/* * Vulkan Example - Using Multi sampling with VK_KHR_dynamic_rendering * * Copyright (C) 2025 by Sascha Willems - www.saschawillems.de * * This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT) */ #include "vulkanexamplebase.h" #include "VulkanglTFModel.h" class VulkanExample : public VulkanExampleBase { public: PFN_vkCmdBeginRenderingKHR vkCmdBeginRenderingKHR{ VK_NULL_HANDLE }; PFN_vkCmdEndRenderingKHR vkCmdEndRenderingKHR{ VK_NULL_HANDLE }; VkPhysicalDeviceDynamicRenderingFeaturesKHR enabledDynamicRenderingFeaturesKHR{}; vkglTF::Model model; const VkSampleCountFlagBits multiSampleCount = VK_SAMPLE_COUNT_4_BIT; struct UniformData { glm::mat4 projection; glm::mat4 modelView; glm::vec4 viewPos; } uniformData; vks::Buffer uniformBuffer; VkPipeline pipeline{ VK_NULL_HANDLE }; VkPipelineLayout pipelineLayout{ VK_NULL_HANDLE }; VkDescriptorSet descriptorSet{ VK_NULL_HANDLE }; VkDescriptorSetLayout descriptorSetLayout{ VK_NULL_HANDLE }; // Intermediate images used for multi sampling struct Image { VkImage image{ VK_NULL_HANDLE }; VkImageView view{ VK_NULL_HANDLE }; VkDeviceMemory memory{ VK_NULL_HANDLE }; }; Image renderImage; Image depthStencilRenderImage; VulkanExample() : VulkanExampleBase() { title = "Multi sampling with dynamic rendering"; camera.type = Camera::CameraType::lookat; camera.setPosition(glm::vec3(0.0f, 0.0f, -10.0f)); camera.setRotation(glm::vec3(-7.5f, 72.0f, 0.0f)); camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 256.0f); settings.overlay = false; enabledInstanceExtensions.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME); // The sample uses the extension (instead of Vulkan 1.2, where dynamic rendering is core) enabledDeviceExtensions.push_back(VK_KHR_DYNAMIC_RENDERING_EXTENSION_NAME); enabledDeviceExtensions.push_back(VK_KHR_MAINTENANCE2_EXTENSION_NAME); enabledDeviceExtensions.push_back(VK_KHR_MULTIVIEW_EXTENSION_NAME); enabledDeviceExtensions.push_back(VK_KHR_CREATE_RENDERPASS_2_EXTENSION_NAME); enabledDeviceExtensions.push_back(VK_KHR_DEPTH_STENCIL_RESOLVE_EXTENSION_NAME); // in addition to the extension, the feature needs to be explicitly enabled too by chaining the extension structure into device creation enabledDynamicRenderingFeaturesKHR.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DYNAMIC_RENDERING_FEATURES_KHR; enabledDynamicRenderingFeaturesKHR.dynamicRendering = VK_TRUE; deviceCreatepNextChain = &enabledDynamicRenderingFeaturesKHR; } ~VulkanExample() { if (device) { vkDestroyPipeline(device, pipeline, nullptr); vkDestroyPipelineLayout(device, pipelineLayout, nullptr); vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr); uniformBuffer.destroy(); vkDestroyImage(device, renderImage.image, nullptr); vkDestroyImageView(device, renderImage.view, nullptr); vkFreeMemory(device, renderImage.memory, nullptr); } } void setupRenderPass() override { // With VK_KHR_dynamic_rendering we no longer need a render pass, so we can skip the sample base render pass setup renderPass = VK_NULL_HANDLE; } void setupFrameBuffer() override { // With VK_KHR_dynamic_rendering we no longer need a frame buffer, so we can so skip the sample base framebuffer setup // For multi sampling we need intermediate images that are then resolved to the final presentation image vkDestroyImage(device, renderImage.image, nullptr); vkDestroyImageView(device, renderImage.view, nullptr); vkFreeMemory(device, renderImage.memory, nullptr); VkImageCreateInfo renderImageCI = vks::initializers::imageCreateInfo(); renderImageCI.imageType = VK_IMAGE_TYPE_2D; renderImageCI.format = swapChain.colorFormat; renderImageCI.extent = { width, height, 1 }; renderImageCI.mipLevels = 1; renderImageCI.arrayLayers = 1; renderImageCI.samples = multiSampleCount; renderImageCI.tiling = VK_IMAGE_TILING_OPTIMAL; renderImageCI.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT; renderImageCI.