/* * Vulkan Example - Offscreen rendering using a separate framebuffer * * Copyright (C) 2015 by Sascha Willems - www.saschawillems.de * * This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT) */ #include #include #include #include #include #define GLM_FORCE_RADIANS #include #include #include #include "vulkanexamplebase.h" #include "vulkanMeshLoader.hpp" #define VERTEX_BUFFER_BIND_ID 0 #define USE_GLSL #define ENABLE_VALIDATION true // Texture properties #define TEX_DIM 256 #define TEX_FORMAT VK_FORMAT_D16_UNORM #define TEX_FILTER VK_FILTER_LINEAR // Offscreen frame buffer properties #define FB_DIM TEX_DIM #define FB_COLOR_FORMAT VK_FORMAT_R8G8B8A8_UNORM #define FB_DEPTH_FORMAT TEX_FORMAT class VulkanExample : public VulkanExampleBase { public: bool paused = false; bool displayShadowMap = true; float timer = 0; float zNear = 0.1f; float zFar = 48.0f; float depthBias = 0.0015f; VulkanMeshLoader *demoMesh; struct { VkBuffer buf; VkDeviceMemory mem; VkPipelineVertexInputStateCreateInfo inputState; std::vector bindingDescriptions; std::vector attributeDescriptions; } vertices; struct { int count; VkBuffer buf; VkDeviceMemory mem; } indices; vkTools::UniformData uniformDataVS, uniformDataOffscreenVS; struct { vkTools::UniformData scene; } uniformData; struct { glm::mat4 projection; glm::mat4 model; } uboVSquad; struct { glm::mat4 projection; glm::mat4 view; glm::mat4 model; glm::mat4 depthBiasMVP; glm::vec4 lightPos = glm::vec4(0.0f, -10.0f, 0.0f, 1.0f); } uboVSscene; struct { glm::mat4 depthMVP; } uboOffscreenVS; struct { VkPipeline quad; VkPipeline offscreen; VkPipeline scene; } pipelines; struct { VkPipelineLayout quad; VkPipelineLayout offscreen; } pipelineLayouts; struct { VkDescriptorSet offscreen; VkDescriptorSet scene; } descriptorSets; VkDescriptorSet descriptorSet; VkDescriptorSetLayout descriptorSetLayout; // Texture target for frame buffer blit struct Texture { VkImageLayout imageLayout; VkDeviceMemory deviceMemory; VkImage image; VkImageView view; VkSampler sampler, samplerCompare; int32_t width, height; } offScreenTex; // Framebuffer for offscreen rendering struct FrameBufferAttachment { VkImage image; VkDeviceMemory mem; VkImageView view; }; struct FrameBuffer { int32_t width, height; VkFramebuffer frameBuffer; FrameBufferAttachment color, depth; } offScreenFrameBuf; VkCommandBuffer offScreenCmdBuffer = VK_NULL_HANDLE; VkCommandBuffer copyCmdBuffer = VK_NULL_HANDLE; VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION) { zoom = -20.0f; rotation = { -22.5f, -218.0f, 0.0f }; title = "Vulkan Example - Shadow mapping"; if (ENABLE_VALIDATION) { setupConsole("VulkanExample"); } } ~VulkanExample() { // Clean up used Vulkan resources // Note : Inherited destructor cleans up resources stored in base class // Texture target vkDestroyImageView(device, offScreenTex.view, nullptr); vkDestroyImage(device, offScreenTex.image, nullptr); vkDestroySampler(device, offScreenTex.sampler, nullptr); vkFreeMemory(device, offScreenTex.deviceMemory, nullptr); // Frame buffer // Color attachment vkDestroyImageView(device, offScreenFrameBuf.color.view, nullptr); vkDestroyImage(device, offScreenFrameBuf.color.image, nullptr); vkFreeMemory(device, offScreenFrameBuf.color.mem, nullptr); // Depth attachment vkDestroyImageView(device, offScreenFrameBuf.depth.view, nullptr); vkDestroyImage(device, offScreenFrameBuf.depth.image, nullptr); vkFreeMemory(device, offScreenFrameBuf.depth.mem, nullptr); vkDestroyFramebuffer(device, offScreenFrameBuf.frameBuffer, nullptr); vkDestroyPipeline(device, pipelines.quad, nullptr); vkDestroyPipeline(device, pipelines.offscreen, nullptr); vkDestroyPipelineLayout(device, pipelineLayouts.quad, nullptr); vkDestroyPipelineLayout(device, pipelineLayouts.offscreen, nullptr); vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr); // Quad vkDestroyBuffer(device, vertices.buf, nullptr); vkFreeMemory(device, vertices.mem, nullptr); vkDestroyBuffer(device, indices.buf, nullptr); vkFreeMemory(device, indices.mem, nullptr); // Mesh VulkanMeshLoader::freeVulkanResources(device, demoMesh); // Uniform buffers vkDestroyBuffer(device, uniformDataVS.buffer, nullptr); vkFreeMemory(device, uniformDataVS.memory, nullptr); vkDestroyBuffer(device, uniformDataOffscreenVS.buffer, nullptr); vkFreeMemory(device, uniformDataOffscreenVS.memory, nullptr); vkFreeCommandBuffers(device, cmdPool, 1, &offScreenCmdBuffer); vkFreeCommandBuffers(device, cmdPool, 1, ©CmdBuffer); delete(demoMesh); } // Preapre an empty texture as the blit target from // the offscreen framebuffer void prepareTextureTarget(int32_t width, int32_t height, VkFormat format) { createSetupCommandBuffer(); VkResult err; // Get device properites for the requested texture format VkFormatProperties formatProperties; vkGetPhysicalDeviceFormatProperties(physicalDevice, format, &formatProperties); // Check if format is supported for optimal tiling assert(formatProperties.optimalTilingFeatures & VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT); // Prepare blit target texture offScreenTex.width = width; offScreenTex.height = height; VkImageCreateInfo imageCreateInfo = vkTools::initializers::imageCreateInfo(); imageCreateInfo.imageType = VK_IMAGE_TYPE_2D; imageCreateInfo.format = format; imageCreateInfo.extent = { width, height, 1 }; imageCreateInfo.mipLevels = 1; imageCreateInfo.arrayLayers = 1; imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT; imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL; imageCreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT; imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL; imageCreateInfo.flags = 0; imageCreateInfo.pQueueFamilyIndices = 0; imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; VkMemoryAllocateInfo memAllocInfo = vkTools::initializers::memoryAllocateInfo(); VkMemoryRequirements memReqs; err = vkCreateImage(device, &imageCreateInfo, nullptr, &offScreenTex.image); assert(!err); vkGetImageMemoryRequirements(device, offScreenTex.image, &memReqs); memAllocInfo.allocationSize = memReqs.size; assert(getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &memAllocInfo.memoryTypeIndex)); err = vkAllocateMemory(device, &memAllocInfo, nullptr, &offScreenTex.deviceMemory); assert(!err); err = vkBindImageMemory(device, offScreenTex.image, offScreenTex.deviceMemory, 0); assert(!err); offScreenTex.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; vkTools::setImageLayout( setupCmdBuffer, offScreenTex.image, VK_IMAGE_ASPECT_DEPTH_BIT, VK_IMAGE_LAYOUT_UNDEFINED, offScreenTex.imageLayout); // Create sampler VkSamplerCreateInfo sampler = vkTools::initializers::samplerCreateInfo(); sampler.magFilter = TEX_FILTER; sampler.minFilter = TEX_FILTER; sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_BASE; sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE; sampler.addressModeV = sampler.addressModeU; sampler.addressModeW = sampler.addressModeU; sampler.mipLodBias = 0.0f; sampler.maxAnisotropy = 0; sampler.minLod = 0.0f; sampler.maxLod = 0.0f; sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE; err = vkCreateSampler(device, &sampler, nullptr, &offScreenTex.sampler); assert(!err); sampler.compareOp = VK_COMPARE_OP_LESS_OR_EQUAL; sampler.compareEnable = VK_TRUE; err = vkCreateSampler(device, &sampler, nullptr, &offScreenTex.samplerCompare); assert(!err); vkTools::setImageLayout( setupCmdBuffer, offScreenTex.image, VK_IMAGE_ASPECT_DEPTH_BIT, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL); flushSetupCommandBuffer(); // Create image view VkImageViewCreateInfo view = {}; view.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO; view.pNext = NULL; view.viewType = VK_IMAGE_VIEW_TYPE_2D; view.format = format; view.components = { VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A }; view.subresourceRange = { VK_IMAGE_ASPECT_DEPTH_BIT, 0, 1, 0, 1 }; view.image = offScreenTex.image; err = vkCreateImageView(device, &view, nullptr, &offScreenTex.view); assert(!err); } // Prepare a new framebuffer for offscreen rendering // The contents of this framebuffer are then // blitted to our render target void prepareOffscreenFramebuffer() { offScreenFrameBuf.width = FB_DIM; offScreenFrameBuf.height = FB_DIM; VkFormat fbColorFormat = FB_COLOR_FORMAT; VkFormat fbDepthFormat = FB_DEPTH_FORMAT; VkResult err; // Get device properites for the requested texture format VkFormatProperties formatProperties; vkGetPhysicalDeviceFormatProperties(physicalDevice, fbDepthFormat, &formatProperties); // Check if format is supported for optimal tiling assert(formatProperties.optimalTilingFeatures & VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT); createSetupCommandBuffer(); // Color attachment VkImageCreateInfo image = vkTools::initializers::imageCreateInfo(); image.imageType = VK_IMAGE_TYPE_2D; image.format = fbColorFormat; image.extent.width = offScreenFrameBuf.width; image.extent.height = offScreenFrameBuf.height; image.extent.depth = 1; image.mipLevels = 1; image.arrayLayers = 1; image.samples = VK_SAMPLE_COUNT_1_BIT; image.tiling = VK_IMAGE_TILING_OPTIMAL; // Image of the framebuffer is blit source image.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT; image.flags = 0; VkMemoryAllocateInfo memAlloc = vkTools::initializers::memoryAllocateInfo(); VkImageViewCreateInfo colorImageView = vkTools::initializers::imageViewCreateInfo(); colorImageView.viewType = VK_IMAGE_VIEW_TYPE_2D; colorImageView.format = fbColorFormat; colorImageView.flags = 0; colorImageView.subresourceRange = {}; colorImageView.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; colorImageView.subresourceRange.baseMipLevel = 0; colorImageView.subresourceRange.levelCount = 1; colorImageView.subresourceRange.baseArrayLayer = 0; colorImageView.subresourceRange.layerCount = 1; VkMemoryRequirements memReqs; err = vkCreateImage(device, &image, nullptr, &offScreenFrameBuf.color.image); assert(!err); vkGetImageMemoryRequirements(device, offScreenFrameBuf.color.image, &memReqs); memAlloc.allocationSize = memReqs.size; assert(getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &memAlloc.memoryTypeIndex)); err = vkAllocateMemory(device, &memAlloc, nullptr, &offScreenFrameBuf.color.mem); assert(!err); err = vkBindImageMemory(device, offScreenFrameBuf.color.image, offScreenFrameBuf.color.mem, 0); assert(!err); vkTools::setImageLayout( setupCmdBuffer, offScreenFrameBuf.color.image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL); colorImageView.image = offScreenFrameBuf.color.image; err = vkCreateImageView(device, &colorImageView, nullptr, &offScreenFrameBuf.color.view); assert(!err); // Depth stencil attachment image.format = fbDepthFormat; image.usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT; image.initialLayout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL; VkImageViewCreateInfo depthStencilView = vkTools::initializers::imageViewCreateInfo(); depthStencilView.viewType = VK_IMAGE_VIEW_TYPE_2D; depthStencilView.format = fbDepthFormat; depthStencilView.flags = 0; depthStencilView.subresourceRange = {}; depthStencilView.