/* * Vulkan Example - Parallax Mapping * * Copyright (C) 2016 by Sascha Willems - www.saschawillems.de * * This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT) */ #include "vulkanexamplebase.h" #include "VulkanglTFModel.h" class VulkanExample : public VulkanExampleBase { public: struct { vks::Texture2D colorMap; // Normals and height are combined into one texture (height = alpha channel) vks::Texture2D normalHeightMap; } textures; vkglTF::Model plane; struct UniformDataVertexShader { glm::mat4 projection; glm::mat4 view; glm::mat4 model; glm::vec4 lightPos = glm::vec4(0.0f, -2.0f, 0.0f, 1.0f); glm::vec4 cameraPos; } uniformDataVertexShader; struct UniformDataFragmentShader { float heightScale = 0.1f; // Basic parallax mapping needs a bias to look any good (and is hard to tweak) float parallaxBias = -0.02f; // Number of layers for steep parallax and parallax occlusion (more layer = better result for less performance) float numLayers = 48.0f; // (Parallax) mapping mode to use int32_t mappingMode = 4; } uniformDataFragmentShader; struct { vks::Buffer vertexShader; vks::Buffer fragmentShader; } uniformBuffers; VkPipelineLayout pipelineLayout{ VK_NULL_HANDLE }; VkPipeline pipeline{ VK_NULL_HANDLE }; VkDescriptorSetLayout descriptorSetLayout{ VK_NULL_HANDLE }; VkDescriptorSet descriptorSet{ VK_NULL_HANDLE }; const std::vector mappingModes = { "Color only", "Normal mapping", "Parallax mapping", "Steep parallax mapping", "Parallax occlusion mapping", }; VulkanExample() : VulkanExampleBase() { title = "Parallax Mapping"; timerSpeed *= 0.5f; camera.type = Camera::CameraType::firstperson; camera.setPosition(glm::vec3(0.0f, 1.25f, -1.5f)); camera.setRotation(glm::vec3(-45.0f, 0.0f, 0.0f)); camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 256.0f); } ~VulkanExample() { if (device) { vkDestroyPipeline(device, pipeline, nullptr); vkDestroyPipelineLayout(device, pipelineLayout, nullptr); vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr); uniformBuffers.vertexShader.destroy(); uniformBuffers.fragmentShader.destroy(); textures.colorMap.destroy(); textures.normalHeightMap.destroy(); } } void loadAssets() { const uint32_t glTFLoadingFlags = vkglTF::FileLoadingFlags::PreTransformVertices | vkglTF::FileLoadingFlags::PreMultiplyVertexColors | vkglTF::FileLoadingFlags::FlipY; plane.loadFromFile(getAssetPath() + "models/plane.gltf", vulkanDevice, queue, glTFLoadingFlags); textures.normalHeightMap.loadFromFile(getAssetPath() + "textures/rocks_normal_height_rgba.ktx", VK_FORMAT_R8G8B8A8_UNORM, vulkanDevice, queue); textures.colorMap.loadFromFile(getAssetPath() + "textures/rocks_color_rgba.ktx", VK_FORMAT_R8G8B8A8_UNORM, vulkanDevice, queue); } void buildCommandBuffers() { VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo(); VkClearValue clearValues[2]; clearValues[0].color = defaultClearColor; clearValues[1].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo(); renderPassBeginInfo.renderPass = renderPass; renderPassBeginInfo.renderArea.offset.x = 0; renderPassBeginInfo.renderArea.offset.y = 0; renderPassBeginInfo.renderArea.extent.width = width; renderPassBeginInfo.renderArea.extent.height = height; renderPassBeginInfo.clearValueCount = 2; renderPassBeginInfo.pClearValues = clearValues; for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) { // Set target frame buffer renderPassBeginInfo.framebuffer = frameBuffers[i]; VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo)); vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f); vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0); vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor); vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline); plane.draw(drawCmdBuffers[i]); drawUI(drawCmdBuffers[i]); vkCmdEndRenderPass(drawCmdBuffers[i]); VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i])); } } void setupDescriptors() { // Pool std::vector poolSizes = { vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2), vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2) }; VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, 2); VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool)); // Layout std::vector setLayoutBindings = { // Binding 0: Vertex shader uniform buffer vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0), // Binding 1: Fragment shader color map image sampler vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1), // Binding 2: Fragment combined normal and heightmap vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 2), // Binding 3: Fragment shader uniform buffer vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_FRAGMENT_BIT, 