/* * Vulkan Example - Basic hardware accelerated ray tracing example using VK_KHR_ray_traying * * Copyright (C) 2019-2020 by Sascha Willems - www.saschawillems.de * * This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT) */ #define VK_ENABLE_BETA_EXTENSIONS #include "vulkanexamplebase.h" // Holds data for a ray tracing scratch buffer that is used as a temporary storage struct RayTracingScratchBuffer { uint64_t deviceAddress = 0; VkBuffer buffer = VK_NULL_HANDLE; VkDeviceMemory memory = VK_NULL_HANDLE; }; // Holds data for a memory object bound to an acceleration structure struct RayTracingObjectMemory { uint64_t deviceAddress = 0; VkDeviceMemory memory = VK_NULL_HANDLE; }; // Ray tracing acceleration structure struct AccelerationStructure { VkAccelerationStructureKHR accelerationStructure; uint64_t handle; RayTracingObjectMemory objectMemory; }; // Indices for the different ray tracing shader types used in this example #define INDEX_RAYGEN_GROUP 0 #define INDEX_MISS_GROUP 1 #define INDEX_CLOSEST_HIT_GROUP 2 class VulkanExample : public VulkanExampleBase { public: PFN_vkGetBufferDeviceAddressKHR vkGetBufferDeviceAddressKHR; PFN_vkBindAccelerationStructureMemoryKHR vkBindAccelerationStructureMemoryKHR; PFN_vkCreateAccelerationStructureKHR vkCreateAccelerationStructureKHR; PFN_vkDestroyAccelerationStructureKHR vkDestroyAccelerationStructureKHR; PFN_vkGetAccelerationStructureMemoryRequirementsKHR vkGetAccelerationStructureMemoryRequirementsKHR; PFN_vkCmdBuildAccelerationStructureKHR vkCmdBuildAccelerationStructureKHR; PFN_vkBuildAccelerationStructureKHR vkBuildAccelerationStructureKHR; PFN_vkGetAccelerationStructureDeviceAddressKHR vkGetAccelerationStructureDeviceAddressKHR; PFN_vkCmdTraceRaysKHR vkCmdTraceRaysKHR; PFN_vkGetRayTracingShaderGroupHandlesKHR vkGetRayTracingShaderGroupHandlesKHR; PFN_vkCreateRayTracingPipelinesKHR vkCreateRayTracingPipelinesKHR; VkPhysicalDeviceRayTracingPropertiesKHR rayTracingProperties{}; VkPhysicalDeviceRayTracingFeaturesKHR rayTracingFeatures{}; VkPhysicalDeviceBufferDeviceAddressFeatures enabledBufferDeviceAddresFeatures{}; VkPhysicalDeviceRayTracingFeaturesKHR enabledRayTracingFeatures{}; AccelerationStructure bottomLevelAS; AccelerationStructure topLevelAS; vks::Buffer vertexBuffer; vks::Buffer indexBuffer; uint32_t indexCount; std::vector shaderGroups{}; vks::Buffer shaderBindingTable; struct StorageImage { VkDeviceMemory memory; VkImage image; VkImageView view; VkFormat format; } storageImage; struct UniformData { glm::mat4 viewInverse; glm::mat4 projInverse; } uniformData; vks::Buffer ubo; VkPipeline pipeline; VkPipelineLayout pipelineLayout; VkDescriptorSet descriptorSet; VkDescriptorSetLayout descriptorSetLayout; VulkanExample() : VulkanExampleBase() { title = "Ray tracing basic"; settings.overlay = true; camera.type = Camera::CameraType::lookat; camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 512.0f); camera.setRotation(glm::vec3(0.0f, 0.0f, 0.0f)); camera.setTranslation(glm::vec3(0.0f, 0.0f, -2.5f)); // Enable instance and device extensions required to use VK_KHR_ray_tracing enabledInstanceExtensions.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME); enabledDeviceExtensions.push_back(VK_KHR_MAINTENANCE3_EXTENSION_NAME); enabledDeviceExtensions.push_back(VK_KHR_GET_MEMORY_REQUIREMENTS_2_EXTENSION_NAME); enabledDeviceExtensions.push_back(VK_KHR_RAY_TRACING_EXTENSION_NAME); enabledDeviceExtensions.push_back(VK_KHR_BUFFER_DEVICE_ADDRESS_EXTENSION_NAME); enabledDeviceExtensions.push_back(VK_KHR_DEFERRED_HOST_OPERATIONS_EXTENSION_NAME); enabledDeviceExtensions.push_back(VK_EXT_DESCRIPTOR_INDEXING_EXTENSION_NAME); enabledDeviceExtensions.push_back(VK_KHR_PIPELINE_LIBRARY_EXTENSION_NAME); // We require Vulkan 1.2 for ray tracing apiVersion = VK_API_VERSION_1_2; } ~VulkanExample() { vkDestroyPipeline(device, pipeline, nullptr); vkDestroyPipelineLayout(device, pipelineLayout, nullptr); vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr); vkDestroyImageView(device, storageImage.view, nullptr); vkDestroyImage(device, storageImage.image, nullptr); vkFreeMemory(device, storageImage.memory, nullptr); vkDestroyAccelerationStructureKHR(device, bottomLevelAS.accelerationStructure, nullptr); vkDestroyAccelerationStructureKHR(device, topLevelAS.accelerationStructure, nullptr); vertexBuffer.destroy(); indexBuffer.destroy(); shaderBindingTable.destroy(); ubo.destroy(); deleteObjectMemory(bottomLevelAS.objectMemory); deleteObjectMemory(topLevelAS.objectMemory); } /* Create a scratch buffer to hold temporary data for a ray tracing acceleration structure */ RayTracingScratchBuffer createScratchBuffer(VkAccelerationStructureKHR accelerationStructure) { RayTracingScratchBuffer scratchBuffer{}; VkMemoryRequirements2 memoryRequirements2{}; memoryRequirements2.sType = VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2; VkAccelerationStructureMemoryRequirementsInfoKHR accelerationStructureMemoryRequirements{}; accelerationStructureMemoryRequirements.