/* * Vulkan Example - Omni directional shadows using a dynamic cube map * * Copyright (C) 2016 by Sascha Willems - www.saschawillems.de * * This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT) */ #include #include #include #include #include #define GLM_FORCE_RADIANS #define GLM_FORCE_DEPTH_ZERO_TO_ONE #include #include #include #include "vulkanexamplebase.h" #define VERTEX_BUFFER_BIND_ID 0 #define ENABLE_VALIDATION false // Texture properties #define TEX_DIM 1024 #define TEX_FILTER VK_FILTER_LINEAR // Offscreen frame buffer properties #define FB_DIM TEX_DIM #define FB_COLOR_FORMAT VK_FORMAT_R32_SFLOAT // Vertex layout for this example std::vector vertexLayout = { vkMeshLoader::VERTEX_LAYOUT_POSITION, vkMeshLoader::VERTEX_LAYOUT_UV, vkMeshLoader::VERTEX_LAYOUT_COLOR, vkMeshLoader::VERTEX_LAYOUT_NORMAL }; class VulkanExample : public VulkanExampleBase { public: bool displayCubeMap = false; float zNear = 0.1f; float zFar = 1024.0f; struct { VkPipelineVertexInputStateCreateInfo inputState; std::vector bindingDescriptions; std::vector attributeDescriptions; } vertices; struct { vkMeshLoader::MeshBuffer skybox; vkMeshLoader::MeshBuffer scene; } meshes; struct { vkTools::UniformData scene; vkTools::UniformData offscreen; } uniformData; struct { glm::mat4 projection; glm::mat4 model; } uboVSquad; glm::vec4 lightPos = glm::vec4(0.0f, -25.0f, 0.0f, 1.0); struct { glm::mat4 projection; glm::mat4 view; glm::mat4 model; glm::vec4 lightPos; } uboVSscene; struct { glm::mat4 projection; glm::mat4 view; glm::mat4 model; glm::vec4 lightPos; } uboOffscreenVS; struct { VkPipeline scene; VkPipeline offscreen; VkPipeline cubeMap; } pipelines; struct { VkPipelineLayout scene; VkPipelineLayout offscreen; } pipelineLayouts; struct { VkDescriptorSet scene; VkDescriptorSet offscreen; } descriptorSets; VkDescriptorSetLayout descriptorSetLayout; vkTools::VulkanTexture shadowCubeMap; // Framebuffer for offscreen rendering struct FrameBufferAttachment { VkImage image; VkDeviceMemory mem; VkImageView view; }; struct FrameBuffer { int32_t width, height; VkFramebuffer frameBuffer; FrameBufferAttachment color, depth; VkRenderPass renderPass; } offScreenFrameBuf; VkCommandBuffer offScreenCmdBuffer = VK_NULL_HANDLE; VkFormat fbDepthFormat; // Semaphore used to synchronize offscreen rendering before using it's texture target for sampling VkSemaphore offscreenSemaphore = VK_NULL_HANDLE; VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION) { zoom = -175.0f; zoomSpeed = 10.0f; timerSpeed *= 0.25f; rotation = { -20.5f, -673.0f, 0.0f }; enableTextOverlay = true; title = "Vulkan Example - Point light shadows"; } ~VulkanExample() { // Clean up used Vulkan resources // Note : Inherited destructor cleans up resources stored in base class // Cube map vkDestroyImageView(device, shadowCubeMap.view, nullptr); vkDestroyImage(device, shadowCubeMap.image, nullptr); vkDestroySampler(device, shadowCubeMap.sampler, nullptr); vkFreeMemory(device, shadowCubeMap.deviceMemory, nullptr); // Frame buffer // Color attachment vkDestroyImageView(device, offScreenFrameBuf.color.view, nullptr); vkDestroyImage(device, offScreenFrameBuf.color.image, nullptr); vkFreeMemory(device, offScreenFrameBuf.color.mem, nullptr); // Depth attachment vkDestroyImageView(device, offScreenFrameBuf.depth.view, nullptr); vkDestroyImage(device, offScreenFrameBuf.depth.image, nullptr); vkFreeMemory(device, offScreenFrameBuf.depth.mem, nullptr); vkDestroyFramebuffer(device, offScreenFrameBuf.frameBuffer, nullptr); vkDestroyRenderPass(device, offScreenFrameBuf.renderPass, nullptr); // Pipelibes vkDestroyPipeline(device, pipelines.scene, nullptr); vkDestroyPipeline(device, pipelines.offscreen, nullptr); vkDestroyPipeline(device, pipelines.cubeMap, nullptr); vkDestroyPipelineLayout(device, pipelineLayouts.scene, nullptr); vkDestroyPipelineLayout(device, pipelineLayouts.offscreen, nullptr); vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr); // Meshes vkMeshLoader::freeMeshBufferResources(device, &meshes.scene); vkMeshLoader::freeMeshBufferResources(device, &meshes.skybox); // Uniform buffers vkTools::destroyUniformData(device, &uniformData.offscreen); vkTools::destroyUniformData(device, &uniformData.scene); vkFreeCommandBuffers(device, cmdPool, 1, &offScreenCmdBuffer); vkDestroySemaphore(device, offscreenSemaphore, nullptr); } void prepareCubeMap() { shadowCubeMap.width = TEX_DIM; shadowCubeMap.height = TEX_DIM; // 32 bit float format for higher precision VkFormat format = VK_FORMAT_R32_SFLOAT; // Cube map image description VkImageCreateInfo imageCreateInfo = vkTools::initializers::imageCreateInfo(); imageCreateInfo.imageType = VK_IMAGE_TYPE_2D; imageCreateInfo.format = format; imageCreateInfo.extent = { shadowCubeMap.width, shadowCubeMap.height, 1 }; imageCreateInfo.mipLevels = 1; imageCreateInfo.arrayLayers = 6; imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT; imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL; imageCreateInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT; imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; imageCreateInfo.flags = VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT; VkMemoryAllocateInfo memAllocInfo = vkTools::initializers::memoryAllocateInfo(); VkMemoryRequirements memReqs; VkCommandBuffer layoutCmd = VulkanExampleBase::createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true); // Create cube map image VK_CHECK_RESULT(vkCreateImage(device, &imageCreateInfo, nullptr, &shadowCubeMap.image)); vkGetImageMemoryRequirements(device, shadowCubeMap.image, &memReqs); memAllocInfo.allocationSize = memReqs.size; memAllocInfo.memoryTypeIndex = getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &shadowCubeMap.deviceMemory)); VK_CHECK_RESULT(vkBindImageMemory(device, shadowCubeMap.image, shadowCubeMap.deviceMemory, 0)); // Image barrier for optimal image (target) VkImageSubresourceRange subresourceRange = {}; subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; subresourceRange.baseMipLevel = 0; subresourceRange.levelCount = 1; subresourceRange.layerCount = 6; vkTools::setImageLayout( layoutCmd, shadowCubeMap.image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, subresourceRange); VulkanExampleBase::flushCommandBuffer(layoutCmd, queue, true); // Create sampler VkSamplerCreateInfo sampler = vkTools::initializers::samplerCreateInfo(); sampler.magFilter = TEX_FILTER; sampler.minFilter = TEX_FILTER; sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR; sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER; sampler.addressModeV = sampler.addressModeU; sampler.addressModeW = sampler.addressModeU; sampler.mipLodBias = 0.0f; sampler.maxAnisotropy = 0; sampler.compareOp = VK_COMPARE_OP_NEVER; sampler.minLod = 0.0f; sampler.maxLod = 1.0f; sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE; VK_CHECK_RESULT(vkCreateSampler(device, &sampler, nullptr, &shadowCubeMap.sampler)); // Create image view VkImageViewCreateInfo view = vkTools::initializers::imageViewCreateInfo(); view.image = VK_NULL_HANDLE; view.viewType = VK_IMAGE_VIEW_TYPE_CUBE; view.format = format; view.components = { VK_COMPONENT_SWIZZLE_R }; view.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 }; view.subresourceRange.layerCount = 6; view.image = shadowCubeMap.image; VK_CHECK_RESULT(vkCreateImageView(device, &view, nullptr, &shadowCubeMap.view)); } // Prepare a new framebuffer for offscreen rendering // The contents of this framebuffer are then // copied to the different cube map faces void prepareOffscreenFramebuffer() { offScreenFrameBuf.width = FB_DIM; offScreenFrameBuf.height = FB_DIM; VkFormat fbColorFormat = FB_COLOR_FORMAT; // Color attachment VkImageCreateInfo imageCreateInfo = vkTools::initializers::imageCreateInfo(); imageCreateInfo.imageType = VK_IMAGE_TYPE_2D; imageCreateInfo.format = fbColorFormat; imageCreateInfo.extent.width = offScreenFrameBuf.width; imageCreateInfo.extent.height = offScreenFrameBuf.height; imageCreateInfo.extent.depth = 1; imageCreateInfo.mipLevels = 1; imageCreateInfo.arrayLayers = 1; imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT; imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL; // Image of the framebuffer is blit source imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; imageCreateInfo.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT; imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; VkMemoryAllocateInfo memAlloc = vkTools::initializers::memoryAllocateInfo(); VkImageViewCreateInfo colorImageView = vkTools::initializers::imageViewCreateInfo(); colorImageView.viewType = VK_IMAGE_VIEW_TYPE_2D; colorImageView.format = fbColorFormat; colorImageView.flags = 0; colorImageView.subresourceRange = {}; colorImageView.