3), }; VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout)); // Set VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1); VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet)); std::vector writeDescriptorSets = { // Binding 0: Vertex shader uniform buffer vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.vertexShader.descriptor), // Binding 1: Fragment shader image sampler vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &textures.colorMap.descriptor), // Binding 2: Combined normal and heightmap vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2, &textures.normalHeightMap.descriptor), // Binding 3: Fragment shader uniform buffer vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 3, &uniformBuffers.fragmentShader.descriptor), }; vkUpdateDescriptorSets(device, static_cast(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL); } void preparePipelines() { // Layout VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayout, 1); VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &pipelineLayout)); // Pipeline VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE); VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_NONE, VK_FRONT_FACE_COUNTER_CLOCKWISE); VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE); VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState); VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL); VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0); VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT); std::vector dynamicStateEnables = {VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR}; VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables); std::array shaderStages; VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass); pipelineCI.pInputAssemblyState = &inputAssemblyState; pipelineCI.pRasterizationState = &rasterizationState; pipelineCI.pColorBlendState = &colorBlendState; pipelineCI.pMultisampleState = &multisampleState; pipelineCI.pViewportState = &viewportState; pipelineCI.pDepthStencilState = &depthStencilState; pipelineCI.pDynamicState = &dynamicState; pipelineCI.stageCount = static_cast(shaderStages.size()); pipelineCI.pStages = shaderStages.data(); pipelineCI.pVertexInputState = vkglTF::Vertex::getPipelineVertexInputState({ vkglTF::VertexComponent::Position, vkglTF::VertexComponent::UV, vkglTF::VertexComponent::Normal, vkglTF::VertexComponent::Tangent }); // Parallax mapping modes pipeline shaderStages[0] = loadShader(getShadersPath() + "parallaxmapping/parallax.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getShadersPath() + "parallaxmapping/parallax.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipeline)); } void prepareUniformBuffers() { // Vertex shader uniform buffer VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBuffers.vertexShader, sizeof(UniformDataVertexShader))); // Fragment shader uniform buffer VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBuffers.fragmentShader, sizeof(UniformDataFragmentShader))); // Map persistent VK_CHECK_RESULT(uniformBuffers.vertexShader.map()); VK_CHECK_RESULT(uniformBuffers.fragmentShader.map()); updateUniformBuffers(); } void updateUniformBuffers() { // Vertex shader uniformDataVertexShader.projection = camera.matrices.perspective; uniformDataVertexShader.view = camera.matrices.view; uniformDataVertexShader.model = glm::scale(glm::mat4(1.0f), glm::vec3(0.2f)); if (!paused) { uniformDataVertexShader.lightPos.x = sin(glm::radians(timer * 360.0f)) * 1.5f; uniformDataVertexShader.lightPos.z = cos(glm::radians(timer * 360.0f)) * 1.5f; } uniformDataVertexShader.cameraPos = glm::vec4(camera.position, -1.0f) * -1.0f; memcpy(uniformBuffers.vertexShader.mapped, &uniformDataVertexShader, sizeof(UniformDataVertexShader)); // Fragment shader memcpy(uniformBuffers.fragmentShader.mapped, &uniformDataFragmentShader, sizeof(UniformDataFragmentShader)); } void draw() { VulkanExampleBase::prepareFrame(); submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer]; VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE)); VulkanExampleBase::submitFrame(); } void prepare() { VulkanExampleBase::prepare(); loadAssets(); prepareUniformBuffers(); setupDescriptors(); preparePipelines(); buildCommandBuffers(); prepared = true; } virtual void render() { if (!prepared) return; if (!paused || camera.updated) { updateUniformBuffers(); } draw(); } virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay) { if (overlay->header("Settings")) { if (overlay->comboBox("Mode", &uniformDataFragmentShader.mappingMode, mappingModes)) { updateUniformBuffers(); } } } }; VULKAN_EXAMPLE_MAIN()