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT; depthStencilView.subresourceRange.baseMipLevel = 0; depthStencilView.subresourceRange.levelCount = 1; depthStencilView.subresourceRange.baseArrayLayer = 0; depthStencilView.subresourceRange.layerCount = 1; err = vkCreateImage(device, &image, nullptr, &offScreenFrameBuf.depth.image); assert(!err); vkGetImageMemoryRequirements(device, offScreenFrameBuf.depth.image, &memReqs); memAlloc.allocationSize = memReqs.size; assert(getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &memAlloc.memoryTypeIndex)); err = vkAllocateMemory(device, &memAlloc, nullptr, &offScreenFrameBuf.depth.mem); assert(!err); err = vkBindImageMemory(device, offScreenFrameBuf.depth.image, offScreenFrameBuf.depth.mem, 0); assert(!err); vkTools::setImageLayout( setupCmdBuffer, offScreenFrameBuf.depth.image, VK_IMAGE_ASPECT_DEPTH_BIT, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL); flushSetupCommandBuffer(); depthStencilView.image = offScreenFrameBuf.depth.image; err = vkCreateImageView(device, &depthStencilView, nullptr, &offScreenFrameBuf.depth.view); assert(!err); VkImageView attachments[2]; attachments[0] = offScreenFrameBuf.color.view; attachments[1] = offScreenFrameBuf.depth.view; VkFramebufferCreateInfo fbufCreateInfo = {}; fbufCreateInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO; fbufCreateInfo.pNext = NULL; fbufCreateInfo.renderPass = renderPass; fbufCreateInfo.attachmentCount = 2; fbufCreateInfo.pAttachments = attachments; fbufCreateInfo.width = offScreenFrameBuf.width; fbufCreateInfo.height = offScreenFrameBuf.height; fbufCreateInfo.layers = 1; err = vkCreateFramebuffer(device, &fbufCreateInfo, nullptr, &offScreenFrameBuf.frameBuffer); assert(!err); } // The command buffer to copy for rendering // the offscreen scene and blitting it into // the texture target is only build once // and gets resubmitted void buildOffscreenCommandBuffer() { VkResult err; // Create separate command buffer for offscreen // rendering if (offScreenCmdBuffer == VK_NULL_HANDLE) { VkCommandBufferAllocateInfo cmd = vkTools::initializers::commandBufferAllocateInfo( cmdPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY, 1); VkResult vkRes = vkAllocateCommandBuffers(device, &cmd, &offScreenCmdBuffer); assert(!vkRes); vkRes = vkAllocateCommandBuffers(device, &cmd, ©CmdBuffer); assert(!vkRes); } VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo(); VkClearValue clearValues[2]; clearValues[0].color = { { 0.0f, 0.0f, 0.0f, 1.0f } }; clearValues[1].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo = {}; renderPassBeginInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO; renderPassBeginInfo.pNext = NULL; renderPassBeginInfo.renderPass = renderPass; renderPassBeginInfo.framebuffer = offScreenFrameBuf.frameBuffer; renderPassBeginInfo.renderArea.offset.x = 0; renderPassBeginInfo.renderArea.offset.y = 0; renderPassBeginInfo.renderArea.extent.width = offScreenFrameBuf.width; renderPassBeginInfo.renderArea.extent.height = offScreenFrameBuf.height; renderPassBeginInfo.clearValueCount = 2; renderPassBeginInfo.pClearValues = clearValues; err = vkBeginCommandBuffer(offScreenCmdBuffer, &cmdBufInfo); assert(!err); VkViewport viewport = vkTools::initializers::viewport( (float)offScreenFrameBuf.width, (float)offScreenFrameBuf.height, 0.0f, 1.0f); vkCmdSetViewport(offScreenCmdBuffer, 1, &viewport); VkRect2D scissor = vkTools::initializers::rect2D( offScreenFrameBuf.width, offScreenFrameBuf.height, 0, 0); vkCmdSetScissor(offScreenCmdBuffer, 1, &scissor); // Depth bias (aka "Polygon offset") - I just hope this works vkCmdSetDepthBias( offScreenCmdBuffer, depthBias, 0.5f, 1.0f/depthBias); vkCmdBeginRenderPass(offScreenCmdBuffer, &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); vkCmdBindDescriptorSets(offScreenCmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.offscreen, 0, 1, &descriptorSets.offscreen, 0, NULL); VkDeviceSize offsets[1] = { 0 }; vkCmdBindVertexBuffers(offScreenCmdBuffer, VERTEX_BUFFER_BIND_ID, 1, &demoMesh->vertexBuffer.buf, offsets); vkCmdBindIndexBuffer(offScreenCmdBuffer, demoMesh->indexBuffer.buf, 0, VK_INDEX_TYPE_UINT32); vkCmdBindPipeline(offScreenCmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.offscreen); vkCmdDrawIndexed(offScreenCmdBuffer, demoMesh->indexBuffer.count, 1, 0, 0, 0); vkCmdEndRenderPass(offScreenCmdBuffer); err = vkEndCommandBuffer(offScreenCmdBuffer); assert(!err); err = vkBeginCommandBuffer(copyCmdBuffer, &cmdBufInfo); assert(!err); updateTexture(); err = vkEndCommandBuffer(copyCmdBuffer); assert(!err); } void buildCommandBuffers() { VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo(); VkClearValue clearValues[2]; clearValues[0].color = { { 0.0f, 0.0f, 0.2f, 0.0f } }; clearValues[1].