/* * Vulkan Example - Multi pass offscreen rendering (bloom) * * Copyright (C) 2016 by Sascha Willems - www.saschawillems.de * * This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT) */ #include #include #include #include #include #define GLM_FORCE_RADIANS #define GLM_FORCE_DEPTH_ZERO_TO_ONE #include #include #include #include "vulkanexamplebase.h" #define VERTEX_BUFFER_BIND_ID 0 #define ENABLE_VALIDATION false // Texture properties #define TEX_DIM 256 #define TEX_FORMAT VK_FORMAT_R8G8B8A8_UNORM #define TEX_FILTER VK_FILTER_LINEAR; // Offscreen frame buffer properties #define FB_DIM TEX_DIM #define FB_COLOR_FORMAT VK_FORMAT_R8G8B8A8_UNORM // Vertex layout for this example std::vector vertexLayout = { vkMeshLoader::VERTEX_LAYOUT_POSITION, vkMeshLoader::VERTEX_LAYOUT_UV, vkMeshLoader::VERTEX_LAYOUT_COLOR, vkMeshLoader::VERTEX_LAYOUT_NORMAL }; class VulkanExample : public VulkanExampleBase { public: bool bloom = true; struct { vkTools::VulkanTexture cubemap; } textures; struct { vkMeshLoader::MeshBuffer ufo; vkMeshLoader::MeshBuffer ufoGlow; vkMeshLoader::MeshBuffer skyBox; vkMeshLoader::MeshBuffer quad; } meshes; struct { VkPipelineVertexInputStateCreateInfo inputState; std::vector bindingDescriptions; std::vector attributeDescriptions; } vertices; struct { vkTools::UniformData vsScene; vkTools::UniformData vsFullScreen; vkTools::UniformData vsSkyBox; vkTools::UniformData fsVertBlur; vkTools::UniformData fsHorzBlur; } uniformData; struct UBO { glm::mat4 projection; glm::mat4 model; }; struct UBOBlur { int32_t texWidth = TEX_DIM; int32_t texHeight = TEX_DIM; float blurScale = 1.0f; float blurStrength = 1.5f; uint32_t horizontal; }; struct { UBO scene, fullscreen, skyBox; UBOBlur vertBlur, horzBlur; } ubos; struct { VkPipeline blurVert; VkPipeline colorPass; VkPipeline phongPass; VkPipeline skyBox; } pipelines; struct { VkPipelineLayout radialBlur; VkPipelineLayout scene; } pipelineLayouts; struct { VkDescriptorSet scene; VkDescriptorSet verticalBlur; VkDescriptorSet horizontalBlur; VkDescriptorSet skyBox; } descriptorSets; // Descriptor set layout is shared amongst // all descriptor sets VkDescriptorSetLayout descriptorSetLayout; // Framebuffer for offscreen rendering struct FrameBufferAttachment { VkImage image; VkDeviceMemory mem; VkImageView view; }; struct FrameBuffer { int32_t width, height; VkFramebuffer frameBuffer; FrameBufferAttachment color, depth; } offScreenFrameBuf, offScreenFrameBufB; // One sampler for the frame buffer color attachments VkSampler colorSampler; // Used to store commands for rendering and blitting // the offscreen scene VkCommandBuffer offScreenCmdBuffer = VK_NULL_HANDLE; // Semaphore used to synchronize between offscreen and final scene rendering VkSemaphore offscreenSemaphore = VK_NULL_HANDLE; VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION) { zoom = -10.25f; rotation = { 7.5f, -343.0f, 0.0f }; timerSpeed *= 0.5f; enableTextOverlay = true; title = "Vulkan Example - Bloom"; } ~VulkanExample() { // Clean up used Vulkan resources // Note : Inherited destructor cleans up resources stored in base class vkDestroySampler(device, colorSampler, nullptr); // Frame buffer vkDestroyImageView(device, offScreenFrameBuf.color.view, nullptr); vkDestroyImage(device, offScreenFrameBuf.color.image, nullptr); vkFreeMemory(device, offScreenFrameBuf.color.mem, nullptr); vkDestroyImageView(device, offScreenFrameBuf.depth.view, nullptr); vkDestroyImage(device, offScreenFrameBuf.depth.image, nullptr); vkFreeMemory(device, offScreenFrameBuf.depth.mem, nullptr); vkDestroyImageView(device, offScreenFrameBufB.color.view, nullptr); vkDestroyImage(device, offScreenFrameBufB.color.image, nullptr); vkFreeMemory(device, offScreenFrameBufB.color.mem, nullptr); vkDestroyImageView(device, offScreenFrameBufB.depth.view, nullptr); vkDestroyImage(device, offScreenFrameBufB.depth.image, nullptr); vkFreeMemory(device, offScreenFrameBufB.depth.mem, nullptr); vkDestroyFramebuffer(device, offScreenFrameBuf.frameBuffer, nullptr); vkDestroyFramebuffer(device, offScreenFrameBufB.frameBuffer, nullptr); vkDestroyPipeline(device, pipelines.blurVert, nullptr); vkDestroyPipeline(device, pipelines.phongPass, nullptr); vkDestroyPipeline(device, pipelines.colorPass, nullptr); vkDestroyPipeline(device, pipelines.skyBox, nullptr); vkDestroyPipelineLayout(device, pipelineLayouts.radialBlur, nullptr); vkDestroyPipelineLayout(device, pipelineLayouts.scene, nullptr); vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr); // Meshes vkMeshLoader::freeMeshBufferResources(device, &meshes.ufo); vkMeshLoader::freeMeshBufferResources(device, &meshes.ufoGlow); vkMeshLoader::freeMeshBufferResources(device, &meshes.skyBox); vkMeshLoader::freeMeshBufferResources(device, &meshes.quad); // Uniform buffers