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_MEMORY_REQUIREMENTS_INFO_KHR; accelerationStructureMemoryRequirements.type = VK_ACCELERATION_STRUCTURE_MEMORY_REQUIREMENTS_TYPE_BUILD_SCRATCH_KHR; accelerationStructureMemoryRequirements.buildType = VK_ACCELERATION_STRUCTURE_BUILD_TYPE_DEVICE_KHR; accelerationStructureMemoryRequirements.accelerationStructure = accelerationStructure; vkGetAccelerationStructureMemoryRequirementsKHR(device, &accelerationStructureMemoryRequirements, &memoryRequirements2); VkBufferCreateInfo bufferCI{}; bufferCI.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO; bufferCI.size = memoryRequirements2.memoryRequirements.size; bufferCI.usage = VK_BUFFER_USAGE_RAY_TRACING_BIT_KHR | VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT; bufferCI.sharingMode = VK_SHARING_MODE_EXCLUSIVE; VK_CHECK_RESULT(vkCreateBuffer(device, &bufferCI, nullptr, &scratchBuffer.buffer)); VkMemoryRequirements memoryRequirements{}; vkGetBufferMemoryRequirements(device, scratchBuffer.buffer, &memoryRequirements); VkMemoryAllocateFlagsInfo memoryAllocateFI{}; memoryAllocateFI.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_FLAGS_INFO; memoryAllocateFI.flags = VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT_KHR; VkMemoryAllocateInfo memoryAI{}; memoryAI.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO; memoryAI.pNext = &memoryAllocateFI; memoryAI.allocationSize = memoryRequirements.size; memoryAI.memoryTypeIndex = vulkanDevice->getMemoryType(memoryRequirements.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); VK_CHECK_RESULT(vkAllocateMemory(device, &memoryAI, nullptr, &scratchBuffer.memory)); VK_CHECK_RESULT(vkBindBufferMemory(device, scratchBuffer.buffer, scratchBuffer.memory, 0)); VkBufferDeviceAddressInfoKHR buffer_device_address_info{}; buffer_device_address_info.sType = VK_STRUCTURE_TYPE_BUFFER_DEVICE_ADDRESS_INFO; buffer_device_address_info.buffer = scratchBuffer.buffer; scratchBuffer.deviceAddress = vkGetBufferDeviceAddressKHR(device, &buffer_device_address_info); return scratchBuffer; } void deleteScratchBuffer(RayTracingScratchBuffer& scratchBuffer) { if (scratchBuffer.memory != VK_NULL_HANDLE) { vkFreeMemory(device, scratchBuffer.memory, nullptr); } if (scratchBuffer.buffer != VK_NULL_HANDLE) { vkDestroyBuffer(device, scratchBuffer.buffer, nullptr); } } /* Allocate memory that will be attached to a ray tracing acceleration structure */ RayTracingObjectMemory createObjectMemory(VkAccelerationStructureKHR acceleration_structure) { RayTracingObjectMemory objectMemory{}; VkMemoryRequirements2 memoryRequirements2{}; memoryRequirements2.sType = VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2; VkAccelerationStructureMemoryRequirementsInfoKHR accelerationStructureMemoryRequirements{}; accelerationStructureMemoryRequirements.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_MEMORY_REQUIREMENTS_INFO_KHR; accelerationStructureMemoryRequirements.type = VK_ACCELERATION_STRUCTURE_MEMORY_REQUIREMENTS_TYPE_OBJECT_KHR; accelerationStructureMemoryRequirements.buildType = VK_ACCELERATION_STRUCTURE_BUILD_TYPE_DEVICE_KHR; accelerationStructureMemoryRequirements.accelerationStructure = acceleration_structure; vkGetAccelerationStructureMemoryRequirementsKHR(device, &accelerationStructureMemoryRequirements, &memoryRequirements2); VkMemoryRequirements memoryRequirements = memoryRequirements2.memoryRequirements; VkMemoryAllocateInfo memoryAI{}; memoryAI.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO; memoryAI.allocationSize = memoryRequirements.size; memoryAI.memoryTypeIndex = vulkanDevice->getMemoryType(memoryRequirements.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); VK_CHECK_RESULT(vkAllocateMemory(device, &memoryAI, nullptr, &objectMemory.memory)); return objectMemory; } void deleteObjectMemory(RayTracingObjectMemory& objectMemory) { if (objectMemory.memory != VK_NULL_HANDLE) { vkFreeMemory(device, objectMemory.memory, nullptr); } } /* Gets the device address from a buffer that's required for some of the buffers used for ray tracing */ uint64_t getBufferDeviceAddress(VkBuffer buffer) { VkBufferDeviceAddressInfoKHR bufferDeviceAI{}; bufferDeviceAI.sType = VK_STRUCTURE_TYPE_BUFFER_DEVICE_ADDRESS_INFO; bufferDeviceAI.buffer = buffer; return vkGetBufferDeviceAddressKHR(device, &bufferDeviceAI); } /* Set up a storage image that the ray generation shader will be writing to */ void createStorageImage() { VkImageCreateInfo image = vks::initializers::imageCreateInfo(); image.imageType = VK_IMAGE_TYPE_2D; image.format = swapChain.colorFormat; image.extent.width = width; image.extent.height = height; image.extent.depth = 1; image.mipLevels = 1; image.arrayLayers = 1; image.samples = VK_SAMPLE_COUNT_1_BIT; image.tiling = VK_IMAGE_TILING_OPTIMAL; image.usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_STORAGE_BIT; image.