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; colorImageView.subresourceRange.baseMipLevel = 0; colorImageView.subresourceRange.levelCount = 1; colorImageView.subresourceRange.baseArrayLayer = 0; colorImageView.subresourceRange.layerCount = 1; VkMemoryRequirements memReqs; VK_CHECK_RESULT(vkCreateImage(device, &imageCreateInfo, nullptr, &offScreenFrameBuf.color.image)); vkGetImageMemoryRequirements(device, offScreenFrameBuf.color.image, &memReqs); memAlloc.allocationSize = memReqs.size; memAlloc.memoryTypeIndex = getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &offScreenFrameBuf.color.mem)); VK_CHECK_RESULT(vkBindImageMemory(device, offScreenFrameBuf.color.image, offScreenFrameBuf.color.mem, 0)); VkCommandBuffer layoutCmd = VulkanExampleBase::createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true); vkTools::setImageLayout( layoutCmd, offScreenFrameBuf.color.image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL); colorImageView.image = offScreenFrameBuf.color.image; VK_CHECK_RESULT(vkCreateImageView(device, &colorImageView, nullptr, &offScreenFrameBuf.color.view)); // Depth stencil attachment imageCreateInfo.format = fbDepthFormat; imageCreateInfo.usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT; VkImageViewCreateInfo depthStencilView = vkTools::initializers::imageViewCreateInfo(); depthStencilView.viewType = VK_IMAGE_VIEW_TYPE_2D; depthStencilView.format = fbDepthFormat; depthStencilView.flags = 0; depthStencilView.subresourceRange = {}; depthStencilView.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT; depthStencilView.subresourceRange.baseMipLevel = 0; depthStencilView.subresourceRange.levelCount = 1; depthStencilView.subresourceRange.baseArrayLayer = 0; depthStencilView.subresourceRange.layerCount = 1; VK_CHECK_RESULT(vkCreateImage(device, &imageCreateInfo, nullptr, &offScreenFrameBuf.depth.image)); vkGetImageMemoryRequirements(device, offScreenFrameBuf.depth.image, &memReqs); memAlloc.allocationSize = memReqs.size; memAlloc.memoryTypeIndex = getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); VK_CHECK_RESULT(vkAllocateMemory(device, &memAlloc, nullptr, &offScreenFrameBuf.depth.mem)); VK_CHECK_RESULT(vkBindImageMemory(device, offScreenFrameBuf.depth.image, offScreenFrameBuf.depth.mem, 0)); vkTools::setImageLayout( layoutCmd, offScreenFrameBuf.depth.image, VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL); VulkanExampleBase::flushCommandBuffer(layoutCmd, queue, true); depthStencilView.image = offScreenFrameBuf.depth.image; VK_CHECK_RESULT(vkCreateImageView(device, &depthStencilView, nullptr, &offScreenFrameBuf.depth.view)); VkImageView attachments[2]; attachments[0] = offScreenFrameBuf.color.view; attachments[1] = offScreenFrameBuf.depth.view; VkFramebufferCreateInfo fbufCreateInfo = vkTools::initializers::framebufferCreateInfo(); fbufCreateInfo.renderPass = offScreenFrameBuf.renderPass; fbufCreateInfo.attachmentCount = 2; fbufCreateInfo.pAttachments = attachments; fbufCreateInfo.width = offScreenFrameBuf.width; fbufCreateInfo.height = offScreenFrameBuf.height; fbufCreateInfo.layers = 1; VK_CHECK_RESULT(vkCreateFramebuffer(device, &fbufCreateInfo, nullptr, &offScreenFrameBuf.frameBuffer)); } // Updates a single cube map face // Renders the scene with face's view and does // a copy from framebuffer to cube face // Uses push constants for quick update of // view matrix for the current cube map face void updateCubeFace(uint32_t faceIndex) { VkClearValue clearValues[2]; clearValues[0].color = { { 0.0f, 0.0f, 0.0f, 1.0f } }; clearValues[1].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo(); // Reuse render pass from example pass renderPassBeginInfo.renderPass = renderPass; renderPassBeginInfo.framebuffer = offScreenFrameBuf.frameBuffer; renderPassBeginInfo.renderArea.extent.width = offScreenFrameBuf.width; renderPassBeginInfo.renderArea.extent.height = offScreenFrameBuf.height; renderPassBeginInfo.clearValueCount = 2; renderPassBeginInfo.pClearValues = clearValues; // Update view matrix via push constant glm::mat4 viewMatrix = glm::mat4(); switch (faceIndex) { case 0: // POSITIVE_X viewMatrix = glm::rotate(viewMatrix, glm::radians(90.0f), glm::vec3(0.0f, 1.0f, 0.0f)); viewMatrix = glm::rotate(viewMatrix, glm::radians(180.0f), glm::vec3(1.0f, 0.0f, 0.0f)); break; case 1: // NEGATIVE_X viewMatrix = glm::rotate(viewMatrix, glm::radians(-90.0f), glm::vec3(0.0f, 1.0f, 0.0f)); viewMatrix = glm::rotate(viewMatrix, glm::radians(180.0f), glm::vec3(1.0f, 0.0f, 0.0f)); break; case 2: // POSITIVE_Y viewMatrix = glm::rotate(viewMatrix, glm::radians(-90.0f), glm::vec3(1.0f, 0.0f, 0.0f)); break; case 3: // NEGATIVE_Y viewMatrix = glm::rotate(viewMatrix, glm::radians(90.0f), glm::vec3(1.0f, 0.0f, 0.0f)); break; case 4: // POSITIVE_Z