vkTools::destroyUniformData(device, &uniformData.vsScene); vkTools::destroyUniformData(device, &uniformData.vsFullScreen); vkTools::destroyUniformData(device, &uniformData.vsSkyBox); vkTools::destroyUniformData(device, &uniformData.fsVertBlur); vkTools::destroyUniformData(device, &uniformData.fsHorzBlur); vkFreeCommandBuffers(device, cmdPool, 1, &offScreenCmdBuffer); vkDestroySemaphore(device, offscreenSemaphore, nullptr); textureLoader->destroyTexture(textures.cubemap); } // Setup the offscreen framebuffer for rendering the mirrored scene // The color attachment of this framebuffer will then be sampled from void prepareOffscreenFramebuffer(FrameBuffer *frameBuf, VkCommandBuffer cmdBuffer) { frameBuf->width = FB_DIM; frameBuf->height = FB_DIM; VkFormat fbColorFormat = FB_COLOR_FORMAT; // Find a suitable depth format VkFormat fbDepthFormat; VkBool32 validDepthFormat = vkTools::getSupportedDepthFormat(physicalDevice, &fbDepthFormat); assert(validDepthFormat); // Color attachment VkImageCreateInfo image = vkTools::initializers::imageCreateInfo(); image.imageType = VK_IMAGE_TYPE_2D; image.format = fbColorFormat; image.extent.width = frameBuf->width; image.extent.height = frameBuf->height; image.extent.depth = 1; image.mipLevels = 1; image.arrayLayers = 1; image.samples = VK_SAMPLE_COUNT_1_BIT; image.tiling = VK_IMAGE_TILING_OPTIMAL; // We will sample directly from the color attachment image.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_SAMPLED_BIT; VkMemoryAllocateInfo memAlloc = vkTools::initializers::memoryAllocateInfo(); VkMemoryRequirements memReqs; VkImageViewCreateInfo colorImageView = vkTools::initializers::imageViewCreateInfo(); colorImageView.viewType = VK_IMAGE_VIEW_TYPE_2D; colorImageView.format = fbColorFormat; colorImageView.flags = 0; colorImageView.subresourceRange = {}; colorImageView.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; colorImageView.subresourceRange.baseMipLevel = 0; colorImageView.subresourceRange.levelCount = 1; colorImageView.subresourceRange.baseArrayLayer = 0; colorImageView.subresourceRange.layerCount = 1; VK_CHECK_RESULT(vkCreateImage(device, &image, nullptr, &frameBuf->color.image)); vkGetImageMemoryRequirements(device, frameBuf->color.image, &memReqs); memAlloc.allocationSize = memReqs.size; memAlloc.memoryTypeIndex = getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &frameBuf->color.mem)); VK_CHECK_RESULT(vkBindImageMemory(device, frameBuf->color.image, frameBuf->color.mem, 0)); // Set the initial layout to shader read instead of attachment // This is done as the render loop does the actualy image layout transitions vkTools::setImageLayout( cmdBuffer, frameBuf->color.image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL); colorImageView.image = frameBuf->color.image; VK_CHECK_RESULT(vkCreateImageView(device, &colorImageView, nullptr, &frameBuf->color.view)); // Depth stencil attachment image.format = fbDepthFormat; image.usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT; VkImageViewCreateInfo depthStencilView = vkTools::initializers::imageViewCreateInfo(); depthStencilView.viewType = VK_IMAGE_VIEW_TYPE_2D; depthStencilView.format = fbDepthFormat; depthStencilView.flags = 0; depthStencilView.subresourceRange = {}; depthStencilView.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT; depthStencilView.subresourceRange.baseMipLevel = 0; depthStencilView.subresourceRange.levelCount = 1; depthStencilView.subresourceRange.baseArrayLayer = 0; depthStencilView.subresourceRange.layerCount = 1; VK_CHECK_RESULT(vkCreateImage(device, &image, nullptr, &frameBuf->depth.image)); vkGetImageMemoryRequirements(device, frameBuf->depth.image, &memReqs); memAlloc.allocationSize = memReqs.size; memAlloc.memoryTypeIndex = getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &frameBuf->depth.mem)); VK_CHECK_RESULT(vkBindImageMemory(device, frameBuf->depth.image, frameBuf->depth.mem, 0)); vkTools::setImageLayout( cmdBuffer, frameBuf->depth.image, VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL); depthStencilView.image = frameBuf->depth.image; VK_CHECK_RESULT(vkCreateImageView(device, &depthStencilView, nullptr, &frameBuf->depth.view)); VkImageView attachments[2]; attachments[0] = frameBuf->color.view; attachments[1] = frameBuf->depth.view; VkFramebufferCreateInfo fbufCreateInfo = vkTools::initializers::framebufferCreateInfo(); fbufCreateInfo.renderPass = renderPass; fbufCreateInfo.attachmentCount = 2; fbufCreateInfo.pAttachments = attachments; fbufCreateInfo.width = frameBuf->width; fbufCreateInfo.height = frameBuf->height; fbufCreateInfo.layers = 1; VK_CHECK_RESULT(vkCreateFramebuffer(device, &fbufCreateInfo, nullptr, &frameBuf->frameBuffer)); } // Prepare the offscreen framebuffers used for the vertical- and horizontal blur void