/* * Vulkan Example - Runtime mip map generation * * Copyright (C) by Sascha Willems - www.saschawillems.de * * This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT) */ #include "vulkanexamplebase.h" #include "VulkanglTFModel.h" #include #include #define ENABLE_VALIDATION false class VulkanExample : public VulkanExampleBase { public: struct Texture { VkImage image; VkDeviceMemory deviceMemory; VkImageView view; uint32_t width, height; uint32_t mipLevels; } texture; // To demonstrate mip mapping and filtering this example uses separate samplers std::vector samplerNames{ "No mip maps" , "Mip maps (bilinear)" , "Mip maps (anisotropic)" }; std::vector samplers; vkglTF::Model model; vks::Buffer uniformBufferVS; struct uboVS { glm::mat4 projection; glm::mat4 view; glm::mat4 model; glm::vec4 viewPos; float lodBias = 0.0f; int32_t samplerIndex = 2; } uboVS; VkPipeline pipeline; VkPipelineLayout pipelineLayout; VkDescriptorSet descriptorSet; VkDescriptorSetLayout descriptorSetLayout; VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION) { title = "Runtime mip map generation"; camera.type = Camera::CameraType::firstperson; camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 1024.0f); camera.setRotation(glm::vec3(0.0f, 90.0f, 0.0f)); camera.setTranslation(glm::vec3(40.75f, 0.0f, 0.0f)); camera.movementSpeed = 2.5f; camera.rotationSpeed = 0.5f; settings.overlay = true; timerSpeed *= 0.05f; } ~VulkanExample() { destroyTextureImage(texture); vkDestroyPipeline(device, pipeline, nullptr); vkDestroyPipelineLayout(device, pipelineLayout, nullptr); vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr); uniformBufferVS.destroy(); for (auto sampler : samplers) { vkDestroySampler(device, sampler, nullptr); } } virtual void getEnabledFeatures() { if (deviceFeatures.samplerAnisotropy) { enabledFeatures.samplerAnisotropy = VK_TRUE; } } void loadTexture(std::string filename, VkFormat format, bool forceLinearTiling) { ktxResult result; ktxTexture* ktxTexture; #if defined(__ANDROID__) // Textures are stored inside the apk on Android (compressed) // So they need to be loaded via the asset manager AAsset* asset = AAssetManager_open(androidApp->activity->assetManager, filename.c_str(), AASSET_MODE_STREAMING); if (!asset) { vks::tools::exitFatal("Could not load texture from " + filename + "\n\nThe file may be part of the additional asset pack.\n\nRun \"download_assets.py\" in the repository root to download the latest version.", -1); } size_t size = AAsset_getLength(asset); assert(size > 0); ktx_uint8_t *textureData = new ktx_uint8_t[size]; AAsset_read(asset, textureData, size); AAsset_close(asset); result = ktxTexture_CreateFromMemory(textureData, size, KTX_TEXTURE_CREATE_LOAD_IMAGE_DATA_BIT, &ktxTexture); delete[] textureData; #else if (!vks::tools::fileExists(filename)) { vks::tools::exitFatal("Could not load texture from " + filename + "\n\nThe file may be part of the additional asset pack.\n\nRun \"download_assets.py\" in the repository root to download the latest version.", -1); } result = ktxTexture_CreateFromNamedFile(filename.c_str(), KTX_TEXTURE_CREATE_LOAD_IMAGE_DATA_BIT, &ktxTexture); #endif assert(result == KTX_SUCCESS); texture.width = ktxTexture->baseWidth; texture.height = ktxTexture->baseHeight; ktx_uint8_t *ktxTextureData = ktxTexture_GetData(ktxTexture); ktx_size_t ktxTextureSize = ktxTexture_GetImageSize(ktxTexture, 0); // calculate num of mip maps // numLevels = 1 + floor(log2(max(w, h, d))) // Calculated as log2(max(width, height, depth))c + 1 (see specs) texture.mipLevels = floor(log2(std::max(texture.width, texture.height))) + 1; // Get device properties for the requested texture format VkFormatProperties formatProperties; vkGetPhysicalDeviceFormatProperties(physicalDevice, format, &formatProperties); // Mip-chain generation requires support for blit source and destination assert(formatProperties.optimalTilingFeatures & VK_FORMAT_FEATURE_BLIT_SRC_BIT); assert(formatProperties.optimalTilingFeatures & VK_FORMAT_FEATURE_BLIT_DST_BIT); VkMemoryAllocateInfo memAllocInfo = vks::initializers::memoryAllocateInfo(); VkMemoryRequirements memReqs = {}; // Create a host-visible staging buffer that contains the raw image data VkBuffer stagingBuffer; VkDeviceMemory stagingMemory; VkBufferCreateInfo bufferCreateInfo = vks::initializers::bufferCreateInfo(); bufferCreateInfo.size = ktxTextureSize; // This buffer is used as a transfer source for the buffer copy bufferCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT; bufferCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; VK_CHECK_RESULT(vkCreateBuffer(device, &bufferCreateInfo, nullptr, &stagingBuffer)); vkGetBufferMemoryRequirements(device, stagingBuffer, &memReqs); memAllocInfo.allocationSize = memReqs.size; memAllocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT); VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &stagingMemory)); VK_CHECK_RESULT(vkBindBufferMemory(device, stagingBuffer, stagingMemory, 0)); // Copy texture data into staging buffer uint8_t *data; VK_CHECK_RESULT(vkMapMemory(device, stagingMemory, 0, memReqs.size, 0, (void **)&data)); memcpy(data, ktxTextureData, ktxTextureSize); vkUnmapMemory(device, stagingMemory); // Create optimal tiled target image VkImageCreateInfo imageCreateInfo = vks::initializers::imageCreateInfo(); imageCreateInfo.imageType = VK_IMAGE_TYPE_2D; imageCreateInfo.format = format; imageCreateInfo.mipLevels = texture.mipLevels; imageCreateInfo.arrayLayers = 1; imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT; imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL; imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; imageCreateInfo.extent = { texture.width, texture.height, 1 }; imageCreateInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_SAMPLED_BIT; VK_CHECK_RESULT(vkCreateImage(device, &imageCreateInfo, nullptr, &texture.image)); vkGetImageMemoryRequirements(device, texture.image, &memReqs); memAllocInfo.allocationSize = memReqs.size; memAllocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &texture.deviceMemory)); VK_CHECK_RESULT(vkBindImageMemory(device, texture.image, texture.deviceMemory, 0)); VkCommandBuffer copyCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true); VkImageSubresourceRange subresourceRange = {}; subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; subresourceRange.levelCount = 1; subresourceRange.layerCount = 1; // Optimal image will be used as destination for the copy, so we must transfer from our initial undefined image layout to the transfer destination layout vks::tools::insertImageMemoryBarrier( copyCmd, texture.image, 0, VK_ACCESS_TRANSFER_WRITE_BIT, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, subresourceRange); // Copy the first mip of the chain, remaining mips will be generated VkBufferImageCopy bufferCopyRegion = {}; bufferCopyRegion.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; bufferCopyRegion.imageSubresource.mipLevel = 0; bufferCopyRegion.imageSubresource.baseArrayLayer = 0; bufferCopyRegion.imageSubresource.layerCount = 1; bufferCopyRegion.imageExtent.width = texture.width; bufferCopyRegion.imageExtent.height = texture.height; bufferCopyRegion.imageExtent.depth = 1; vkCmdCopyBufferToImage(copyCmd, stagingBuffer, texture.image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &bufferCopyRegion); // Transition first mip level to transfer source for read during blit vks::tools::insertImageMemoryBarrier( copyCmd, texture.image, VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_TRANSFER_READ_BIT, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, subresourceRange); vulkanDevice->flushCommandBuffer(copyCmd, queue, true); // Clean up staging resources vkFreeMemory(device, stagingMemory, nullptr); vkDestroyBuffer(device, stagingBuffer, nullptr); ktxTexture_Destroy(ktxTexture); // Generate the mip chain // --------------------------------------------------------------- // We copy down the whole mip chain doing a blit from mip-1 to mip // An alternative way would be to always blit from the first mip level and sample that one down VkCommandBuffer blitCmd = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true); // Copy down mips from n-1 to n for (int32_t i = 1; i < texture.mipLevels; i++) { VkImageBlit imageBlit{}; // Source imageBlit.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; imageBlit.srcSubresource.layerCount = 1; imageBlit.srcSubresource.mipLevel = i-1; imageBlit.srcOffsets[1].x = int32_t(texture.width >> (i - 1)); imageBlit.srcOffsets[1].y = int32_t(texture.height >> (i - 1)); imageBlit.srcOffsets[1].z = 1; // Destination imageBlit.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; imageBlit.dstSubresource.layerCount = 1; imageBlit.dstSubresource.mipLevel = i; imageBlit.dstOffsets[1].x = int32_t(texture.width >> i); imageBlit.dstOffsets[1].y = int32_t(texture.height >> i); imageBlit.dstOffsets[1].z = 1; VkImageSubresourceRange mipSubRange = {}; mipSubRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; mipSubRange.baseMipLevel = i; mipSubRange.levelCount = 1; mipSubRange.layerCount = 1; // Prepare current mip level as image blit destination vks::tools::insertImageMemoryBarrier( blitCmd, texture.image, 0, VK_ACCESS_TRANSFER_WRITE_BIT, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, mipSubRange); // Blit from previous level vkCmdBlitImage( blitCmd, texture.image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, texture.image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &imageBlit, VK_FILTER_LINEAR); // Prepare current mip level as image blit source for next level vks::tools::insertImageMemoryBarrier( blitCmd, texture.image, VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_TRANSFER_READ_BIT, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, mipSubRange); } // After