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; VK_CHECK_RESULT(vkCreateImage(device, &image, nullptr, &storageImage.image)); VkMemoryRequirements memReqs; vkGetImageMemoryRequirements(device, storageImage.image, &memReqs); VkMemoryAllocateInfo memoryAllocateInfo = vks::initializers::memoryAllocateInfo(); memoryAllocateInfo.allocationSize = memReqs.size; memoryAllocateInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); VK_CHECK_RESULT(vkAllocateMemory(device, &memoryAllocateInfo, nullptr, &storageImage.memory)); VK_CHECK_RESULT(vkBindImageMemory(device, storageImage.image, storageImage.memory, 0)); VkImageViewCreateInfo colorImageView = vks::initializers::imageViewCreateInfo(); colorImageView.viewType = VK_IMAGE_VIEW_TYPE_2D; colorImageView.format = swapChain.colorFormat; colorImageView.subresourceRange = {}; colorImageView.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; colorImageView.subresourceRange.baseMipLevel = 0; colorImageView.subresourceRange.levelCount = 1; colorImageView.subresourceRange.baseArrayLayer = 0; colorImageView.subresourceRange.layerCount = 1; colorImageView.image = storageImage.image; VK_CHECK_RESULT(vkCreateImageView(device, &colorImageView, nullptr, &storageImage.view)); VkCommandBuffer cmdBuffer = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true); vks::tools::setImageLayout(cmdBuffer, storageImage.image, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_GENERAL, { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 }); vulkanDevice->flushCommandBuffer(cmdBuffer, queue); } /* Create the bottom level acceleration structure contains the scene's actual geometry (vertices, triangles) */ void createBottomLevelAccelerationStructure() { // Setup vertices for a single triangle struct Vertex { float pos[3]; }; std::vector vertices = { { { 1.0f, 1.0f, 0.0f } }, { { -1.0f, 1.0f, 0.0f } }, { { 0.0f, -1.0f, 0.0f } } }; // Setup indices std::vector indices = { 0, 1, 2 }; indexCount = static_cast(indices.size()); // Create buffers // For the sake of simplicity we won't stage the vertex data to the GPU memory // Vertex buffer VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &vertexBuffer, vertices.size() * sizeof(Vertex), vertices.data())); // Index buffer VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_INDEX_BUFFER_BIT | VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &indexBuffer, indices.size() * sizeof(uint32_t), indices.data())); VkDeviceOrHostAddressConstKHR vertexBufferDeviceAddress{}; VkDeviceOrHostAddressConstKHR indexBufferDeviceAddress{}; vertexBufferDeviceAddress.deviceAddress = getBufferDeviceAddress(vertexBuffer.buffer); indexBufferDeviceAddress.deviceAddress = getBufferDeviceAddress(indexBuffer.buffer); VkAccelerationStructureCreateGeometryTypeInfoKHR accelerationCreateGeometryInfo{}; accelerationCreateGeometryInfo.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_CREATE_GEOMETRY_TYPE_INFO_KHR; accelerationCreateGeometryInfo.geometryType = VK_GEOMETRY_TYPE_TRIANGLES_KHR; accelerationCreateGeometryInfo.maxPrimitiveCount = 1; accelerationCreateGeometryInfo.indexType = VK_INDEX_TYPE_UINT32; accelerationCreateGeometryInfo.maxVertexCount = static_cast(vertices.size()); accelerationCreateGeometryInfo.vertexFormat = VK_FORMAT_R32G32B32_SFLOAT; accelerationCreateGeometryInfo.allowsTransforms = VK_FALSE; VkAccelerationStructureCreateInfoKHR accelerationCI{}; accelerationCI.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_CREATE_INFO_KHR; accelerationCI.type = VK_ACCELERATION_STRUCTURE_TYPE_BOTTOM_LEVEL_KHR; accelerationCI.flags = VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_TRACE_BIT_KHR; accelerationCI.maxGeometryCount = 1; accelerationCI.pGeometryInfos = &accelerationCreateGeometryInfo; VK_CHECK_RESULT(vkCreateAccelerationStructureKHR(device, &accelerationCI, nullptr, &bottomLevelAS.accelerationStructure)); // Bind object memory to the top level acceleration structure bottomLevelAS.objectMemory = createObjectMemory(bottomLevelAS.accelerationStructure); VkBindAccelerationStructureMemoryInfoKHR bindAccelerationMemoryInfo{}; bindAccelerationMemoryInfo.sType = VK_STRUCTURE_TYPE_BIND_ACCELERATION_STRUCTURE_MEMORY_INFO_KHR; bindAccelerationMemoryInfo.accelerationStructure = bottomLevelAS.accelerationStructure; bindAccelerationMemoryInfo.memory = bottomLevelAS.objectMemory.memory; VK_CHECK_RESULT(vkBindAccelerationStructureMemoryKHR(device, 1, &bindAccelerationMemoryInfo)); VkAccelerationStructureGeometryKHR accelerationStructureGeometry{}; accelerationStructureGeometry.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_GEOMETRY_KHR; accelerationStructureGeometry.flags = VK_GEOMETRY_OPAQUE_BIT_KHR; accelerationStructureGeometry.geometryType = VK_GEOMETRY_TYPE_TRIANGLES_KHR; accelerationStructureGeometry.geometry.triangles.