prepareOffscreenFramebuffers() { VkCommandBuffer cmdBuffer = VulkanExampleBase::createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true); prepareOffscreenFramebuffer(&offScreenFrameBuf, cmdBuffer); prepareOffscreenFramebuffer(&offScreenFrameBufB, cmdBuffer); VulkanExampleBase::flushCommandBuffer(cmdBuffer, queue, true); // Create sampler to sample from the color attachments VkSamplerCreateInfo sampler = vkTools::initializers::samplerCreateInfo(); sampler.magFilter = VK_FILTER_LINEAR; sampler.minFilter = VK_FILTER_LINEAR; sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR; sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE; sampler.addressModeV = sampler.addressModeU; sampler.addressModeW = sampler.addressModeU; sampler.mipLodBias = 0.0f; sampler.maxAnisotropy = 0; sampler.minLod = 0.0f; sampler.maxLod = 1.0f; sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE; VK_CHECK_RESULT(vkCreateSampler(device, &sampler, nullptr, &colorSampler)); } // Sets up the command buffer that renders the scene to the offscreen frame buffer // The blur method used in this example is multi pass and renders the vertical // blur first and then the horizontal one. // While it's possible to blur in one pass, this method is widely used as it // requires far less samples to generate the blur void buildOffscreenCommandBuffer() { if (offScreenCmdBuffer == VK_NULL_HANDLE) { offScreenCmdBuffer = VulkanExampleBase::createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, false); } // Create a semaphore used to synchronize offscreen rendering and usage VkSemaphoreCreateInfo semaphoreCreateInfo = vkTools::initializers::semaphoreCreateInfo(); VK_CHECK_RESULT(vkCreateSemaphore(device, &semaphoreCreateInfo, nullptr, &offscreenSemaphore)); VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo(); // First pass: Horizontal blur VkClearValue clearValues[2]; clearValues[0].color = { { 0.0f, 0.0f, 0.0f, 1.0f } }; clearValues[1].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo(); renderPassBeginInfo.renderPass = renderPass; renderPassBeginInfo.framebuffer = offScreenFrameBuf.frameBuffer; renderPassBeginInfo.renderArea.extent.width = offScreenFrameBuf.width; renderPassBeginInfo.renderArea.extent.height = offScreenFrameBuf.height; renderPassBeginInfo.clearValueCount = 2; renderPassBeginInfo.pClearValues = clearValues; VK_CHECK_RESULT(vkBeginCommandBuffer(offScreenCmdBuffer, &cmdBufInfo)); // Change back layout of the color attachment after sampling in the fragment shader vkTools::setImageLayout( offScreenCmdBuffer, offScreenFrameBuf.color.image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL); VkViewport viewport = vkTools::initializers::viewport((float)offScreenFrameBuf.width, (float)offScreenFrameBuf.height, 0.0f, 1.0f); vkCmdSetViewport(offScreenCmdBuffer, 0, 1, &viewport); VkRect2D scissor = vkTools::initializers::rect2D(offScreenFrameBuf.width, offScreenFrameBuf.height, 0, 0); vkCmdSetScissor(offScreenCmdBuffer, 0, 1, &scissor); vkCmdBeginRenderPass(offScreenCmdBuffer, &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); vkCmdBindDescriptorSets(offScreenCmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.scene, 0, 1, &descriptorSets.scene, 0, NULL); vkCmdBindPipeline(offScreenCmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.phongPass); VkDeviceSize offsets[1] = { 0 }; vkCmdBindVertexBuffers(offScreenCmdBuffer, VERTEX_BUFFER_BIND_ID, 1, &meshes.ufoGlow.vertices.buf, offsets); vkCmdBindIndexBuffer(offScreenCmdBuffer, meshes.ufoGlow.indices.buf, 0, VK_INDEX_TYPE_UINT32); vkCmdDrawIndexed(offScreenCmdBuffer, meshes.ufoGlow.indexCount, 1, 0, 0, 0); vkCmdEndRenderPass(offScreenCmdBuffer); // Change layout of the color attachment for sampling in the fragment shader // in the vertical blur pass vkTools::setImageLayout( offScreenCmdBuffer, offScreenFrameBuf.color.image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL); // Second pass: Vertical blur // Render the horizontally blurred texture into a second // framebuffer and blur vertically renderPassBeginInfo.framebuffer = offScreenFrameBufB.frameBuffer; renderPassBeginInfo.renderArea.extent.width = offScreenFrameBufB.width; renderPassBeginInfo.renderArea.extent.height = offScreenFrameBufB.height; viewport.width = offScreenFrameBuf.width; viewport.height = offScreenFrameBuf.height; vkCmdSetViewport(offScreenCmdBuffer, 0, 1, &viewport); vkCmdSetScissor(offScreenCmdBuffer, 0, 1, &scissor); // Change back layout of the color attachment after sampling in the fragment shader vkTools::setImageLayout( offScreenCmdBuffer, offScreenFrameBufB.color.image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL); vkCmdBeginRenderPass(offScreenCmdBuffer, &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); // Draw horizontally blurred texture