vec4(0.0f, 0.0f, -zoom, 0.0f); VK_CHECK_RESULT(uniformBufferVS.map()); memcpy(uniformBufferVS.mapped, &uboVS, sizeof(uboVS)); uniformBufferVS.unmap(); } void prepare() { VulkanExampleBase::prepare(); generateQuad(); setupVertexDescriptions(); prepareUniformBuffers(); loadTexture( getAssetPath() + "textures/pattern_02_bc2.ktx", VK_FORMAT_BC2_UNORM_BLOCK, false); setupDescriptorSetLayout(); preparePipelines(); setupDescriptorPool(); setupDescriptorSet(); buildCommandBuffers(); prepared = true; } virtual void render() { if (!prepared) return; draw(); } virtual void viewChanged() { updateUniformBuffers(); } void changeLodBias(float delta) { uboVS.lodBias += delta; if (uboVS.lodBias < 0.0f) { uboVS.lodBias = 0.0f; } if (uboVS.lodBias > texture.mipLevels) { uboVS.lodBias = (float)texture.mipLevels; } updateUniformBuffers(); updateTextOverlay(); } virtual void keyPressed(uint32_t keyCode) { switch (keyCode) { case KEY_KPADD: case GAMEPAD_BUTTON_R1: changeLodBias(0.1f); break; case KEY_KPSUB: case GAMEPAD_BUTTON_L1: changeLodBias(-0.1f); break; } } virtual void getOverlayText(VulkanTextOverlay *textOverlay) { std::stringstream ss; ss << std::setprecision(2) << std::fixed << uboVS.lodBias; #if defined(__ANDROID__) textOverlay->addText("LOD bias: " + ss.str() + " (Buttons L1/R1 to change)", 5.0f, 85.0f, VulkanTextOverlay::alignLeft); #else textOverlay->addText("LOD bias: " + ss.str() + " (numpad +/- to change)", 5.0f, 85.0f, VulkanTextOverlay::alignLeft); #endif } }; VULKAN_EXAMPLE_MAIN()