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo(); renderPassBeginInfo.renderPass = renderPass; renderPassBeginInfo.renderArea.offset.x = 0; renderPassBeginInfo.renderArea.offset.y = 0; renderPassBeginInfo.renderArea.extent.width = width; renderPassBeginInfo.renderArea.extent.height = height; renderPassBeginInfo.clearValueCount = 2; renderPassBeginInfo.pClearValues = clearValues; VkResult err; for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) { // Set target frame buffer renderPassBeginInfo.framebuffer = frameBuffers[i]; err = vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo); assert(!err); vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); VkViewport viewport = vkTools::initializers::viewport( (float)width, (float)height, 0.0f, 1.0f); vkCmdSetViewport(drawCmdBuffers[i], 1, &viewport); VkRect2D scissor = vkTools::initializers::rect2D( width, height, 0, 0); vkCmdSetScissor(drawCmdBuffers[i], 1, &scissor); VkDeviceSize offsets[1] = { 0 }; vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.quad, 0, 1, &descriptorSet, 0, NULL); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.quad); // Visualize shadow map if (displayShadowMap) { vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &vertices.buf, offsets); vkCmdBindIndexBuffer(drawCmdBuffers[i], indices.buf, 0, VK_INDEX_TYPE_UINT32); vkCmdDrawIndexed(drawCmdBuffers[i], indices.count, 1, 0, 0, 0); } // 3D scene vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.quad, 0, 1, &descriptorSets.scene, 0, NULL); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.scene); vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &demoMesh->vertexBuffer.buf, offsets); vkCmdBindIndexBuffer(drawCmdBuffers[i], demoMesh->indexBuffer.buf, 0, VK_INDEX_TYPE_UINT32); vkCmdDrawIndexed(drawCmdBuffers[i], demoMesh->indexBuffer.count, 1, 0, 0, 0); vkCmdEndRenderPass(drawCmdBuffers[i]); err = vkEndCommandBuffer(drawCmdBuffers[i]); assert(!err); } } void draw() { VkResult err; VkSemaphore presentCompleteSemaphore; VkSemaphoreCreateInfo presentCompleteSemaphoreCreateInfo = vkTools::initializers::semaphoreCreateInfo(VK_FENCE_CREATE_SIGNALED_BIT); err = vkCreateSemaphore(device, &presentCompleteSemaphoreCreateInfo, nullptr, &presentCompleteSemaphore); assert(!err); // Get next image in the swap chain (back/front buffer) err = swapChain.acquireNextImage(presentCompleteSemaphore, ¤tBuffer); assert(!err); // Gather command buffers to be sumitted to the queue std::vector submitCmdBuffers = { drawCmdBuffers[currentBuffer], offScreenCmdBuffer, copyCmdBuffer }; VkSubmitInfo submitInfo = vkTools::initializers::submitInfo(); submitInfo.waitSemaphoreCount = 1; submitInfo.pWaitSemaphores = &presentCompleteSemaphore; submitInfo.commandBufferCount = submitCmdBuffers.size(); submitInfo.pCommandBuffers = submitCmdBuffers.data(); err = vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE); assert(!err); err = swapChain.queuePresent(queue, currentBuffer); assert(!err); vkDestroySemaphore(device, presentCompleteSemaphore, nullptr); err = vkQueueWaitIdle(queue); assert(err == VK_SUCCESS); } void prepareVertices() { struct Vertex { float pos[3]; float uv[2]; float col[3]; float normal[3]; }; // Setup vertices for a single uv-mapped quad #define dim 1.0f #define quadcol { 1.0f, 1.0f, 1.0f } #define quadnormal { 0.0f, 0.0f, 1.0f } std::vector vertexBuffer = { { { dim, 0.0f, 0.0f },{ 1.0f, 0.0f }, quadcol, quadnormal }, { { 0.0f, 0.0f, 0.0f },{ 0.0f, 0.0f }, quadcol, quadnormal }, { { 0.0f, dim, 0.0f },{ 0.0f, 1.0f }, quadcol, quadnormal }, { { dim, dim, 0.0f },{ 1.0f, 1.0f }, quadcol, quadnormal } }; #undef dim #undef quadcol #undef quadnormal int vertexBufferSize = vertexBuffer.size() * sizeof(Vertex); // Setup indices std::vector indexBuffer = { 0,1,2, 2,3,0 }; int indexBufferSize = indexBuffer.size() * sizeof(uint32_t); VkMemoryAllocateInfo memAlloc = vkTools::initializers::memoryAllocateInfo(); VkMemoryRequirements memReqs; VkResult err; void *data; // Generate vertex buffer VkBufferCreateInfo vBufferInfo = vkTools::initializers::bufferCreateInfo(VK_BUFFER_USAGE_VERTEX_BUFFER_BIT, vertexBufferSize); err = vkCreateBuffer(device, &vBufferInfo, nullptr, &vertices.buf); assert(!err); vkGetBufferMemoryRequirements(device, vertices.buf, &memReqs); memAlloc.allocationSize = memReqs.size; assert(getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &memAlloc.memoryTypeIndex)); err = vkAllocateMemory(device, &memAlloc, nullptr, &vertices.mem); assert(!err); err = vkMapMemory(device, vertices.mem, 0, vertexBufferSize, 0, &data); assert(!err); memcpy(data, vertexBuffer.data(), vertexBufferSize); vkUnmapMemory(device, vertices.mem); err = vkBindBufferMemory(device, vertices.buf, vertices.mem, 0); assert(!err); // Generate index buffer VkBufferCreateInfo iBufferInfo = vkTools::initializers::bufferCreateInfo(VK_BUFFER_USAGE_INDEX_BUFFER_BIT, indexBufferSize); err = vkCreateBuffer(device, &iBufferInfo, nullptr, &indices.buf); assert(!err); vkGetBufferMemoryRequirements(device, indices.buf, &memReqs); memAlloc.allocationSize = memReqs.size; assert(getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &memAlloc.memoryTypeIndex)); err = vkAllocateMemory(device, &memAlloc, nullptr, &indices.mem); assert(!err); err = vkMapMemory(device, indices.mem, 0, indexBufferSize, 0, &data); assert(!err); memcpy(data, indexBuffer.data(), indexBufferSize); vkUnmapMemory(device, indices.mem); err = vkBindBufferMemory(device, indices.buf, indices.mem, 0); assert(!err); indices.count = indexBuffer.size(); // Example mesh demoMesh = new VulkanMeshLoader(); demoMesh->LoadMesh("./../data/models/shadowscene_omni.X"); float scale = 0.25f; vertexBuffer.clear(); for (int m = 0; m < demoMesh->m_Entries.size(); m++) { for (int i = 0; i < demoMesh->m_Entries[m].Vertices.size(); i++) { glm::vec3 pos = demoMesh->m_Entries[m].Vertices[i].m_pos * scale; glm::vec3 normal = demoMesh->m_Entries[m].Vertices[i].m_normal; glm::vec2 uv = demoMesh->m_Entries[m].Vertices[i].m_tex; glm::vec3 col = demoMesh->m_Entries[m].Vertices[i].m_color; Vertex vert = { { pos.x, pos.y, pos.z }, { uv.s, uv.t }, { col.r, col.g, col.b }, { normal.x, -normal.y, normal.z } }; vertexBuffer.push_back(vert); } } vertexBufferSize = vertexBuffer.size() * sizeof(Vertex); indexBuffer.clear(); for (int m = 0; m < demoMesh->m_Entries.size(); m++) { int indexBase = indexBuffer.size(); for (int i = 0; i < demoMesh->m_Entries[m].Indices.size(); i++) { indexBuffer.push_back(demoMesh->m_Entries[m].Indices[i] + indexBase); } } indexBufferSize = indexBuffer.size() * sizeof(UINT32); // Generate vertex buffer vBufferInfo = vkTools::initializers::bufferCreateInfo(VK_BUFFER_USAGE_VERTEX_BUFFER_BIT, vertexBufferSize); err = vkCreateBuffer(device, &vBufferInfo, nullptr, &demoMesh->vertexBuffer.buf); assert(!err); vkGetBufferMemoryRequirements(device, demoMesh->vertexBuffer.buf, &memReqs); memAlloc.allocationSize = memReqs.size; assert(getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &memAlloc.memoryTypeIndex)); err = vkAllocateMemory(device, &memAlloc, nullptr, &demoMesh->vertexBuffer.mem); assert(!err); err = vkMapMemory(device, demoMesh->vertexBuffer.mem, 0, vertexBufferSize, 0, &data); assert(!err); memcpy(data, vertexBuffer.data(), vertexBufferSize); vkUnmapMemory(device, demoMesh->vertexBuffer.mem); err = vkBindBufferMemory(device, demoMesh->vertexBuffer.buf, demoMesh->vertexBuffer.mem, 0); assert(!err); // Generate index buffer iBufferInfo = vkTools::initializers::bufferCreateInfo(VK_BUFFER_USAGE_INDEX_BUFFER_BIT, indexBufferSize); err = vkCreateBuffer(device, &iBufferInfo, nullptr, &demoMesh->indexBuffer.buf); assert(!err); vkGetBufferMemoryRequirements(device, demoMesh->indexBuffer.buf, &memReqs); memAlloc.allocationSize = memReqs.size; assert(getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &memAlloc.memoryTypeIndex)); err = vkAllocateMemory(device, &memAlloc, nullptr, &demoMesh->indexBuffer.mem); assert(!err); err = vkMapMemory(device, demoMesh->indexBuffer.mem, 0, indexBufferSize, 0, &data); assert(!err); memcpy(data, indexBuffer.data(), indexBufferSize); vkUnmapMemory(device, demoMesh->indexBuffer.mem); err = vkBindBufferMemory(device, demoMesh->indexBuffer.buf, demoMesh->indexBuffer.mem, 0); assert(!err); demoMesh->indexBuffer.count = indexBuffer.size(); // Binding description vertices.bindingDescriptions.resize(1); vertices.bindingDescriptions[0] = vkTools::initializers::vertexInputBindingDescription( VERTEX_BUFFER_BIND_ID, sizeof(Vertex), VK_VERTEX_INPUT_RATE_VERTEX); // Attribute descriptions vertices.attributeDescriptions.resize(4); // Location 0 : Position vertices.attributeDescriptions[0] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 0, VK_FORMAT_R32G32B32_SFLOAT, 0); // Location 1 : Texture coordinates vertices.attributeDescriptions[1] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 1, VK_FORMAT_R32G32_SFLOAT, sizeof(float) * 3); // Location 2 : Color vertices.attributeDescriptions[2] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 2, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 5); // Location 3 : Normal vertices.attributeDescriptions[3] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 3, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 8); vertices.inputState = vkTools::initializers::pipelineVertexInputStateCreateInfo(); vertices.inputState.vertexBindingDescriptionCount = vertices.bindingDescriptions.size(); vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data(); vertices.inputState.vertexAttributeDescriptionCount = vertices.attributeDescriptions.size(); vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data(); } void setupDescriptorPool() { // Example uses three ubos and two image samplers std::vector poolSizes = { vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 3), vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2) }; VkDescriptorPoolCreateInfo descriptorPoolInfo = vkTools::initializers::descriptorPoolCreateInfo( poolSizes.size(), poolSizes.data(), 3); VkResult vkRes = vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool); assert(!vkRes); } void setupDescriptorSetLayout() { // Textured quad pipeline layout std::vector setLayoutBindings = { // Binding 0 : Vertex shader uniform buffer vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0), // Binding 1 : Fragment shader image sampler vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1) }; VkDescriptorSetLayoutCreateInfo descriptorLayout = vkTools::initializers::descriptorSetLayoutCreateInfo( setLayoutBindings.data(), setLayoutBindings.size()); VkResult err = vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout); assert(!err); VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = vkTools::initializers::pipelineLayoutCreateInfo( &descriptorSetLayout, 