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_GEOMETRY_TRIANGLES_DATA_KHR; accelerationStructureGeometry.geometry.triangles.vertexFormat = VK_FORMAT_R32G32B32_SFLOAT; accelerationStructureGeometry.geometry.triangles.vertexData.deviceAddress = vertexBufferDeviceAddress.deviceAddress; accelerationStructureGeometry.geometry.triangles.vertexStride = sizeof(Vertex); accelerationStructureGeometry.geometry.triangles.indexType = VK_INDEX_TYPE_UINT32; accelerationStructureGeometry.geometry.triangles.indexData.deviceAddress = indexBufferDeviceAddress.deviceAddress; std::vector acceleration_geometries = { accelerationStructureGeometry }; VkAccelerationStructureGeometryKHR* acceleration_structure_geometries = acceleration_geometries.data(); // Create a small scratch buffer used during build of the bottom level acceleration structure RayTracingScratchBuffer scratchBuffer = createScratchBuffer(bottomLevelAS.accelerationStructure); VkAccelerationStructureBuildGeometryInfoKHR accelerationBuildGeometryInfo{}; accelerationBuildGeometryInfo.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_BUILD_GEOMETRY_INFO_KHR; accelerationBuildGeometryInfo.type = VK_ACCELERATION_STRUCTURE_TYPE_BOTTOM_LEVEL_KHR; accelerationBuildGeometryInfo.flags = VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_TRACE_BIT_KHR; accelerationBuildGeometryInfo.update = VK_FALSE; accelerationBuildGeometryInfo.dstAccelerationStructure = bottomLevelAS.accelerationStructure; accelerationBuildGeometryInfo.geometryArrayOfPointers = VK_FALSE; accelerationBuildGeometryInfo.geometryCount = 1; accelerationBuildGeometryInfo.ppGeometries = &acceleration_structure_geometries; accelerationBuildGeometryInfo.scratchData.deviceAddress = scratchBuffer.deviceAddress; VkAccelerationStructureBuildOffsetInfoKHR accelerationBuildOffsetInfo{}; accelerationBuildOffsetInfo.primitiveCount = 1; accelerationBuildOffsetInfo.primitiveOffset = 0x0; accelerationBuildOffsetInfo.firstVertex = 0; accelerationBuildOffsetInfo.transformOffset = 0x0; std::vector accelerationBuildOffsets = { &accelerationBuildOffsetInfo }; if (rayTracingFeatures.rayTracingHostAccelerationStructureCommands) { // Implementation supports building acceleration structure building on host VK_CHECK_RESULT(vkBuildAccelerationStructureKHR(device, 1, &accelerationBuildGeometryInfo, accelerationBuildOffsets.data())); } else { // Acceleration structure needs to be build on the device VkCommandBuffer commandBuffer = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true); vkCmdBuildAccelerationStructureKHR(commandBuffer, 1, &accelerationBuildGeometryInfo, accelerationBuildOffsets.data()); vulkanDevice->flushCommandBuffer(commandBuffer, queue); } VkAccelerationStructureDeviceAddressInfoKHR accelerationDeviceAddressInfo{}; accelerationDeviceAddressInfo.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_DEVICE_ADDRESS_INFO_KHR; accelerationDeviceAddressInfo.accelerationStructure = bottomLevelAS.accelerationStructure; bottomLevelAS.handle = vkGetAccelerationStructureDeviceAddressKHR(device, &accelerationDeviceAddressInfo); deleteScratchBuffer(scratchBuffer); } /* The top level acceleration structure contains the scene's object instances */ void createTopLevelAccelerationStructure() { VkAccelerationStructureCreateGeometryTypeInfoKHR accelerationCreateGeometryInfo{}; accelerationCreateGeometryInfo.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_CREATE_GEOMETRY_TYPE_INFO_KHR; accelerationCreateGeometryInfo.geometryType = VK_GEOMETRY_TYPE_INSTANCES_KHR; accelerationCreateGeometryInfo.maxPrimitiveCount = 1; accelerationCreateGeometryInfo.allowsTransforms = VK_FALSE; VkAccelerationStructureCreateInfoKHR accelerationCI{}; accelerationCI.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_CREATE_INFO_KHR; accelerationCI.type = VK_ACCELERATION_STRUCTURE_TYPE_TOP_LEVEL_KHR; accelerationCI.flags = VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_TRACE_BIT_KHR; accelerationCI.maxGeometryCount = 1; accelerationCI.pGeometryInfos = &accelerationCreateGeometryInfo; VK_CHECK_RESULT(vkCreateAccelerationStructureKHR(device, &accelerationCI, nullptr, &topLevelAS.accelerationStructure)); // Bind object memory to the top level acceleration structure topLevelAS.objectMemory = createObjectMemory(topLevelAS.accelerationStructure); VkBindAccelerationStructureMemoryInfoKHR bindAccelerationMemoryInfo{}; bindAccelerationMemoryInfo.sType = VK_STRUCTURE_TYPE_BIND_ACCELERATION_STRUCTURE_MEMORY_INFO_KHR; bindAccelerationMemoryInfo.accelerationStructure = topLevelAS.accelerationStructure; bindAccelerationMemoryInfo.memory = topLevelAS.objectMemory.memory; VK_CHECK_RESULT(vkBindAccelerationStructureMemoryKHR(device, 1, &bindAccelerationMemoryInfo)); VkTransformMatrixKHR transform_matrix = { 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f }; VkAccelerationStructureInstanceKHR instance{}; instance.transform = transform_matrix; instance.instanceCustomIndex = 0; instance.mask = 0xFF; instance.instanceShaderBindingTableRecordOffset = 0; instance.flags = VK_GEOMETRY_INSTANCE_TRIANGLE_FACING_CULL_DISABLE_BIT_KHR; instance.accelerationStructureReference = bottomLevelAS.handle; // Buffer for instance data vks::Buffer instancesBuffer; VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &instancesBuffer, sizeof(instance), &instance)); VkDeviceOrHostAddressConstKHR instance_data_device_address{}; instance_data_device_address.deviceAddress = getBufferDeviceAddress(instancesBuffer.buffer); VkAccelerationStructureGeometryKHR accelerationStructureGeometry{}; accelerationStructureGeometry.