vkCmdBindDescriptorSets(offScreenCmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.radialBlur, 0, 1, &descriptorSets.verticalBlur, 0, NULL); vkCmdBindPipeline(offScreenCmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.blurVert); vkCmdBindVertexBuffers(offScreenCmdBuffer, VERTEX_BUFFER_BIND_ID, 1, &meshes.quad.vertices.buf, offsets); vkCmdBindIndexBuffer(offScreenCmdBuffer, meshes.quad.indices.buf, 0, VK_INDEX_TYPE_UINT32); vkCmdDrawIndexed(offScreenCmdBuffer, meshes.quad.indexCount, 1, 0, 0, 0); vkCmdEndRenderPass(offScreenCmdBuffer); // Change layout of the color attachment for sampling in the fragment shader // in the vertical blur pass vkTools::setImageLayout( offScreenCmdBuffer, offScreenFrameBufB.color.image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL); VK_CHECK_RESULT(vkEndCommandBuffer(offScreenCmdBuffer)); } void loadTextures() { textureLoader->loadCubemap( getAssetPath() + "textures/cubemap_space.ktx", VK_FORMAT_R8G8B8A8_UNORM, &textures.cubemap); } void reBuildCommandBuffers() { if (!checkCommandBuffers()) { destroyCommandBuffers(); createCommandBuffers(); } buildCommandBuffers(); } void buildCommandBuffers() { VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo(); VkClearValue clearValues[2]; clearValues[0].color = defaultClearColor; clearValues[1].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo(); renderPassBeginInfo.renderPass = renderPass; renderPassBeginInfo.renderArea.offset.x = 0; renderPassBeginInfo.renderArea.offset.y = 0; renderPassBeginInfo.renderArea.extent.width = width; renderPassBeginInfo.renderArea.extent.height = height; renderPassBeginInfo.clearValueCount = 2; renderPassBeginInfo.pClearValues = clearValues; for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) { // Set target frame buffer renderPassBeginInfo.framebuffer = frameBuffers[i]; VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo)); vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); VkViewport viewport = vkTools::initializers::viewport((float)width, (float)height, 0.0f, 1.0f); vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); VkRect2D scissor = vkTools::initializers::rect2D(width, height, 0, 0); vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor); VkDeviceSize offsets[1] = { 0 }; // Skybox vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.scene, 0, 1, &descriptorSets.skyBox, 0, NULL); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.skyBox); vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &meshes.skyBox.vertices.buf, offsets); vkCmdBindIndexBuffer(drawCmdBuffers[i], meshes.skyBox.indices.buf, 0, VK_INDEX_TYPE_UINT32); vkCmdDrawIndexed(drawCmdBuffers[i], meshes.skyBox.indexCount, 1, 0, 0, 0); // 3D scene vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.scene, 0, 1, &descriptorSets.scene, 0, NULL); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.phongPass); vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &meshes.ufo.vertices.buf, offsets); vkCmdBindIndexBuffer(drawCmdBuffers[i], meshes.ufo.indices.buf, 0, VK_INDEX_TYPE_UINT32); vkCmdDrawIndexed(drawCmdBuffers[i], meshes.ufo.indexCount, 1, 0, 0, 0); // Render vertical blurred scene applying a horizontal blur if (bloom) { vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.radialBlur, 0, 1, &descriptorSets.horizontalBlur, 0, NULL); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.blurVert); vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &meshes.quad.vertices.buf, offsets); vkCmdBindIndexBuffer(drawCmdBuffers[i], meshes.quad.indices.buf, 0, VK_INDEX_TYPE_UINT32); vkCmdDrawIndexed(drawCmdBuffers[i], meshes.quad.indexCount, 1, 0, 0, 0); } vkCmdEndRenderPass(drawCmdBuffers[i]); VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i])); } if (bloom) { buildOffscreenCommandBuffer(); } } void loadMeshes() { loadMesh(getAssetPath() + "models/retroufo.dae", &meshes.ufo, vertexLayout, 0.05f); loadMesh(getAssetPath() + "models/retroufo_glow.dae", &meshes.ufoGlow, vertexLayout, 0.05f); loadMesh(getAssetPath() + "models/cube.obj", &meshes.skyBox, vertexLayout, 1.0f); } // Setup vertices for a single uv-mapped quad void generateQuad() { struct Vertex { float pos[3]; float uv[2]; float col[3]; float normal[3]; }; #define QUAD_COLOR_NORMAL { 1.0f, 1.0f, 1.0f }, { 0.0f, 0.0f, 1.0f } std::vector vertexBuffer = { { { 1.0f, 1.0f, 0.0f },{ 1.0f, 1.0f }, QUAD_COLOR_NORMAL }, { { 0.0f, 1.0f, 0.0f },{ 0.0f, 1.0f }, QUAD_COLOR_NORMAL }, { { 0.0f, 0.0f, 0.0f },{ 0.0f, 0.0f }, QUAD_COLOR_NORMAL }, { { 1.0f, 0.0f, 0.0f },{ 1.0f, 0.0f }, QUAD_COLOR_NORMAL } }; #undef QUAD_COLOR_NORMAL createBuffer( VK_BUFFER_USAGE_VERTEX_BUFFER_BIT, vertexBuffer.size() * sizeof(Vertex), vertexBuffer.data(), &meshes.quad.vertices.buf, &meshes.quad.vertices.mem); // Setup indices std::vector indexBuffer = { 0,1,2, 2,3,0 }; meshes.quad.indexCount = indexBuffer.size(); createBuffer( VK_BUFFER_USAGE_INDEX_BUFFER_BIT, indexBuffer.size() * sizeof(uint32_t), indexBuffer.data(), &meshes.quad.indices.buf, &meshes.quad.indices.mem); } void setupVertexDescriptions() { // Binding description // Same for all meshes used in this example vertices.bindingDescriptions.resize(1); vertices.bindingDescriptions[0] = vkTools::initializers::vertexInputBindingDescription( VERTEX_BUFFER_BIND_ID, vkMeshLoader::vertexSize(vertexLayout), VK_VERTEX_INPUT_RATE_VERTEX); // Attribute descriptions vertices.attributeDescriptions.resize(4); // Location 0 : Position vertices.attributeDescriptions[0] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 0, VK_FORMAT_R32G32B32_SFLOAT, 0); // Location 1 : Texture coordinates vertices.attributeDescriptions[1] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 1, VK_FORMAT_R32G32_SFLOAT, sizeof(float) * 3); // Location 2 : Color vertices.attributeDescriptions[2] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 2, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 5); // Location 3 : Normal vertices.attributeDescriptions[3] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 3, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 8); vertices.inputState = vkTools::initializers::pipelineVertexInputStateCreateInfo(); vertices.inputState.vertexBindingDescriptionCount = vertices.bindingDescriptions.size(); vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data(); vertices.inputState.vertexAttributeDescriptionCount = vertices.attributeDescriptions.size(); vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data(); } void setupDescriptorPool() { std::vector poolSizes = { vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 8), vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 6) }; VkDescriptorPoolCreateInfo descriptorPoolInfo = vkTools::initializers::descriptorPoolCreateInfo( poolSizes.size(), poolSizes.data(), 5); VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool)); } void setupDescriptorSetLayout() { // Textured quad pipeline layout std::vector setLayoutBindings = { // Binding 0 : Vertex shader uniform buffer vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0), // Binding 1 : Fragment shader image sampler vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1), // Binding 2 : Framgnet shader image sampler vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_FRAGMENT_BIT, 2), }; VkDescriptorSetLayoutCreateInfo descriptorLayout = vkTools::initializers::descriptorSetLayoutCreateInfo( setLayoutBindings.data(), setLayoutBindings.size()); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout)); VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = vkTools::initializers::pipelineLayoutCreateInfo( &descriptorSetLayout, 1); VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayouts.radialBlur)); // Offscreen pipeline layout VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayouts.scene)); } void setupDescriptorSet() { VkDescriptorSetAllocateInfo allocInfo = vkTools::initializers::descriptorSetAllocateInfo( descriptorPool, &descriptorSetLayout, 1); // Full screen blur descriptor sets // Vertical blur VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.verticalBlur)); // Texture descriptor for sampling from the unblurred offscreen color attachment VkDescriptorImageInfo texDescriptorVert = vkTools::initializers::descriptorImageInfo( colorSampler, offScreenFrameBuf.color.view, VK_IMAGE_LAYOUT_GENERAL); std::vector writeDescriptorSets = { // Binding 0 : Vertex shader uniform buffer vkTools::initializers::writeDescriptorSet( descriptorSets.verticalBlur, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformData.vsScene.descriptor), // Binding 1 : Fragment shader texture sampler vkTools::initializers::writeDescriptorSet( descriptorSets.verticalBlur, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &texDescriptorVert), // Binding 2 : Fragment shader uniform buffer vkTools::initializers::writeDescriptorSet( descriptorSets.verticalBlur, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2, &uniformData.fsVertBlur.descriptor) }; vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL); // Horizontal blur VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.horizontalBlur)); // Texture descriptor for sampling from the vertically blurred offscreen color attachment VkDescriptorImageInfo texDescriptorHorz = vkTools::initializers::descriptorImageInfo( colorSampler, offScreenFrameBufB.color.view, VK_IMAGE_LAYOUT_GENERAL); writeDescriptorSets = { // Binding 0 : Vertex shader uniform buffer vkTools::initializers::writeDescriptorSet( descriptorSets.horizontalBlur, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformData.vsScene.descriptor), // Binding 1 : Fragment shader texture sampler