1); err = vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayouts.quad); assert(!err); // Offscreen pipeline layout // TODO : Actually the same as the normal one... err = vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayouts.offscreen); assert(!err); } void setupDescriptorSets() { // Textured quad descriptor set VkDescriptorSetAllocateInfo allocInfo = vkTools::initializers::descriptorSetAllocateInfo( descriptorPool, &descriptorSetLayout, 1); VkResult vkRes = vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet); assert(!vkRes); // Image descriptor for the shadow map texture VkDescriptorImageInfo texDescriptor = vkTools::initializers::descriptorImageInfo( offScreenTex.sampler, offScreenTex.view, VK_IMAGE_LAYOUT_GENERAL); std::vector writeDescriptorSets = { // Binding 0 : Vertex shader uniform buffer vkTools::initializers::writeDescriptorSet( descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformDataVS.descriptor), // Binding 1 : Fragment shader texture sampler vkTools::initializers::writeDescriptorSet( descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &texDescriptor) }; vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL); // Offscreen vkRes = vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.offscreen); assert(!vkRes); std::vector offScreenWriteDescriptorSets = { // Binding 0 : Vertex shader uniform buffer vkTools::initializers::writeDescriptorSet( descriptorSets.offscreen, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformDataOffscreenVS.descriptor), }; vkUpdateDescriptorSets(device, offScreenWriteDescriptorSets.size(), offScreenWriteDescriptorSets.data(), 0, NULL); // 3D scene vkRes = vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.scene); assert(!vkRes); // Image descriptor for the shadow map texture texDescriptor.sampler = offScreenTex.samplerCompare; std::vector sceneDescriptorSets = { // Binding 0 : Vertex shader uniform buffer vkTools::initializers::writeDescriptorSet( descriptorSets.scene, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformData.scene.descriptor), // Binding 1 : Fragment shader shadow sampler vkTools::initializers::writeDescriptorSet( descriptorSets.scene, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &texDescriptor) }; vkUpdateDescriptorSets(device, sceneDescriptorSets.size(), sceneDescriptorSets.data(), 0, NULL); } void preparePipelines() { VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vkTools::initializers::pipelineInputAssemblyStateCreateInfo( VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE); VkPipelineRasterizationStateCreateInfo rasterizationState = vkTools::initializers::pipelineRasterizationStateCreateInfo( VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0); VkPipelineColorBlendAttachmentState blendAttachmentState = vkTools::initializers::pipelineColorBlendAttachmentState( 0xf, VK_FALSE); VkPipelineColorBlendStateCreateInfo colorBlendState = vkTools::initializers::pipelineColorBlendStateCreateInfo( 1, &blendAttachmentState); VkPipelineDepthStencilStateCreateInfo depthStencilState = vkTools::initializers::pipelineDepthStencilStateCreateInfo( VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL); VkPipelineViewportStateCreateInfo viewportState = vkTools::initializers::pipelineViewportStateCreateInfo(1, 1, 0); VkPipelineMultisampleStateCreateInfo multisampleState = vkTools::initializers::pipelineMultisampleStateCreateInfo( VK_SAMPLE_COUNT_1_BIT, 0); std::vector dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR }; VkPipelineDynamicStateCreateInfo dynamicState = vkTools::initializers::pipelineDynamicStateCreateInfo( dynamicStateEnables.data(), dynamicStateEnables.size(), 0); // Solid rendering pipeline // Load shaders std::array shaderStages; #ifdef USE_GLSL shaderStages[0] = loadShaderGLSL("./../data/shaders/shadowmap/quad.vert", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShaderGLSL("./../data/shaders/shadowmap/quad.frag", VK_SHADER_STAGE_FRAGMENT_BIT); #else shaderStages[0] = loadShader("./../data/shaders/shadowmap/quad.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader("./../data/shaders/shadowmap/quad.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); #endif VkGraphicsPipelineCreateInfo pipelineCreateInfo = vkTools::initializers::pipelineCreateInfo( pipelineLayouts.quad, renderPass, 0); pipelineCreateInfo.pVertexInputState = &vertices.inputState; pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState; pipelineCreateInfo.pRasterizationState = &rasterizationState; pipelineCreateInfo.pColorBlendState = &colorBlendState; pipelineCreateInfo.pMultisampleState = &multisampleState; pipelineCreateInfo.pViewportState = &viewportState; pipelineCreateInfo.pDepthStencilState = &depthStencilState; pipelineCreateInfo.pDynamicState = &dynamicState; pipelineCreateInfo.stageCount = shaderStages.size(); pipelineCreateInfo.pStages = shaderStages.data(); VkResult err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.quad); assert(!err); // 3D scene #ifdef USE_GLSL shaderStages[0] = loadShaderGLSL("./../data/shaders/shadowmap/scene.vert", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShaderGLSL("./../data/shaders/shadowmap/scene.frag", VK_SHADER_STAGE_FRAGMENT_BIT); #else shaderStages[0] = loadShader("./../data/shaders/shadowmap/scene.