viewMatrix = glm::rotate(viewMatrix, glm::radians(180.0f), glm::vec3(1.0f, 0.0f, 0.0f)); break; case 5: // NEGATIVE_Z viewMatrix = glm::rotate(viewMatrix, glm::radians(180.0f), glm::vec3(0.0f, 0.0f, 1.0f)); break; } // Render scene from cube face's point of view vkCmdBeginRenderPass(offScreenCmdBuffer, &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); // Update shader push constant block // Contains current face view matrix vkCmdPushConstants( offScreenCmdBuffer, pipelineLayouts.offscreen, VK_SHADER_STAGE_VERTEX_BIT, 0, sizeof(glm::mat4), &viewMatrix); vkCmdBindPipeline(offScreenCmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.offscreen); vkCmdBindDescriptorSets(offScreenCmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.offscreen, 0, 1, &descriptorSets.offscreen, 0, NULL); VkDeviceSize offsets[1] = { 0 }; vkCmdBindVertexBuffers(offScreenCmdBuffer, VERTEX_BUFFER_BIND_ID, 1, &meshes.scene.vertices.buf, offsets); vkCmdBindIndexBuffer(offScreenCmdBuffer, meshes.scene.indices.buf, 0, VK_INDEX_TYPE_UINT32); vkCmdDrawIndexed(offScreenCmdBuffer, meshes.scene.indexCount, 1, 0, 0, 0); vkCmdEndRenderPass(offScreenCmdBuffer); // Make sure color writes to the framebuffer are finished before using it as transfer source vkTools::setImageLayout( offScreenCmdBuffer, offScreenFrameBuf.color.image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL); // Copy region for transfer from framebuffer to cube face VkImageCopy copyRegion = {}; copyRegion.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; copyRegion.srcSubresource.baseArrayLayer = 0; copyRegion.srcSubresource.mipLevel = 0; copyRegion.srcSubresource.layerCount = 1; copyRegion.srcOffset = { 0, 0, 0 }; copyRegion.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; copyRegion.dstSubresource.baseArrayLayer = faceIndex; copyRegion.dstSubresource.mipLevel = 0; copyRegion.dstSubresource.layerCount = 1; copyRegion.dstOffset = { 0, 0, 0 }; copyRegion.extent.width = shadowCubeMap.width; copyRegion.extent.height = shadowCubeMap.height; copyRegion.extent.depth = 1; // Put image copy into command buffer vkCmdCopyImage( offScreenCmdBuffer, offScreenFrameBuf.color.image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, shadowCubeMap.image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, ©Region); // Transform framebuffer color attachment back vkTools::setImageLayout( offScreenCmdBuffer, offScreenFrameBuf.color.image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL); } // Command buffer for rendering and copying all cube map faces void buildOffscreenCommandBuffer() { if (offScreenCmdBuffer == VK_NULL_HANDLE) { offScreenCmdBuffer = VulkanExampleBase::createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, false); } // Create a semaphore used to synchronize offscreen rendering and usage VkSemaphoreCreateInfo semaphoreCreateInfo = vkTools::initializers::semaphoreCreateInfo(); VK_CHECK_RESULT(vkCreateSemaphore(device, &semaphoreCreateInfo, nullptr, &offscreenSemaphore)); VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo(); VK_CHECK_RESULT(vkBeginCommandBuffer(offScreenCmdBuffer, &cmdBufInfo)); VkViewport viewport = vkTools::initializers::viewport((float)offScreenFrameBuf.width, (float)offScreenFrameBuf.height, 0.0f, 1.0f); vkCmdSetViewport(offScreenCmdBuffer, 0, 1, &viewport); VkRect2D scissor = vkTools::initializers::rect2D(offScreenFrameBuf.width, offScreenFrameBuf.height, 0, 0); vkCmdSetScissor(offScreenCmdBuffer, 0, 1, &scissor); VkImageSubresourceRange subresourceRange = {}; subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; subresourceRange.baseMipLevel = 0; subresourceRange.levelCount = 1; subresourceRange.layerCount = 6; // Change image layout for all cubemap faces to transfer destination vkTools::setImageLayout( offScreenCmdBuffer, shadowCubeMap.image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, subresourceRange); for (uint32_t face = 0; face < 6; ++face) { updateCubeFace(face); } // Change image layout for all cubemap faces to shader read after they have been copied vkTools::setImageLayout( offScreenCmdBuffer, shadowCubeMap.image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, subresourceRange); VK_CHECK_RESULT(vkEndCommandBuffer(offScreenCmdBuffer)); } void reBuildCommandBuffers() { if (!checkCommandBuffers()) { destroyCommandBuffers(); createCommandBuffers(); } buildCommandBuffers(); } void buildCommandBuffers() { VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo(); VkClearValue clearValues[2]; clearValues[0].color = defaultClearColor; clearValues[1].