vkTools::initializers::writeDescriptorSet( descriptorSets.horizontalBlur, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &texDescriptorHorz), // Binding 2 : Fragment shader uniform buffer vkTools::initializers::writeDescriptorSet( descriptorSets.horizontalBlur, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2, &uniformData.fsHorzBlur.descriptor) }; vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL); // 3D scene VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.scene)); writeDescriptorSets = { // Binding 0 : Vertex shader uniform buffer vkTools::initializers::writeDescriptorSet( descriptorSets.scene, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformData.vsFullScreen.descriptor) }; vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL); // Skybox VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.skyBox)); // Image descriptor for the cube map texture VkDescriptorImageInfo cubeMapDescriptor = vkTools::initializers::descriptorImageInfo( textures.cubemap.sampler, textures.cubemap.view, VK_IMAGE_LAYOUT_GENERAL); writeDescriptorSets = { // Binding 0 : Vertex shader uniform buffer vkTools::initializers::writeDescriptorSet( descriptorSets.skyBox, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformData.vsSkyBox.descriptor), // Binding 1 : Fragment shader texture sampler vkTools::initializers::writeDescriptorSet( descriptorSets.skyBox, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &cubeMapDescriptor), }; vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL); } void preparePipelines() { VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vkTools::initializers::pipelineInputAssemblyStateCreateInfo( VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE); VkPipelineRasterizationStateCreateInfo rasterizationState = vkTools::initializers::pipelineRasterizationStateCreateInfo( VK_POLYGON_MODE_FILL, VK_CULL_MODE_NONE, VK_FRONT_FACE_CLOCKWISE, 0); VkPipelineColorBlendAttachmentState blendAttachmentState = vkTools::initializers::pipelineColorBlendAttachmentState( 0xf, VK_FALSE); VkPipelineColorBlendStateCreateInfo colorBlendState = vkTools::initializers::pipelineColorBlendStateCreateInfo( 1, &blendAttachmentState); VkPipelineDepthStencilStateCreateInfo depthStencilState = vkTools::initializers::pipelineDepthStencilStateCreateInfo( VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL); VkPipelineViewportStateCreateInfo viewportState = vkTools::initializers::pipelineViewportStateCreateInfo(1, 1, 0); VkPipelineMultisampleStateCreateInfo multisampleState = vkTools::initializers::pipelineMultisampleStateCreateInfo( VK_SAMPLE_COUNT_1_BIT, 0); std::vector dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR }; VkPipelineDynamicStateCreateInfo dynamicState = vkTools::initializers::pipelineDynamicStateCreateInfo( dynamicStateEnables.data(), dynamicStateEnables.size(), 0); std::array shaderStages; // Vertical gauss blur // Load shaders shaderStages[0] = loadShader(getAssetPath() + "shaders/bloom/gaussblur.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getAssetPath() + "shaders/bloom/gaussblur.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); VkGraphicsPipelineCreateInfo pipelineCreateInfo = vkTools::initializers::pipelineCreateInfo( pipelineLayouts.radialBlur, renderPass, 0); pipelineCreateInfo.pVertexInputState = &vertices.inputState; pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState; pipelineCreateInfo.pRasterizationState = &rasterizationState; pipelineCreateInfo.pColorBlendState = &colorBlendState; pipelineCreateInfo.pMultisampleState = &multisampleState; pipelineCreateInfo.pViewportState = &viewportState; pipelineCreateInfo.pDepthStencilState = &depthStencilState; pipelineCreateInfo.pDynamicState = &dynamicState; pipelineCreateInfo.stageCount = shaderStages.size(); pipelineCreateInfo.pStages = shaderStages.data(); // Additive blending blendAttachmentState.colorWriteMask = 0xF; blendAttachmentState.blendEnable = VK_TRUE; blendAttachmentState.colorBlendOp = VK_BLEND_OP_ADD; blendAttachmentState.srcColorBlendFactor = VK_BLEND_FACTOR_ONE; blendAttachmentState.dstColorBlendFactor = VK_BLEND_FACTOR_ONE; blendAttachmentState.alphaBlendOp = VK_BLEND_OP_ADD; blendAttachmentState.srcAlphaBlendFactor = VK_BLEND_FACTOR_SRC_ALPHA; blendAttachmentState.dstAlphaBlendFactor = VK_BLEND_FACTOR_DST_ALPHA; VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.blurVert)); // Phong pass (3D model) shaderStages[0] = loadShader(getAssetPath() + "shaders/bloom/phongpass.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getAssetPath() + "shaders/bloom/phongpass.