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_GEOMETRY_KHR; accelerationStructureGeometry.flags = VK_GEOMETRY_OPAQUE_BIT_KHR; accelerationStructureGeometry.geometryType = VK_GEOMETRY_TYPE_INSTANCES_KHR; accelerationStructureGeometry.geometry.instances.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_GEOMETRY_INSTANCES_DATA_KHR; accelerationStructureGeometry.geometry.instances.arrayOfPointers = VK_FALSE; accelerationStructureGeometry.geometry.instances.data.deviceAddress = instance_data_device_address.deviceAddress; std::vector acceleration_geometries = { accelerationStructureGeometry }; VkAccelerationStructureGeometryKHR* acceleration_structure_geometries = acceleration_geometries.data(); // Create a small scratch buffer used during build of the top level acceleration structure RayTracingScratchBuffer scratchBuffer = createScratchBuffer(topLevelAS.accelerationStructure); VkAccelerationStructureBuildGeometryInfoKHR accelerationBuildGeometryInfo{}; accelerationBuildGeometryInfo.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_BUILD_GEOMETRY_INFO_KHR; accelerationBuildGeometryInfo.type = VK_ACCELERATION_STRUCTURE_TYPE_TOP_LEVEL_KHR; accelerationBuildGeometryInfo.flags = VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_TRACE_BIT_KHR; accelerationBuildGeometryInfo.update = VK_FALSE; accelerationBuildGeometryInfo.srcAccelerationStructure = VK_NULL_HANDLE; accelerationBuildGeometryInfo.dstAccelerationStructure = topLevelAS.accelerationStructure; accelerationBuildGeometryInfo.geometryArrayOfPointers = VK_FALSE; accelerationBuildGeometryInfo.geometryCount = 1; accelerationBuildGeometryInfo.ppGeometries = &acceleration_structure_geometries; accelerationBuildGeometryInfo.scratchData.deviceAddress = scratchBuffer.deviceAddress; VkAccelerationStructureBuildOffsetInfoKHR accelerationBuildOffsetInfo{}; accelerationBuildOffsetInfo.primitiveCount = 1; accelerationBuildOffsetInfo.primitiveOffset = 0x0; accelerationBuildOffsetInfo.firstVertex = 0; accelerationBuildOffsetInfo.transformOffset = 0x0; std::vector accelerationBuildOffsets = { &accelerationBuildOffsetInfo }; if (rayTracingFeatures.rayTracingHostAccelerationStructureCommands) { // Implementation supports building acceleration structure building on host VK_CHECK_RESULT(vkBuildAccelerationStructureKHR(device, 1, &accelerationBuildGeometryInfo, accelerationBuildOffsets.data())); } else { // Acceleration structure needs to be build on the device VkCommandBuffer commandBuffer = vulkanDevice->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true); vkCmdBuildAccelerationStructureKHR(commandBuffer, 1, &accelerationBuildGeometryInfo, accelerationBuildOffsets.data()); vulkanDevice->flushCommandBuffer(commandBuffer, queue); } VkAccelerationStructureDeviceAddressInfoKHR accelerationDeviceAddressInfo{}; accelerationDeviceAddressInfo.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_DEVICE_ADDRESS_INFO_KHR; accelerationDeviceAddressInfo.accelerationStructure = topLevelAS.accelerationStructure; topLevelAS.handle = vkGetAccelerationStructureDeviceAddressKHR(device, &accelerationDeviceAddressInfo); deleteScratchBuffer(scratchBuffer); instancesBuffer.destroy(); } /* Create the Shader Binding Table that binds the programs and top-level acceleration structure */ void createShaderBindingTable() { const uint32_t groupCount = static_cast(shaderGroups.size()); const uint32_t sbtSize = rayTracingProperties.shaderGroupBaseAlignment * groupCount; VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_RAY_TRACING_BIT_KHR, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &shaderBindingTable, sbtSize)); shaderBindingTable.map(); // Write the shader handles to the shader binding table std::vector shaderHandleStorage(sbtSize); VK_CHECK_RESULT(vkGetRayTracingShaderGroupHandlesKHR(device, pipeline, 0, groupCount, sbtSize, shaderHandleStorage.data())); auto* data = static_cast(shaderBindingTable.mapped); // This part is required, as the alignment and handle size may differ for (uint32_t i = 0; i < groupCount; i++) { memcpy(data, shaderHandleStorage.data() + i * rayTracingProperties.shaderGroupHandleSize, rayTracingProperties.shaderGroupHandleSize); data += rayTracingProperties.shaderGroupBaseAlignment; } shaderBindingTable.unmap(); } /* Create the descriptor sets used for the ray tracing dispatch */ void createDescriptorSets() { std::vector poolSizes = { { VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, 1 }, { VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 1 }, { VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1 } }; VkDescriptorPoolCreateInfo descriptorPoolCreateInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, 1); VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolCreateInfo, nullptr, &descriptorPool)); VkDescriptorSetAllocateInfo descriptorSetAllocateInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1); VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &descriptorSetAllocateInfo, &descriptorSet)); VkWriteDescriptorSetAccelerationStructureKHR descriptorAccelerationStructureInfo{}; descriptorAccelerationStructureInfo.