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; VK_CHECK_RESULT(vkCreateImage(device, &renderImageCI, nullptr, &renderImage.image)); VkMemoryRequirements memReqs{}; vkGetImageMemoryRequirements(device, renderImage.image, &memReqs); VkMemoryAllocateInfo memAllloc{}; memAllloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO; memAllloc.allocationSize = memReqs.size; memAllloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); VK_CHECK_RESULT(vkAllocateMemory(device, &memAllloc, nullptr, &renderImage.memory)); VK_CHECK_RESULT(vkBindImageMemory(device, renderImage.image, renderImage.memory, 0)); VkImageViewCreateInfo imageViewCI = vks::initializers::imageViewCreateInfo(); imageViewCI.viewType = VK_IMAGE_VIEW_TYPE_2D; imageViewCI.image = renderImage.image; imageViewCI.format = swapChain.colorFormat; imageViewCI.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 }; VK_CHECK_RESULT(vkCreateImageView(device, &imageViewCI, nullptr, &renderImage.view)); } // We need to override the default depth/stencil setup to create a depth image that supports multi sampling void setupDepthStencil() override { VkImageCreateInfo imageCI{}; imageCI.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO; imageCI.imageType = VK_IMAGE_TYPE_2D; imageCI.format = depthFormat; imageCI.extent = { width, height, 1 }; imageCI.mipLevels = 1; imageCI.arrayLayers = 1; imageCI.samples = multiSampleCount; imageCI.tiling = VK_IMAGE_TILING_OPTIMAL; imageCI.usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT; VK_CHECK_RESULT(vkCreateImage(device, &imageCI, nullptr, &depthStencil.image)); VkMemoryRequirements memReqs{}; vkGetImageMemoryRequirements(device, depthStencil.image, &memReqs); VkMemoryAllocateInfo memAllloc{}; memAllloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO; memAllloc.allocationSize = memReqs.size; memAllloc.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); VK_CHECK_RESULT(vkAllocateMemory(device, &memAllloc, nullptr, &depthStencil.memory)); VK_CHECK_RESULT(vkBindImageMemory(device, depthStencil.image, depthStencil.memory, 0)); VkImageViewCreateInfo depthImageViewCI{}; depthImageViewCI.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO; depthImageViewCI.viewType = VK_IMAGE_VIEW_TYPE_2D; depthImageViewCI.image = depthStencil.image; depthImageViewCI.format = depthFormat; depthImageViewCI.subresourceRange.baseMipLevel = 0; depthImageViewCI.subresourceRange.levelCount = 1; depthImageViewCI.subresourceRange.baseArrayLayer = 0; depthImageViewCI.subresourceRange.layerCount = 1; depthImageViewCI.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT; // Stencil aspect should only be set on depth + stencil formats (VK_FORMAT_D16_UNORM_S8_UINT..VK_FORMAT_D32_SFLOAT_S8_UINT if (depthFormat >= VK_FORMAT_D16_UNORM_S8_UINT) { depthImageViewCI.subresourceRange.aspectMask |= VK_IMAGE_ASPECT_STENCIL_BIT; } VK_CHECK_RESULT(vkCreateImageView(device, &depthImageViewCI, nullptr, &depthStencil.view)); } // Enable physical device features required for this example virtual void getEnabledFeatures() { // Enable anisotropic filtering if supported if (deviceFeatures.samplerAnisotropy) { enabledFeatures.samplerAnisotropy = VK_TRUE; }; } void loadAssets() { const uint32_t glTFLoadingFlags = vkglTF::FileLoadingFlags::PreTransformVertices | vkglTF::FileLoadingFlags::PreMultiplyVertexColors | vkglTF::FileLoadingFlags::FlipY; model.loadFromFile(getAssetPath() + "models/voyager.gltf", vulkanDevice, queue, glTFLoadingFlags); } void buildCommandBuffers() { VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo(); for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) { VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo)); // With dynamic rendering there are no subpass dependencies, so we need to take care of proper layout transitions by using barriers // This set of barriers prepares the color and depth images for output vks::tools::insertImageMemoryBarrier( drawCmdBuffers[i], renderImage.image, 0, VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_GENERAL, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, VkImageSubresourceRange{ VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 }); vks::tools::insertImageMemoryBarrier( drawCmdBuffers[i], depthStencil.image, 0, VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL, VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT, VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT, VkImageSubresourceRange{ VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT, 0, 1, 0, 1 }); // New structures are used to define the attachments used in dynamic rendering VkRenderingAttachmentInfoKHR colorAttachment{}; colorAttachment.sType = VK_STRUCTURE_TYPE_RENDERING_ATTACHMENT_INFO_KHR; colorAttachment.imageLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; colorAttachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; colorAttachment.storeOp = VK_ATTACHMENT_STORE_OP_STORE; colorAttachment.clearValue.color = { 0.0f,0.0f,0.0f,0.0f }; // When multi sampling is used, we use intermediate images to render and resolve to the swap chain images colorAttachment.imageView = renderImage.view; colorAttachment.resolveMode = VK_RESOLVE_MODE_AVERAGE_BIT; colorAttachment.resolveImageView = swapChain.imageViews[i]; colorAttachment.resolveImageLayout = VK_IMAGE_LAYOUT_GENERAL; // A single depth stencil attachment info can be used, but they can also be specified separately. // When both are specified separately, the only requirement is that the image view is identical. VkRenderingAttachmentInfoKHR depthStencilAttachment{}; depthStencilAttachment.sType = VK_STRUCTURE_TYPE_RENDERING_ATTACHMENT_INFO_KHR; depthStencilAttachment.imageView = depthStencil.view; depthStencilAttachment.imageLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; depthStencilAttachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; depthStencilAttachment.storeOp = VK_ATTACHMENT_STORE_OP_STORE; depthStencilAttachment.clearValue.depthStencil = { 1.0f, 0 }; VkRenderingInfoKHR renderingInfo{}; renderingInfo.sType = VK_STRUCTURE_TYPE_RENDERING_INFO_KHR; renderingInfo.renderArea = { 0, 0, width, height }; renderingInfo.layerCount = 1; renderingInfo.colorAttachmentCount = 1; renderingInfo.pColorAttachments = &colorAttachment; renderingInfo.pDepthAttachment = &depthStencilAttachment; renderingInfo.pStencilAttachment = &depthStencilAttachment; // Begin dynamic rendering vkCmdBeginRenderingKHR(drawCmdBuffers[i], &renderingInfo); VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f); vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0); vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor); vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, nullptr); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline); model.draw(drawCmdBuffers[i], vkglTF::RenderFlags::BindImages, pipelineLayout); drawUI(drawCmdBuffers[i]); // End dynamic rendering vkCmdEndRenderingKHR(drawCmdBuffers[i]); // This set of barriers prepares the color image for presentation, we don't need to care for the depth image vks::tools::insertImageMemoryBarrier( drawCmdBuffers[i], swapChain.images[i], VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT, 0, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_PRESENT_SRC_KHR, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, VkImageSubresourceRange{ VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 }); VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i])); } } void setupDescriptors() { // Pool std::vector poolSizes = { vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1), }; VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, 1); VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool)); // Layout const std::vector setLayoutBindings = { // Binding 0 : Vertex shader uniform buffer vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0), }; VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout)); // Set VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1); VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet)); std::vector writeDescriptorSets = { // Binding 0 : Vertex shader uniform buffer vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffer.descriptor), }; vkUpdateDescriptorSets(device, static_cast(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, nullptr); } void