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); pipelineCreateInfo.layout = pipelineLayouts.scene; blendAttachmentState.blendEnable = VK_FALSE; depthStencilState.depthWriteEnable = VK_TRUE; rasterizationState.cullMode = VK_CULL_MODE_BACK_BIT; VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.phongPass)); // Color only pass (offscreen blur base) shaderStages[0] = loadShader(getAssetPath() + "shaders/bloom/colorpass.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getAssetPath() + "shaders/bloom/colorpass.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.colorPass)); // Skybox (cubemap) shaderStages[0] = loadShader(getAssetPath() + "shaders/bloom/skybox.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getAssetPath() + "shaders/bloom/skybox.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); depthStencilState.depthWriteEnable = VK_FALSE; rasterizationState.cullMode = VK_CULL_MODE_FRONT_BIT; VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.skyBox)); } // Prepare and initialize uniform buffer containing shader uniforms void prepareUniformBuffers() { // Phong and color pass vertex shader uniform buffer createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, sizeof(ubos.scene), &ubos.scene, &uniformData.vsScene.buffer, &uniformData.vsScene.memory, &uniformData.vsScene.descriptor); // Fullscreen quad display vertex shader uniform buffer createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, sizeof(ubos.fullscreen), &ubos.fullscreen, &uniformData.vsFullScreen.buffer, &uniformData.vsFullScreen.memory, &uniformData.vsFullScreen.descriptor); // Fullscreen quad fragment shader uniform buffers // Vertical blur createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, sizeof(ubos.vertBlur), &ubos.vertBlur, &uniformData.fsVertBlur.buffer, &uniformData.fsVertBlur.memory, &uniformData.fsVertBlur.descriptor); // Horizontal blur createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, sizeof(ubos.horzBlur), &ubos.horzBlur, &uniformData.fsHorzBlur.buffer, &uniformData.fsHorzBlur.memory, &uniformData.fsHorzBlur.descriptor); // Skybox createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, sizeof(ubos.skyBox), &ubos.skyBox, &uniformData.vsSkyBox.buffer, &uniformData.vsSkyBox.memory, &uniformData.vsSkyBox.descriptor); // Intialize uniform buffers updateUniformBuffersScene(); updateUniformBuffersScreen(); } // Update uniform buffers for rendering the 3D scene void updateUniformBuffersScene() { // UFO ubos.fullscreen.projection = glm::perspective(glm::radians(45.0f), (float)width / (float)height, 0.1f, 256.0f); glm::mat4 viewMatrix = glm::translate(glm::mat4(), glm::vec3(0.0f, -1.0f, zoom)); ubos.fullscreen.model = viewMatrix * glm::translate(glm::mat4(), glm::vec3(sin(glm::radians(timer * 360.0f)) * 0.25f, 0.0f, cos(glm::radians(timer * 360.0f)) * 0.25f) + cameraPos); ubos.fullscreen.model = glm::rotate(ubos.fullscreen.model, glm::radians(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f)); ubos.fullscreen.model = glm::rotate(ubos.fullscreen.model, -sinf(glm::radians(timer * 360.0f)) * 0.15f, glm::vec3(1.0f, 0.0f, 0.0f)); ubos.fullscreen.model = glm::rotate(ubos.fullscreen.model, glm::radians(rotation.y), glm::vec3(0.0f, 1.0f, 0.0f)); ubos.fullscreen.model = glm::rotate(ubos.fullscreen.model, glm::radians(timer * 360.0f), glm::vec3(0.0f, 1.0f, 0.0f)); ubos.fullscreen.model = glm::rotate(ubos.fullscreen.model, glm::radians(rotation.z), glm::vec3(0.0f, 0.0f, 1.0f)); uint8_t *pData; VK_CHECK_RESULT(vkMapMemory(device, uniformData.vsFullScreen.memory, 0, sizeof(ubos.fullscreen), 0, (void **)&pData)); memcpy(pData, &ubos.fullscreen, sizeof(ubos.fullscreen)); vkUnmapMemory(device, uniformData.vsFullScreen.memory); // Skybox ubos.skyBox.projection = glm::perspective(glm::radians(45.0f), (float)width / (float)height, 0.1f, 256.0f); ubos.skyBox.model = glm::mat4(); ubos.skyBox.model = glm::rotate(ubos.skyBox.model, glm::radians(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f)); ubos.skyBox.model = glm::rotate(ubos.skyBox.model, glm::radians(rotation.y), glm::vec3(0.0f, 1.0f, 0.0f)); ubos.skyBox.model = glm::rotate(ubos.skyBox.model, glm::radians(rotation.z), glm::vec3(0.0f, 0.0f, 1.0f)); VK_CHECK_RESULT(vkMapMemory(device, uniformData.vsSkyBox.memory, 0, sizeof(ubos.skyBox), 0, (void **)&pData)); memcpy(pData, &ubos.skyBox, sizeof(ubos.skyBox)); vkUnmapMemory(device, uniformData.vsSkyBox.memory); } // Update uniform buffers for the fullscreen quad void updateUniformBuffersScreen() { // Vertex shader ubos.scene.projection = glm::ortho(0.0f, 1.0f, 0.0f, 1.0f, -1.0f, 1.0f); ubos.scene.model = glm::mat4(); uint8_t *pData; VK_CHECK_RESULT(vkMapMemory(device, uniformData.vsScene.memory, 0, sizeof(ubos.scene), 0, (void **)&pData)); memcpy(pData, &ubos.scene, sizeof(ubos.scene)); vkUnmapMemory(device, uniformData.vsScene.memory); // Fragment shader // Vertical ubos.vertBlur.horizontal = 0; VK_CHECK_RESULT(vkMapMemory(device, uniformData.fsVertBlur.memory, 