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo(); renderPassBeginInfo.renderPass = renderPass; renderPassBeginInfo.renderArea.offset.x = 0; renderPassBeginInfo.renderArea.offset.y = 0; renderPassBeginInfo.renderArea.extent.width = width; renderPassBeginInfo.renderArea.extent.height = height; renderPassBeginInfo.clearValueCount = 2; renderPassBeginInfo.pClearValues = clearValues; for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) { renderPassBeginInfo.framebuffer = frameBuffers[i]; VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo)); vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); VkViewport viewport = vkTools::initializers::viewport( (float)width, (float)height, 0.0f, 1.0f); vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); VkRect2D scissor = vkTools::initializers::rect2D( width, height, 0, 0); vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor); VkDeviceSize offsets[1] = { 0 }; vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.scene, 0, 1, &descriptorSets.scene, 0, NULL); if (displayCubeMap) { vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.cubeMap); vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &meshes.skybox.vertices.buf, offsets); vkCmdBindIndexBuffer(drawCmdBuffers[i], meshes.skybox.indices.buf, 0, VK_INDEX_TYPE_UINT32); vkCmdDrawIndexed(drawCmdBuffers[i], meshes.skybox.indexCount, 1, 0, 0, 0); } else { vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.scene); vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &meshes.scene.vertices.buf, offsets); vkCmdBindIndexBuffer(drawCmdBuffers[i], meshes.scene.indices.buf, 0, VK_INDEX_TYPE_UINT32); vkCmdDrawIndexed(drawCmdBuffers[i], meshes.scene.indexCount, 1, 0, 0, 0); } vkCmdEndRenderPass(drawCmdBuffers[i]); VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i])); } } void loadMeshes() { loadMesh(getAssetPath() + "models/cube.obj", &meshes.skybox, vertexLayout, 2.0f); loadMesh(getAssetPath() + "models/shadowscene_fire.dae", &meshes.scene, vertexLayout, 2.0f); } void setupVertexDescriptions() { // Binding description vertices.bindingDescriptions.resize(1); vertices.bindingDescriptions[0] = vkTools::initializers::vertexInputBindingDescription( VERTEX_BUFFER_BIND_ID, vkMeshLoader::vertexSize(vertexLayout), VK_VERTEX_INPUT_RATE_VERTEX); // Attribute descriptions vertices.attributeDescriptions.resize(4); // Location 0 : Position vertices.attributeDescriptions[0] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 0, VK_FORMAT_R32G32B32_SFLOAT, 0); // Location 1 : Texture coordinates vertices.attributeDescriptions[1] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 1, VK_FORMAT_R32G32_SFLOAT, sizeof(float) * 3); // Location 2 : Color vertices.attributeDescriptions[2] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 2, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 5); // Location 3 : Normal vertices.attributeDescriptions[3] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 3, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 8); vertices.inputState = vkTools::initializers::pipelineVertexInputStateCreateInfo(); vertices.inputState.vertexBindingDescriptionCount = vertices.bindingDescriptions.size(); vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data(); vertices.inputState.vertexAttributeDescriptionCount = vertices.attributeDescriptions.size(); vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data(); } void setupDescriptorPool() { // Example uses three ubos and two image samplers std::vector poolSizes = { vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 3), vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2) }; VkDescriptorPoolCreateInfo descriptorPoolInfo = vkTools::initializers::descriptorPoolCreateInfo( poolSizes.size(), poolSizes.data(), 3); VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool)); } void setupDescriptorSetLayout() { // Shared pipeline layout std::vector setLayoutBindings = { // Binding 0 : Vertex shader uniform buffer vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0), // Binding 1 : Fragment shader image sampler (cube map) vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1) }; VkDescriptorSetLayoutCreateInfo descriptorLayout = vkTools::initializers::descriptorSetLayoutCreateInfo( setLayoutBindings.data(), setLayoutBindings.size()); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout)); // 3D scene pipeline layout VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = vkTools::initializers::pipelineLayoutCreateInfo( &descriptorSetLayout, 1); VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayouts.scene)); // Offscreen pipeline layout // Push constants for cube map face view matrices VkPushConstantRange pushConstantRange = vkTools::initializers::pushConstantRange( VK_SHADER_STAGE_VERTEX_BIT, sizeof(glm::mat4), 0); // Push constant ranges are part of the pipeline layout pPipelineLayoutCreateInfo.pushConstantRangeCount = 1; pPipelineLayoutCreateInfo.pPushConstantRanges = &pushConstantRange; VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayouts.offscreen)); } void setupDescriptorSets() { VkDescriptorSetAllocateInfo allocInfo = vkTools::initializers::descriptorSetAllocateInfo( descriptorPool, &descriptorSetLayout, 1); // 3D scene VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.scene)); // Image descriptor for the cube map VkDescriptorImageInfo texDescriptor = vkTools::initializers::descriptorImageInfo( shadowCubeMap.sampler, shadowCubeMap.view, VK_IMAGE_LAYOUT_GENERAL); std::vector sceneDescriptorSets = { // Binding 0 : Vertex shader uniform buffer vkTools::initializers::writeDescriptorSet( descriptorSets.scene, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformData.scene.descriptor), // Binding 1 : Fragment shader shadow sampler vkTools::initializers::writeDescriptorSet( descriptorSets.scene, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &texDescriptor) }; vkUpdateDescriptorSets(device, sceneDescriptorSets.size(), sceneDescriptorSets.data(), 0, NULL); // Offscreen VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.offscreen)); std::vector offScreenWriteDescriptorSets = { // Binding 0 : Vertex shader uniform buffer vkTools::initializers::writeDescriptorSet( descriptorSets.offscreen, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformData.offscreen.descriptor), }; vkUpdateDescriptorSets(device, offScreenWriteDescriptorSets.size(), offScreenWriteDescriptorSets.data(), 0, NULL); } // Set up a separate render pass for the offscreen frame buffer // This is necessary as the offscreen frame buffer attachments // use formats different to the ones from the visible frame buffer // and at least the depth one may not be compatible void prepareOffscreenRenderpass() { VkAttachmentDescription osAttachments[2] = {}; // Find a suitable depth format VkBool32 validDepthFormat = vkTools::getSupportedDepthFormat(physicalDevice, &fbDepthFormat); assert(validDepthFormat); osAttachments[0].format = FB_COLOR_FORMAT; osAttachments[0].samples = VK_SAMPLE_COUNT_1_BIT; osAttachments[0].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; osAttachments[0].storeOp = VK_ATTACHMENT_STORE_OP_STORE; osAttachments[0].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; osAttachments[0].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; osAttachments[0].initialLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; osAttachments[0].finalLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; // Depth attachment osAttachments[1].format = fbDepthFormat; osAttachments[1].samples = VK_SAMPLE_COUNT_1_BIT; osAttachments[1].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; osAttachments[1].storeOp = VK_ATTACHMENT_STORE_OP_STORE; osAttachments[1].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; osAttachments[1].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; osAttachments[1].initialLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; osAttachments[1].finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; VkAttachmentReference colorReference = {}; colorReference.attachment = 0; colorReference.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; VkAttachmentReference depthReference = {}; depthReference.attachment = 1; depthReference.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; VkSubpassDescription subpass = {}; subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS; subpass.colorAttachmentCount = 1; subpass.pColorAttachments = &colorReference; subpass.pDepthStencilAttachment = &depthReference; VkRenderPassCreateInfo renderPassCreateInfo = vkTools::initializers::renderPassCreateInfo(); renderPassCreateInfo.attachmentCount = 2; renderPassCreateInfo.pAttachments = osAttachments; renderPassCreateInfo.subpassCount = 1; renderPassCreateInfo.pSubpasses = &subpass; VK_CHECK_RESULT(vkCreateRenderPass(device, &renderPassCreateInfo, nullptr, &offScreenFrameBuf.renderPass)); } void