preparePipelines() { // Layout // Uses set 0 for passing vertex shader ubo and set 1 for fragment shader images (taken from glTF model) const std::vector setLayouts = { descriptorSetLayout, vkglTF::descriptorSetLayoutImage, }; VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(setLayouts.data(), 2); VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &pipelineLayout)); // Pipeline VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE); VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_NONE, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0); VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE); VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState); VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL); VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0); VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(multiSampleCount, 0); std::vector dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR }; VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables); std::array shaderStages{}; // We no longer need to set a renderpass for the pipeline create info VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(); pipelineCI.layout = pipelineLayout; pipelineCI.pInputAssemblyState = &inputAssemblyState; pipelineCI.pRasterizationState = &rasterizationState; pipelineCI.pColorBlendState = &colorBlendState; pipelineCI.pMultisampleState = &multisampleState; pipelineCI.pViewportState = &viewportState; pipelineCI.pDepthStencilState = &depthStencilState; pipelineCI.pDynamicState = &dynamicState; pipelineCI.stageCount = static_cast(shaderStages.size()); pipelineCI.pStages = shaderStages.data(); pipelineCI.pVertexInputState = vkglTF::Vertex::getPipelineVertexInputState({ vkglTF::VertexComponent::Position, vkglTF::VertexComponent::Normal, vkglTF::VertexComponent::UV }); // New create info to define color, depth and stencil attachments at pipeline create time VkPipelineRenderingCreateInfoKHR pipelineRenderingCreateInfo{}; pipelineRenderingCreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_RENDERING_CREATE_INFO_KHR; pipelineRenderingCreateInfo.colorAttachmentCount = 1; pipelineRenderingCreateInfo.pColorAttachmentFormats = &swapChain.colorFormat; pipelineRenderingCreateInfo.depthAttachmentFormat = depthFormat; pipelineRenderingCreateInfo.stencilAttachmentFormat = depthFormat; // Chain into the pipeline creat einfo pipelineCI.pNext = &pipelineRenderingCreateInfo; shaderStages[0] = loadShader(getShadersPath() + "dynamicrendering/texture.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getShadersPath() + "dynamicrendering/texture.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipeline)); } // Prepare and initialize uniform buffer containing shader uniforms void prepareUniformBuffers() { VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBuffer, sizeof(uniformData), &uniformData)); VK_CHECK_RESULT(uniformBuffer.map()); updateUniformBuffers(); } void updateUniformBuffers() { uniformData.projection = camera.matrices.perspective; uniformData.modelView = camera.matrices.view; uniformData.viewPos = camera.viewPos; memcpy(uniformBuffer.mapped, &uniformData, sizeof(uniformData)); } void prepare() { VulkanExampleBase::prepare(); // Since we use an extension, we need to expliclity load the function pointers for extension related Vulkan commands vkCmdBeginRenderingKHR = reinterpret_cast(vkGetDeviceProcAddr(device, "vkCmdBeginRenderingKHR")); vkCmdEndRenderingKHR = reinterpret_cast(vkGetDeviceProcAddr(device, "vkCmdEndRenderingKHR")); loadAssets(); prepareUniformBuffers(); setupDescriptors(); preparePipelines(); buildCommandBuffers(); prepared = true; } void draw() { VulkanExampleBase::prepareFrame(); submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer]; VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE)); VulkanExampleBase::submitFrame(); } virtual void render() { if (!prepared) return; updateUniformBuffers(); draw(); } }; VULKAN_EXAMPLE_MAIN()