0, sizeof(ubos.vertBlur), 0, (void **)&pData)); memcpy(pData, &ubos.vertBlur, sizeof(ubos.vertBlur)); vkUnmapMemory(device, uniformData.fsVertBlur.memory); // Horizontal ubos.horzBlur.horizontal = 1; VK_CHECK_RESULT(vkMapMemory(device, uniformData.fsHorzBlur.memory, 0, sizeof(ubos.horzBlur), 0, (void **)&pData)); memcpy(pData, &ubos.horzBlur, sizeof(ubos.horzBlur)); vkUnmapMemory(device, uniformData.fsHorzBlur.memory); } void draw() { VulkanExampleBase::prepareFrame(); // The scene render command buffer has to wait for the offscreen // rendering to be finished before we can use the framebuffer // color image for sampling during final rendering // To ensure this we use a dedicated offscreen synchronization // semaphore that will be signaled when offscreen renderin // has been finished // This is necessary as an implementation may start both // command buffers at the same time, there is no guarantee // that command buffers will be executed in the order they // have been submitted by the application // Offscreen rendering // Wait for swap chain presentation to finish submitInfo.pWaitSemaphores = &semaphores.presentComplete; // Signal ready with offscreen semaphore submitInfo.pSignalSemaphores = &offscreenSemaphore; // Submit work submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &offScreenCmdBuffer; VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE)); // Scene rendering // Wait for offscreen semaphore submitInfo.pWaitSemaphores = &offscreenSemaphore; // Signal ready with render complete semaphpre submitInfo.pSignalSemaphores = &semaphores.renderComplete; // Submit work submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer]; VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE)); VulkanExampleBase::submitFrame(); } void prepare() { VulkanExampleBase::prepare(); loadTextures(); generateQuad(); loadMeshes(); setupVertexDescriptions(); prepareUniformBuffers(); prepareOffscreenFramebuffers(); setupDescriptorSetLayout(); preparePipelines(); setupDescriptorPool(); setupDescriptorSet(); buildCommandBuffers(); prepared = true; } virtual void render() { if (!prepared) return; draw(); if (!paused) { updateUniformBuffersScene(); } } virtual void viewChanged() { updateUniformBuffersScene(); updateUniformBuffersScreen(); } virtual void keyPressed(uint32_t keyCode) { switch (keyCode) { case 0x6B: case GAMEPAD_BUTTON_R1: changeBlurScale(0.25f); break; case 0x6D: case GAMEPAD_BUTTON_L1: changeBlurScale(-0.25f); break; case 0x42: case GAMEPAD_BUTTON_A: toggleBloom(); break; } } virtual void getOverlayText(VulkanTextOverlay *textOverlay) { #if defined(__ANDROID__) textOverlay->addText("Press \"L1/R1\" to change blur scale", 5.0f, 85.0f, VulkanTextOverlay::alignLeft); textOverlay->addText("Press \"Button A\" to toggle bloom", 5.0f, 105.0f, VulkanTextOverlay::alignLeft); #else textOverlay->addText("Press \"NUMPAD +/-\" to change blur scale", 5.0f, 85.0f, VulkanTextOverlay::alignLeft); textOverlay->addText("Press \"B\" to toggle bloom", 5.0f, 105.0f, VulkanTextOverlay::alignLeft); #endif } void changeBlurScale(float delta) { ubos.vertBlur.blurScale += delta; ubos.horzBlur.blurScale += delta; updateUniformBuffersScreen(); } void toggleBloom() { bloom = !bloom; reBuildCommandBuffers(); } }; VulkanExample *vulkanExample; #if defined(_WIN32) LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam) { if (vulkanExample != NULL) { vulkanExample->handleMessages(hWnd, uMsg, wParam, lParam); } return (DefWindowProc(hWnd, uMsg, wParam, lParam)); } #elif defined(__linux__) && !defined(__ANDROID__) static void handleEvent(const xcb_generic_event_t *event) { if (vulkanExample != NULL) { vulkanExample->handleEvent(event); } } #endif // Main entry point #if defined(_WIN32) // Windows entry point int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR pCmdLine, int nCmdShow) #elif defined(__ANDROID__) // Android entry point void android_main(android_app* state) #elif defined(__linux__) // Linux entry point int main(const int argc, const char *argv[]) #endif { #if defined(__ANDROID__) // Removing this may cause the compiler to omit the main entry point // which would make the application crash at start app_dummy(); #endif vulkanExample = new VulkanExample(); #if defined(_WIN32) vulkanExample->setupWindow(hInstance, WndProc); #elif defined(__ANDROID__) // Attach vulkan example to global android application state state->userData = vulkanExample; state->onAppCmd = VulkanExample::handleAppCommand; state->onInputEvent = VulkanExample::handleAppInput; vulkanExample->androidApp = state; #elif defined(__linux__) vulkanExample->setupWindow(); #endif #if !defined(__ANDROID__) vulkanExample->initSwapchain(); vulkanExample->prepare(); #endif vulkanExample->renderLoop(); delete(vulkanExample); #if !defined(__ANDROID__) return 0; #endif }