the loop, all mip layers are in TRANSFER_SRC layout, so transition all to SHADER_READ subresourceRange.levelCount = texture.mipLevels; vks::tools::insertImageMemoryBarrier( blitCmd, texture.image, VK_ACCESS_TRANSFER_READ_BIT, VK_ACCESS_SHADER_READ_BIT, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, subresourceRange); vulkanDevice->flushCommandBuffer(blitCmd, queue, true); // --------------------------------------------------------------- // Create samplers samplers.resize(3); VkSamplerCreateInfo sampler = vks::initializers::samplerCreateInfo(); sampler.magFilter = VK_FILTER_LINEAR; sampler.minFilter = VK_FILTER_LINEAR; sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR; sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT; sampler.addressModeV = VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT; sampler.addressModeW = VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT; sampler.mipLodBias = 0.0f; sampler.compareOp = VK_COMPARE_OP_NEVER; sampler.minLod = 0.0f; sampler.maxLod = 0.0f; sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE; sampler.maxAnisotropy = 1.0; sampler.anisotropyEnable = VK_FALSE; // Without mip mapping VK_CHECK_RESULT(vkCreateSampler(device, &sampler, nullptr, &samplers[0])); // With mip mapping sampler.maxLod = (float)texture.mipLevels; VK_CHECK_RESULT(vkCreateSampler(device, &sampler, nullptr, &samplers[1])); // With mip mapping and anisotropic filtering if (vulkanDevice->features.samplerAnisotropy) { sampler.maxAnisotropy = vulkanDevice->properties.limits.maxSamplerAnisotropy; sampler.anisotropyEnable = VK_TRUE; } VK_CHECK_RESULT(vkCreateSampler(device, &sampler, nullptr, &samplers[2])); // Create image view VkImageViewCreateInfo view = vks::initializers::imageViewCreateInfo(); view.image = texture.image; view.viewType = VK_IMAGE_VIEW_TYPE_2D; view.format = format; view.components = { VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A }; view.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; view.subresourceRange.baseMipLevel = 0; view.subresourceRange.baseArrayLayer = 0; view.subresourceRange.layerCount = 1; view.subresourceRange.levelCount = texture.mipLevels; VK_CHECK_RESULT(vkCreateImageView(device, &view, nullptr, &texture.view)); } // Free all Vulkan resources used a texture object void destroyTextureImage(Texture texture) { vkDestroyImageView(device, texture.view, nullptr); vkDestroyImage(device, texture.image, nullptr); vkFreeMemory(device, texture.deviceMemory, nullptr); } void buildCommandBuffers() { VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo(); VkClearValue clearValues[2]; clearValues[0].color = defaultClearColor; clearValues[1].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo(); renderPassBeginInfo.renderPass = renderPass; renderPassBeginInfo.renderArea.offset.x = 0; renderPassBeginInfo.renderArea.offset.y = 0; renderPassBeginInfo.renderArea.extent.width = width; renderPassBeginInfo.renderArea.extent.height = height; renderPassBeginInfo.clearValueCount = 2; renderPassBeginInfo.pClearValues = clearValues; for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) { // Set target frame buffer renderPassBeginInfo.framebuffer = frameBuffers[i]; VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo)); vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f); vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0); vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor); vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline); model.draw(drawCmdBuffers[i]); drawUI(drawCmdBuffers[i]); vkCmdEndRenderPass(drawCmdBuffers[i]); VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i])); } } void draw() { VulkanExampleBase::prepareFrame(); // Command buffer to be submitted to the queue submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer]; // Submit to queue VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE)); VulkanExampleBase::submitFrame(); } void loadAssets() { model.loadFromFile(getAssetPath() + "models/tunnel_cylinder.gltf", vulkanDevice, queue, vkglTF::FileLoadingFlags::PreTransformVertices | vkglTF::FileLoadingFlags::FlipY); loadTexture(getAssetPath() + "textures/metalplate_nomips_rgba.ktx", VK_FORMAT_R8G8B8A8_UNORM, false); } void setupDescriptorPool() { std::vector poolSizes = { vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1), // Vertex shader UBO vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, 1), // Sampled image vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_SAMPLER, 3), // 3 samplers (array) }; VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo( static_cast(poolSizes.size()), poolSizes.data(), 1); VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool)); } void setupDescriptorSetLayout() { std::vector setLayoutBindings = { // Binding 0: Vertex shader uniform buffer vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0), // Binding 1: Sampled image vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, VK_SHADER_STAGE_FRAGMENT_BIT, 1), // Binding 2: Sampler array (3 descriptors) vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 2, 3), }; VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout)); VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayout, 1); VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout)); } void setupDescriptorSet() { VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout,1); VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet)); VkDescriptorImageInfo textureDescriptor = vks::initializers::descriptorImageInfo(VK_NULL_HANDLE, texture.view, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL); std::vector writeDescriptorSets = { // Binding 0: Vertex shader uniform buffer vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBufferVS.descriptor), // Binding 1: Sampled image vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, 1, &textureDescriptor) }; // Binding 2: Sampler array std::vector samplerDescriptors; for (auto i = 0; i < samplers.size(); i++) { samplerDescriptors.push_back(vks::initializers::descriptorImageInfo(samplers[i], VK_NULL_HANDLE, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL)); } VkWriteDescriptorSet samplerDescriptorWrite{}; samplerDescriptorWrite.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET; samplerDescriptorWrite.dstSet = descriptorSet; samplerDescriptorWrite.descriptorType = VK_DESCRIPTOR_TYPE_SAMPLER; samplerDescriptorWrite.descriptorCount = static_cast(samplerDescriptors.size()); samplerDescriptorWrite.pImageInfo = samplerDescriptors.data(); samplerDescriptorWrite.dstBinding = 2; samplerDescriptorWrite.dstArrayElement = 0; writeDescriptorSets.push_back(samplerDescriptorWrite); vkUpdateDescriptorSets(device, static_cast(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL); } void preparePipelines() { VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE); VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0); VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE); VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState); VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL); VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0); VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0); std::vector dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR }; VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables); std::array shaderStages; shaderStages[0] = loadShader(getShadersPath() + "texturemipmapgen/texture.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getShadersPath() + "texturemipmapgen/texture.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass, 0); pipelineCI.pInputAssemblyState = &inputAssemblyState; pipelineCI.pRasterizationState = &rasterizationState; pipelineCI.pColorBlendState = &colorBlendState; pipelineCI.pMultisampleState = &multisampleState; pipelineCI.pViewportState = &viewportState; pipelineCI.pDepthStencilState = &depthStencilState; pipelineCI.pDynamicState = &dynamicState; pipelineCI.stageCount = static_cast(shaderStages.size()); pipelineCI.pStages = shaderStages.data(); pipelineCI.pVertexInputState = vkglTF::Vertex::getPipelineVertexInputState({ vkglTF::VertexComponent::Position, vkglTF::VertexComponent::UV, vkglTF::VertexComponent::Normal }); VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipeline)); } // Prepare and initialize uniform buffer containing shader uniforms void prepareUniformBuffers() { // Vertex shader uniform buffer block VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBufferVS, sizeof(uboVS), &uboVS)); updateUniformBuffers(); } void updateUniformBuffers() { uboVS.projection = camera.matrices.perspective; uboVS.view = camera.matrices.view; uboVS.model = glm::rotate(glm::mat4(1.0f), glm::radians(timer * 360.0f), glm::vec3(1.0f, 0.0f, 0.0f)); uboVS.viewPos = glm::vec4(camera.position, 0.0f) * glm::vec4(-1.0f); VK_CHECK_RESULT(uniformBufferVS.map()); memcpy(uniformBufferVS.mapped, &uboVS, sizeof(uboVS)); uniformBufferVS.unmap(); } void prepare() { VulkanExampleBase::prepare(); loadAssets(); prepareUniformBuffers(); setupDescriptorSetLayout(); preparePipelines(); setupDescriptorPool(); setupDescriptorSet(); buildCommandBuffers(); prepared = true; } virtual void render() { if (!prepared) return; draw(); if (!paused || camera.updated) { updateUniformBuffers(); } } virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay) { if (overlay->header("Settings")) { if (overlay->sliderFloat("LOD bias", &uboVS.lodBias, 0.0f, (float)texture.mipLevels)) { updateUniformBuffers(); } if (overlay->comboBox("Sampler type", &uboVS.samplerIndex, samplerNames)) { updateUniformBuffers(); } } } }; VULKAN_EXAMPLE_MAIN()