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET_ACCELERATION_STRUCTURE_KHR; descriptorAccelerationStructureInfo.accelerationStructureCount = 1; descriptorAccelerationStructureInfo.pAccelerationStructures = &topLevelAS.accelerationStructure; VkWriteDescriptorSet accelerationStructureWrite{}; accelerationStructureWrite.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET; // The specialized acceleration structure descriptor has to be chained accelerationStructureWrite.pNext = &descriptorAccelerationStructureInfo; accelerationStructureWrite.dstSet = descriptorSet; accelerationStructureWrite.dstBinding = 0; accelerationStructureWrite.descriptorCount = 1; accelerationStructureWrite.descriptorType = VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR; VkDescriptorImageInfo storageImageDescriptor{}; storageImageDescriptor.imageView = storageImage.view; storageImageDescriptor.imageLayout = VK_IMAGE_LAYOUT_GENERAL; VkWriteDescriptorSet resultImageWrite = vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 1, &storageImageDescriptor); VkWriteDescriptorSet uniformBufferWrite = vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2, &ubo.descriptor); std::vector writeDescriptorSets = { accelerationStructureWrite, resultImageWrite, uniformBufferWrite }; vkUpdateDescriptorSets(device, static_cast(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, VK_NULL_HANDLE); } /* Create our ray tracing pipeline */ void createRayTracingPipeline() { VkDescriptorSetLayoutBinding accelerationStructureLayoutBinding{}; accelerationStructureLayoutBinding.binding = 0; accelerationStructureLayoutBinding.descriptorType = VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR; accelerationStructureLayoutBinding.descriptorCount = 1; accelerationStructureLayoutBinding.stageFlags = VK_SHADER_STAGE_RAYGEN_BIT_KHR; VkDescriptorSetLayoutBinding resultImageLayoutBinding{}; resultImageLayoutBinding.binding = 1; resultImageLayoutBinding.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE; resultImageLayoutBinding.descriptorCount = 1; resultImageLayoutBinding.stageFlags = VK_SHADER_STAGE_RAYGEN_BIT_KHR; VkDescriptorSetLayoutBinding uniformBufferBinding{}; uniformBufferBinding.binding = 2; uniformBufferBinding.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER; uniformBufferBinding.descriptorCount = 1; uniformBufferBinding.stageFlags = VK_SHADER_STAGE_RAYGEN_BIT_KHR; std::vector bindings({ accelerationStructureLayoutBinding, resultImageLayoutBinding, uniformBufferBinding }); VkDescriptorSetLayoutCreateInfo descriptorSetlayoutCI{}; descriptorSetlayoutCI.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO; descriptorSetlayoutCI.bindingCount = static_cast(bindings.size()); descriptorSetlayoutCI.pBindings = bindings.data(); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorSetlayoutCI, nullptr, &descriptorSetLayout)); VkPipelineLayoutCreateInfo pipelineLayoutCI{}; pipelineLayoutCI.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO; pipelineLayoutCI.setLayoutCount = 1; pipelineLayoutCI.pSetLayouts = &descriptorSetLayout; VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCI, nullptr, &pipelineLayout)); const uint32_t shaderIndexRaygen = 0; const uint32_t shaderIndexMiss = 1; const uint32_t shaderIndexClosestHit = 2; std::array shaderStages; shaderStages[shaderIndexRaygen] = loadShader(getShadersPath() + "raytracingbasic/raygen.rgen.spv", VK_SHADER_STAGE_RAYGEN_BIT_KHR); shaderStages[shaderIndexMiss] = loadShader(getShadersPath() + "raytracingbasic/miss.rmiss.spv", VK_SHADER_STAGE_MISS_BIT_KHR); shaderStages[shaderIndexClosestHit] = loadShader(getShadersPath() + "raytracingbasic/closesthit.rchit.spv", VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR); /* Setup ray tracing shader groups */ VkRayTracingShaderGroupCreateInfoKHR raygenGroupCI{}; raygenGroupCI.sType = VK_STRUCTURE_TYPE_RAY_TRACING_SHADER_GROUP_CREATE_INFO_KHR; raygenGroupCI.type = VK_RAY_TRACING_SHADER_GROUP_TYPE_GENERAL_KHR; raygenGroupCI.generalShader = shaderIndexRaygen; raygenGroupCI.closestHitShader = VK_SHADER_UNUSED_KHR; raygenGroupCI.anyHitShader = VK_SHADER_UNUSED_KHR; raygenGroupCI.intersectionShader = VK_SHADER_UNUSED_KHR; shaderGroups.push_back(raygenGroupCI); VkRayTracingShaderGroupCreateInfoKHR