preparePipelines() { VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vkTools::initializers::pipelineInputAssemblyStateCreateInfo( VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE); VkPipelineRasterizationStateCreateInfo rasterizationState = vkTools::initializers::pipelineRasterizationStateCreateInfo( VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_CLOCKWISE, 0); VkPipelineColorBlendAttachmentState blendAttachmentState = vkTools::initializers::pipelineColorBlendAttachmentState( 0xf, VK_FALSE); VkPipelineColorBlendStateCreateInfo colorBlendState = vkTools::initializers::pipelineColorBlendStateCreateInfo( 1, &blendAttachmentState); VkPipelineDepthStencilStateCreateInfo depthStencilState = vkTools::initializers::pipelineDepthStencilStateCreateInfo( VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL); VkPipelineViewportStateCreateInfo viewportState = vkTools::initializers::pipelineViewportStateCreateInfo(1, 1, 0); VkPipelineMultisampleStateCreateInfo multisampleState = vkTools::initializers::pipelineMultisampleStateCreateInfo( VK_SAMPLE_COUNT_1_BIT, 0); std::vector dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR }; VkPipelineDynamicStateCreateInfo dynamicState = vkTools::initializers::pipelineDynamicStateCreateInfo( dynamicStateEnables.data(), dynamicStateEnables.size(), 0); // 3D scene pipeline // Load shaders std::array shaderStages; shaderStages[0] = loadShader(getAssetPath() + "shaders/shadowmapomni/scene.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getAssetPath() + "shaders/shadowmapomni/scene.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); VkGraphicsPipelineCreateInfo pipelineCreateInfo = vkTools::initializers::pipelineCreateInfo( pipelineLayouts.scene, renderPass, 0); pipelineCreateInfo.pVertexInputState = &vertices.inputState; pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState; pipelineCreateInfo.pRasterizationState = &rasterizationState; pipelineCreateInfo.pColorBlendState = &colorBlendState; pipelineCreateInfo.pMultisampleState = &multisampleState; pipelineCreateInfo.pViewportState = &viewportState; pipelineCreateInfo.pDepthStencilState = &depthStencilState; pipelineCreateInfo.pDynamicState = &dynamicState; pipelineCreateInfo.stageCount = shaderStages.size(); pipelineCreateInfo.pStages = shaderStages.data(); VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.scene)); // Cube map display pipeline shaderStages[0] = loadShader(getAssetPath() + "shaders/shadowmapomni/cubemapdisplay.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getAssetPath() + "shaders/shadowmapomni/cubemapdisplay.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); rasterizationState.cullMode = VK_CULL_MODE_FRONT_BIT; VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.cubeMap)); // Offscreen pipeline shaderStages[0] = loadShader(getAssetPath() + "shaders/shadowmapomni/offscreen.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getAssetPath() + "shaders/shadowmapomni/offscreen.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); rasterizationState.cullMode = VK_CULL_MODE_BACK_BIT; pipelineCreateInfo.layout = pipelineLayouts.offscreen; pipelineCreateInfo.renderPass = offScreenFrameBuf.renderPass; VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.offscreen)); } // Prepare and initialize uniform buffer containing shader uniforms void prepareUniformBuffers() { // Offscreen vertex shader uniform buffer block createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, sizeof(uboOffscreenVS), &uboOffscreenVS, &uniformData.offscreen.buffer, &uniformData.offscreen.memory, &uniformData.offscreen.descriptor); // 3D scene createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, sizeof(uboVSscene), &uboVSscene, &uniformData.scene.buffer, &uniformData.scene.memory, &uniformData.scene.descriptor); updateUniformBufferOffscreen(); updateUniformBuffers(); } void updateUniformBuffers() { // 3D scene uboVSscene.projection = glm::perspective(glm::radians(45.0f), (float)width / (float)height, zNear, zFar); uboVSscene.view = glm::translate(glm::mat4(), glm::vec3(0.0f, 0.0f, displayCubeMap ? 