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader("./../data/shaders/shadowmap/scene.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); #endif err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.scene); assert(!err); // Offscreen pipeline #ifdef USE_GLSL shaderStages[0] = loadShaderGLSL("./../data/shaders/shadowmap/offscreen.vert", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShaderGLSL("./../data/shaders/shadowmap/offscreen.frag", VK_SHADER_STAGE_FRAGMENT_BIT); #else shaderStages[0] = loadShader("./../data/shaders/shadowmap/offscreen.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader("./../data/shaders/shadowmap/offscreen.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); #endif pipelineCreateInfo.layout = pipelineLayouts.offscreen; depthStencilState.depthCompareOp = VK_COMPARE_OP_LESS; // Cull front faces rasterizationState.cullMode = VK_CULL_MODE_FRONT_BIT; //rasterizationState.cullMode = VK_CULL_MODE_NONE; rasterizationState.depthBiasEnable = VK_TRUE; rasterizationState.depthBiasClamp = VK_TRUE; dynamicStateEnables.push_back(VK_DYNAMIC_STATE_DEPTH_BIAS); dynamicState = vkTools::initializers::pipelineDynamicStateCreateInfo( dynamicStateEnables.data(), dynamicStateEnables.size(), 0); err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.offscreen); assert(!err); } // Prepare and initialize uniform buffer containing shader uniforms void prepareUniformBuffers() { VkResult err; // Vertex shader uniform buffer block VkMemoryAllocateInfo allocInfo = vkTools::initializers::memoryAllocateInfo(); VkMemoryRequirements memReqs; VkBufferCreateInfo bufferInfo = vkTools::initializers::bufferCreateInfo( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, sizeof(uboVSquad)); err = vkCreateBuffer(device, &bufferInfo, nullptr, &uniformDataVS.buffer); assert(!err); vkGetBufferMemoryRequirements(device, uniformDataVS.buffer, &memReqs); allocInfo.allocationSize = memReqs.size; assert(getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &allocInfo.memoryTypeIndex)); err = vkAllocateMemory(device, &allocInfo, nullptr, &uniformDataVS.memory); assert(!err); err = vkBindBufferMemory(device, uniformDataVS.buffer, uniformDataVS.memory, 0); assert(!err); uniformDataVS.descriptor.buffer = uniformDataVS.buffer; uniformDataVS.descriptor.offset = 0; uniformDataVS.descriptor.range = sizeof(uboVSquad); // Offscreen vertex shader uniform buffer block bufferInfo.size = sizeof(uboOffscreenVS); err = vkCreateBuffer(device, &bufferInfo, nullptr, &uniformDataOffscreenVS.buffer); assert(!err); vkGetBufferMemoryRequirements(device, uniformDataOffscreenVS.buffer, &memReqs); allocInfo.allocationSize = memReqs.size; assert(getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &allocInfo.memoryTypeIndex)); err = vkAllocateMemory(device, &allocInfo, nullptr, &uniformDataOffscreenVS.memory); assert(!err); err = vkBindBufferMemory(device, uniformDataOffscreenVS.buffer, uniformDataOffscreenVS.memory, 0); assert(!err); uniformDataOffscreenVS.descriptor.buffer = uniformDataOffscreenVS.buffer; uniformDataOffscreenVS.descriptor.offset = 0; uniformDataOffscreenVS.descriptor.range = sizeof(uboOffscreenVS); // 3D scene bufferInfo.size = sizeof(uboVSscene); err = vkCreateBuffer(device, &bufferInfo, nullptr, &uniformData.scene.buffer); assert(!err); vkGetBufferMemoryRequirements(device, uniformData.scene.buffer, &memReqs); allocInfo.allocationSize = memReqs.size; assert(getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &allocInfo.memoryTypeIndex)); err = vkAllocateMemory(device, &allocInfo, nullptr, &uniformData.scene.memory); assert(!err); err = vkBindBufferMemory(device, uniformData.scene.buffer, uniformData.scene.memory, 0); assert(!err); uniformData.scene.descriptor.buffer = uniformData.scene.buffer; uniformData.scene.descriptor.offset = 0; uniformData.scene.descriptor.range = sizeof(uboVSscene); updateUniformBufferOffscreen(); updateUniformBuffers(); } void updateUniformBuffers() { // Shadow map debug quad float AR = (float)height / (float)width; uboVSquad.projection = glm::ortho(0.0f, 2.5f / AR, 0.0f, 2.5f, -1.0f, 1.0f); // uboVSquad.projection = glm::ortho(0.0f, 1.0f, 0.0f, 1.0f, -1.0f, 1.0f); uboVSquad.model = glm::mat4(); uint8_t *pData; VkResult err = vkMapMemory(device, uniformDataVS.memory, 0, sizeof(uboVSquad), 0, (void **)&pData); assert(!err); memcpy(pData, &uboVSquad, sizeof(uboVSquad)); vkUnmapMemory(device, uniformDataVS.memory); // 3D scene uboVSscene.projection = glm::perspective(deg_to_rad(45.0f), (float)width / (float)height, zNear, zFar); uboVSscene.view = glm::translate(glm::mat4(), glm::vec3(0.0f, 0.0f, zoom)); uboVSscene.model = glm::mat4(); uboVSscene.model = glm::rotate(uboVSscene.model, deg_to_rad(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f)); uboVSscene.model = glm::rotate(uboVSscene.model, deg_to_rad(rotation.y), glm::vec3(0.0f, 1.0f, 0.0f)); uboVSscene.model = glm::rotate(uboVSscene.model, deg_to_rad(rotation.z), glm::vec3(0.0f, 0.0f, 1.0f)); glm::mat4 biasMat = glm::mat4( glm::vec4(0.5f, 0.0f, 0.0f, 0.0f), glm::vec4(0.0f, 0.5f, 0.0f, 0.0f), glm::vec4(0.0f, 0.0f, 0.5f, 0.0f), glm::vec4(0.5f, 0.5f, 0.5f, 1.0f) ); uboVSscene.depthBiasMVP = biasMat * uboOffscreenVS.depthMVP; pData; err = vkMapMemory(device, uniformData.scene.memory, 0, sizeof(uboVSscene), 0, (void **)&pData); assert(!err); memcpy(pData, &uboVSscene, sizeof(uboVSscene)); vkUnmapMemory(device, uniformData.scene.memory); } void updateUniformBufferOffscreen() { // Matrix from light's point of view glm::vec3 lightInvDir = glm::vec3(0.5f, -2, 2); glm::mat4 depthProjectionMatrix = glm::ortho(-10, 10, -10, 10, -50, 30); // glm::mat4 depthProjectionMatrix = glm::ortho(-10, 10, -10, 10, -10, 20); glm::mat4 depthViewMatrix = glm::lookAt(lightInvDir, glm::vec3(0, 0, 0), glm::vec3(0, 1, 0)); glm::mat4 depthModelMatrix = glm::mat4(); uboOffscreenVS.depthMVP = depthProjectionMatrix * depthViewMatrix * depthModelMatrix; uint8_t *pData; VkResult err = vkMapMemory(device, uniformDataOffscreenVS.memory, 0, sizeof(uboOffscreenVS), 0, (void **)&pData); assert(!err); memcpy(pData, &uboOffscreenVS, sizeof(uboOffscreenVS)); vkUnmapMemory(device, uniformDataOffscreenVS.memory); } // Blits the contents of the offscreen framebuffer to // our texture target void updateTexture() { // Make sure depth writes to the offscreen buffer are finished VkImageMemoryBarrier imageBarrier = vkTools::initializers::imageMemoryBarrier(); imageBarrier.srcAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT; imageBarrier.dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT; imageBarrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; imageBarrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; imageBarrier.subresourceRange = { VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT, 0, 1, 0, 1 }; imageBarrier.image = offScreenFrameBuf.depth.image; VkImageMemoryBarrier *preBarrier = &imageBarrier; vkCmdPipelineBarrier( copyCmdBuffer, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_FALSE, 1, (const void * const*)&preBarrier); VkImageCopy imgCopy = {}; imgCopy.srcSubresource.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT; imgCopy.srcSubresource.mipLevel = 0; imgCopy.srcSubresource.baseArrayLayer = 0; imgCopy.srcSubresource.layerCount = 1; imgCopy.srcOffset = { 0, 0, 0 }; imgCopy.dstSubresource.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT; imgCopy.dstSubresource.mipLevel = 0; imgCopy.dstSubresource.baseArrayLayer = 0; imgCopy.dstSubresource.layerCount = 1; imgCopy.dstOffset = { 0, 0, 0 }; imgCopy.extent.width = TEX_DIM; imgCopy.extent.height = TEX_DIM; imgCopy.extent.depth = 1; vkCmdCopyImage( copyCmdBuffer, offScreenFrameBuf.depth.image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, offScreenTex.image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &imgCopy); // Make sure transfer is finished imageBarrier = vkTools::initializers::imageMemoryBarrier(); imageBarrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT; imageBarrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT; imageBarrier.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL; imageBarrier.newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; imageBarrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; imageBarrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; imageBarrier.subresourceRange = { VK_IMAGE_ASPECT_DEPTH_BIT, 0, 1, 0, 1 }; imageBarrier.image = offScreenTex.image; VkImageMemoryBarrier *postBarrier = &imageBarrier; vkCmdPipelineBarrier( copyCmdBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT, 0, 1, (const void * const*)&postBarrier); } void prepare() { VulkanExampleBase::prepare(); prepareVertices(); prepareUniformBuffers(); prepareTextureTarget(TEX_DIM, TEX_DIM, TEX_FORMAT); setupDescriptorSetLayout(); preparePipelines(); setupDescriptorPool(); setupDescriptorSets(); prepareOffscreenFramebuffer(); buildCommandBuffers(); buildOffscreenCommandBuffer(); prepared = true; } virtual void render() { if (!prepared) return; vkDeviceWaitIdle(device); draw(); vkDeviceWaitIdle(device); if (!paused) { timer += 0.0015f; // TODO : Time based if (timer > 1.0) { timer -= 1.0f; } updateUniformBufferOffscreen(); updateUniformBuffers(); } } virtual void viewChanged() { updateUniformBufferOffscreen(); updateUniformBuffers(); } void changeDepthBias(float delta) { depthBias += delta; buildOffscreenCommandBuffer(); } }; VulkanExample *vulkanExample; #ifdef _WIN32 LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam) { if (vulkanExample != NULL) { vulkanExample->handleMessages(hWnd, uMsg, wParam, lParam); if (uMsg == WM_KEYDOWN) { switch (wParam) { case 0x50: vulkanExample->paused = !vulkanExample->paused; break; case 0x53: vulkanExample->displayShadowMap = !vulkanExample->displayShadowMap; break; case VK_ADD: vulkanExample->changeDepthBias(0.000025f); break; case VK_SUBTRACT: vulkanExample->changeDepthBias(-0.000025f); break; } } } return (DefWindowProc(hWnd, uMsg, wParam, lParam)); } #else static void handle_event(const xcb_generic_event_t *event) { if (vulkanExample != NULL) { vulkanExample->handle_event(event); } } #endif #ifdef _WIN32 int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR pCmdLine, int nCmdShow) #else int main(const int argc, const char *argv[]) #endif { vulkanExample = new VulkanExample(); #ifdef _WIN32 vulkanExample->setupWindow(hInstance, WndProc, false); #else vulkanExample->setupWindow(); #endif vulkanExample->initSwapchain(); vulkanExample->prepare(); vulkanExample->renderLoop(); delete(vulkanExample); return 0; }