missGroupCI{}; missGroupCI.sType = VK_STRUCTURE_TYPE_RAY_TRACING_SHADER_GROUP_CREATE_INFO_KHR; missGroupCI.type = VK_RAY_TRACING_SHADER_GROUP_TYPE_GENERAL_KHR; missGroupCI.generalShader = shaderIndexMiss; missGroupCI.closestHitShader = VK_SHADER_UNUSED_KHR; missGroupCI.anyHitShader = VK_SHADER_UNUSED_KHR; missGroupCI.intersectionShader = VK_SHADER_UNUSED_KHR; shaderGroups.push_back(missGroupCI); VkRayTracingShaderGroupCreateInfoKHR closesHitGroupCI{}; closesHitGroupCI.sType = VK_STRUCTURE_TYPE_RAY_TRACING_SHADER_GROUP_CREATE_INFO_KHR; closesHitGroupCI.type = VK_RAY_TRACING_SHADER_GROUP_TYPE_TRIANGLES_HIT_GROUP_KHR; closesHitGroupCI.generalShader = VK_SHADER_UNUSED_KHR; closesHitGroupCI.closestHitShader = shaderIndexClosestHit; closesHitGroupCI.anyHitShader = VK_SHADER_UNUSED_KHR; closesHitGroupCI.intersectionShader = VK_SHADER_UNUSED_KHR; shaderGroups.push_back(closesHitGroupCI); VkRayTracingPipelineCreateInfoKHR rayTracingPipelineCI{}; rayTracingPipelineCI.sType = VK_STRUCTURE_TYPE_RAY_TRACING_PIPELINE_CREATE_INFO_KHR; rayTracingPipelineCI.stageCount = static_cast(shaderStages.size()); rayTracingPipelineCI.pStages = shaderStages.data(); rayTracingPipelineCI.groupCount = static_cast(shaderGroups.size()); rayTracingPipelineCI.pGroups = shaderGroups.data(); rayTracingPipelineCI.maxRecursionDepth = 1; rayTracingPipelineCI.layout = pipelineLayout; rayTracingPipelineCI.libraries.sType = VK_STRUCTURE_TYPE_PIPELINE_LIBRARY_CREATE_INFO_KHR; VK_CHECK_RESULT(vkCreateRayTracingPipelinesKHR(device, VK_NULL_HANDLE, 1, &rayTracingPipelineCI, nullptr, &pipeline)); } /* Create the uniform buffer used to pass matrices to the ray tracing ray generation shader */ void createUniformBuffer() { VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &ubo, sizeof(uniformData), &uniformData)); VK_CHECK_RESULT(ubo.map()); updateUniformBuffers(); } /* If the window has been resized, we need to recreate the storage image and it's descriptor */ void handleResize() { // Delete allocated resources vkDestroyImageView(device, storageImage.view, nullptr); vkDestroyImage(device, storageImage.image, nullptr); vkFreeMemory(device, storageImage.memory, nullptr); // Recreate image createStorageImage(); // Update descriptor VkDescriptorImageInfo storageImageDescriptor{ VK_NULL_HANDLE, storageImage.view, VK_IMAGE_LAYOUT_GENERAL }; VkWriteDescriptorSet resultImageWrite = vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 1, &storageImageDescriptor); vkUpdateDescriptorSets(device, 1, &resultImageWrite, 0, VK_NULL_HANDLE); } /* Command buffer generation */ void buildCommandBuffers() { if (resized) { handleResize(); } VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo(); VkImageSubresourceRange subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 }; for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) { VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo)); /* Dispatch the ray tracing commands */ vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, pipeline); vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, pipelineLayout, 0, 1, &descriptorSet, 0, 0); /* Setup the buffer regions pointing to the shaders in our shader binding table */ const VkDeviceSize sbtSize = rayTracingProperties.shaderGroupBaseAlignment * (VkDeviceSize)shaderGroups.size(); VkStridedBufferRegionKHR raygenShaderSBTEntry{}; raygenShaderSBTEntry.buffer = shaderBindingTable.buffer; raygenShaderSBTEntry.offset = static_cast(rayTracingProperties.shaderGroupBaseAlignment * INDEX_RAYGEN_GROUP); raygenShaderSBTEntry.stride = rayTracingProperties.shaderGroupBaseAlignment; raygenShaderSBTEntry.size = sbtSize; VkStridedBufferRegionKHR missShaderSBTEntry{}; missShaderSBTEntry.buffer = shaderBindingTable.buffer; missShaderSBTEntry.offset = static_cast(rayTracingProperties.shaderGroupBaseAlignment * INDEX_MISS_GROUP); missShaderSBTEntry.stride = rayTracingProperties.shaderGroupBaseAlignment; missShaderSBTEntry.size = sbtSize; VkStridedBufferRegionKHR hitShaderSBTEntry{}; hitShaderSBTEntry.buffer = shaderBindingTable.buffer; hitShaderSBTEntry.offset = static_cast(rayTracingProperties.shaderGroupBaseAlignment * INDEX_CLOSEST_HIT_GROUP); hitShaderSBTEntry.stride = rayTracingProperties.shaderGroupBaseAlignment; hitShaderSBTEntry.size = sbtSize; VkStridedBufferRegionKHR callableShaderSBTEntry{}; /* Dispatch the ray tracing commands */ vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, pipeline); vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, pipelineLayout, 0, 1, &descriptorSet, 0, 0); vkCmdTraceRaysKHR( drawCmdBuffers[i], &raygenShaderSBTEntry, &missShaderSBTEntry, &hitShaderSBTEntry, &callableShaderSBTEntry, width, height, 1); /* Copy ray tracing output to swap chain image */ // Prepare current swap chain image as transfer destination vks::tools::setImageLayout( drawCmdBuffers[i], swapChain.images[i], VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, subresourceRange); // Prepare