0.0f : zoom)); uboVSscene.model = glm::mat4(); uboVSscene.model = glm::rotate(uboVSscene.model, glm::radians(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f)); uboVSscene.model = glm::rotate(uboVSscene.model, glm::radians(rotation.y), glm::vec3(0.0f, 1.0f, 0.0f)); uboVSscene.model = glm::rotate(uboVSscene.model, glm::radians(rotation.z), glm::vec3(0.0f, 0.0f, 1.0f)); uboVSscene.lightPos = lightPos; uint8_t *pData; VK_CHECK_RESULT(vkMapMemory(device, uniformData.scene.memory, 0, sizeof(uboVSscene), 0, (void **)&pData)); memcpy(pData, &uboVSscene, sizeof(uboVSscene)); vkUnmapMemory(device, uniformData.scene.memory); } void updateUniformBufferOffscreen() { lightPos.x = sin(glm::radians(timer * 360.0f)) * 1.0f; lightPos.z = cos(glm::radians(timer * 360.0f)) * 1.0f; uboOffscreenVS.projection = glm::perspective((float)(M_PI / 2.0), 1.0f, zNear, zFar); uboOffscreenVS.view = glm::mat4(); uboOffscreenVS.model = glm::translate(glm::mat4(), glm::vec3(-lightPos.x, -lightPos.y, -lightPos.z)); uboOffscreenVS.lightPos = lightPos; uint8_t *pData; VK_CHECK_RESULT(vkMapMemory(device, uniformData.offscreen.memory, 0, sizeof(uboOffscreenVS), 0, (void **)&pData)); memcpy(pData, &uboOffscreenVS, sizeof(uboOffscreenVS)); vkUnmapMemory(device, uniformData.offscreen.memory); } void draw() { VulkanExampleBase::prepareFrame(); // The scene render command buffer has to wait for the offscreen // rendering (and transfer) to be finished before using // the shadow map, so we need to synchronize // We use an additional semaphore for this // Offscreen rendering // Wait for swap chain presentation to finish submitInfo.pWaitSemaphores = &semaphores.presentComplete; // Signal ready with offscreen semaphore submitInfo.pSignalSemaphores = &offscreenSemaphore; // Submit work submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &offScreenCmdBuffer; VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE)); // Scene rendering // Wait for offscreen semaphore submitInfo.pWaitSemaphores = &offscreenSemaphore; // Signal ready with render complete semaphpre submitInfo.pSignalSemaphores = &semaphores.renderComplete; // Submit work submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer]; VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE)); VulkanExampleBase::submitFrame(); } void prepare() { VulkanExampleBase::prepare(); loadMeshes(); setupVertexDescriptions(); prepareUniformBuffers(); prepareCubeMap(); setupDescriptorSetLayout(); prepareOffscreenRenderpass(); preparePipelines(); setupDescriptorPool(); setupDescriptorSets(); prepareOffscreenFramebuffer(); buildCommandBuffers(); buildOffscreenCommandBuffer(); prepared = true; } virtual void render() { if (!prepared) return; draw(); if (!paused) { updateUniformBufferOffscreen(); updateUniformBuffers(); } } virtual void viewChanged() { updateUniformBufferOffscreen(); updateUniformBuffers(); } virtual void keyPressed(uint32_t keyCode) { switch (keyCode) { case 0x44: case GAMEPAD_BUTTON_A: toggleCubeMapDisplay(); break; } } virtual void getOverlayText(VulkanTextOverlay *textOverlay) { #if defined(__ANDROID__) textOverlay->addText("Press \"Button A\" to display depth cubemap", 5.0f, 85.0f, VulkanTextOverlay::alignLeft); #else textOverlay->addText("Press \"d\" to display depth cubemap", 5.0f, 85.0f, VulkanTextOverlay::alignLeft); #endif } void toggleCubeMapDisplay() { displayCubeMap = !displayCubeMap; reBuildCommandBuffers(); } }; VulkanExample *vulkanExample; #if defined(_WIN32) LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam) { if (vulkanExample != NULL) { vulkanExample->handleMessages(hWnd, uMsg, wParam, lParam); } return (DefWindowProc(hWnd, uMsg, wParam, lParam)); } #elif defined(__linux__) && !defined(__ANDROID__) static void handleEvent(const xcb_generic_event_t *event) { if (vulkanExample != NULL) { vulkanExample->handleEvent(event); } } #endif // Main entry point #if defined(_WIN32) // Windows entry point int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR pCmdLine, int nCmdShow) #elif defined(__ANDROID__) // Android entry point void android_main(android_app* state) #elif defined(__linux__) // Linux entry point int main(const int argc, const char *argv[]) #endif { #if defined(__ANDROID__) // Removing this may cause the compiler to omit the main entry point // which would make the application crash at start app_dummy(); #endif vulkanExample = new VulkanExample(); #if defined(_WIN32) vulkanExample->setupWindow(hInstance, WndProc); #elif defined(__ANDROID__) // Attach vulkan example to global android application state state->userData = vulkanExample; state->onAppCmd = VulkanExample::handleAppCommand; state->onInputEvent = VulkanExample::handleAppInput; vulkanExample->androidApp = state; #elif defined(__linux__) vulkanExample->setupWindow(); #endif #if !defined(__ANDROID__) vulkanExample->initSwapchain(); vulkanExample->prepare(); #endif vulkanExample->renderLoop(); delete(vulkanExample); #if !defined(__ANDROID__) return 0; #endif }