ray tracing output image as transfer source vks::tools::setImageLayout( drawCmdBuffers[i], storageImage.image, VK_IMAGE_LAYOUT_GENERAL, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, subresourceRange); VkImageCopy copyRegion{}; copyRegion.srcSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 }; copyRegion.srcOffset = { 0, 0, 0 }; copyRegion.dstSubresource = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1 }; copyRegion.dstOffset = { 0, 0, 0 }; copyRegion.extent = { width, height, 1 }; vkCmdCopyImage(drawCmdBuffers[i], storageImage.image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, swapChain.images[i], VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, ©Region); // Transition swap chain image back for presentation vks::tools::setImageLayout( drawCmdBuffers[i], swapChain.images[i], VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_LAYOUT_PRESENT_SRC_KHR, subresourceRange); // Transition ray tracing output image back to general layout vks::tools::setImageLayout( drawCmdBuffers[i], storageImage.image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, VK_IMAGE_LAYOUT_GENERAL, subresourceRange); VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i])); } } void updateUniformBuffers() { uniformData.projInverse = glm::inverse(camera.matrices.perspective); uniformData.viewInverse = glm::inverse(camera.matrices.view); memcpy(ubo.mapped, &uniformData, sizeof(uniformData)); } void getEnabledFeatures() { // Enable features required for ray tracing using feature chaining via pNext enabledBufferDeviceAddresFeatures.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES; enabledBufferDeviceAddresFeatures.bufferDeviceAddress = VK_TRUE; enabledRayTracingFeatures.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_TRACING_FEATURES_KHR; enabledRayTracingFeatures.rayTracing = VK_TRUE; enabledRayTracingFeatures.pNext = &enabledBufferDeviceAddresFeatures; deviceCreatepNextChain = &enabledRayTracingFeatures; } void prepare() { VulkanExampleBase::prepare(); // Query the ray tracing properties of the current implementation, we will need them later on rayTracingProperties.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_TRACING_PROPERTIES_KHR; VkPhysicalDeviceProperties2 deviceProps2{}; deviceProps2.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2; deviceProps2.pNext = &rayTracingProperties; vkGetPhysicalDeviceProperties2(physicalDevice, &deviceProps2); // Query the ray tracing properties of the current implementation, we will need them later on rayTracingFeatures.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_TRACING_FEATURES_KHR; VkPhysicalDeviceFeatures2 deviceFeatures2{}; deviceFeatures2.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2; deviceFeatures2.pNext = &rayTracingFeatures; vkGetPhysicalDeviceFeatures2(physicalDevice, &deviceFeatures2); // Get the function pointers required for ray tracing vkGetBufferDeviceAddressKHR = reinterpret_cast(vkGetDeviceProcAddr(device, "vkGetBufferDeviceAddressKHR")); vkBindAccelerationStructureMemoryKHR = reinterpret_cast(vkGetDeviceProcAddr(device, "vkBindAccelerationStructureMemoryKHR")); vkCreateAccelerationStructureKHR = reinterpret_cast(vkGetDeviceProcAddr(device, "vkCreateAccelerationStructureKHR")); vkDestroyAccelerationStructureKHR = reinterpret_cast(vkGetDeviceProcAddr(device, "vkDestroyAccelerationStructureKHR")); vkGetAccelerationStructureMemoryRequirementsKHR = reinterpret_cast(vkGetDeviceProcAddr(device, "vkGetAccelerationStructureMemoryRequirementsKHR")); vkCmdBuildAccelerationStructureKHR = reinterpret_cast(vkGetDeviceProcAddr(device, "vkCmdBuildAccelerationStructureKHR")); vkBuildAccelerationStructureKHR = reinterpret_cast(vkGetDeviceProcAddr(device, "vkBuildAccelerationStructureKHR")); vkGetAccelerationStructureDeviceAddressKHR = reinterpret_cast(vkGetDeviceProcAddr(device, "vkGetAccelerationStructureDeviceAddressKHR")); vkCmdTraceRaysKHR = reinterpret_cast(vkGetDeviceProcAddr(device, "vkCmdTraceRaysKHR")); vkGetRayTracingShaderGroupHandlesKHR = reinterpret_cast(vkGetDeviceProcAddr(device, "vkGetRayTracingShaderGroupHandlesKHR")); vkCreateRayTracingPipelinesKHR = reinterpret_cast(vkGetDeviceProcAddr(device, "vkCreateRayTracingPipelinesKHR")); // Create the acceleration structures used to render the ray traced scene createBottomLevelAccelerationStructure(); createTopLevelAccelerationStructure(); createStorageImage(); createUniformBuffer(); createRayTracingPipeline(); createShaderBindingTable(); createDescriptorSets(); buildCommandBuffers(); prepared = true; } void draw() { VulkanExampleBase::prepareFrame(); submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer]; VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE)); VulkanExampleBase::submitFrame(); } virtual void render() { if (!prepared) return; draw(); if (camera.updated) updateUniformBuffers(); } }; VULKAN_EXAMPLE_MAIN()