/* * Vulkan Example - Compute shader image processing * * Copyright (C) 2016 by Sascha Willems - www.saschawillems.de * * This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT) */ #include #include #include #include #include #define GLM_FORCE_RADIANS #define GLM_FORCE_DEPTH_ZERO_TO_ONE #include #include #include #include "vulkanexamplebase.h" #define VERTEX_BUFFER_BIND_ID 0 #define ENABLE_VALIDATION false // Vertex layout for this example struct Vertex { float pos[3]; float uv[2]; }; class VulkanExample : public VulkanExampleBase { private: vkTools::VulkanTexture textureColorMap; vkTools::VulkanTexture textureComputeTarget; public: struct { VkPipelineVertexInputStateCreateInfo inputState; std::vector bindingDescriptions; std::vector attributeDescriptions; } vertices; struct { vkMeshLoader::MeshBuffer quad; } meshes; vkTools::UniformData uniformDataVS; struct { glm::mat4 projection; glm::mat4 model; } uboVS; struct { VkPipeline postCompute; // Compute pipelines are separated from // graphics pipelines in Vulkan std::vector compute; uint32_t computeIndex = 0; } pipelines; int vertexBufferSize; VkQueue computeQueue; VkCommandBuffer computeCmdBuffer; VkPipelineLayout computePipelineLayout; VkDescriptorSet computeDescriptorSet; VkDescriptorSetLayout computeDescriptorSetLayout; VkDescriptorPool computeDescriptorPool; VkPipelineLayout pipelineLayout; VkDescriptorSet descriptorSetPostCompute, descriptorSetBaseImage; VkDescriptorSetLayout descriptorSetLayout; VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION) { zoom = -2.0f; enableTextOverlay = true; title = "Vulkan Example - Compute shader image processing"; } ~VulkanExample() { // Clean up used Vulkan resources // Note : Inherited destructor cleans up resources stored in base class vkDestroyPipeline(device, pipelines.postCompute, nullptr); for (auto& pipeline : pipelines.compute) { vkDestroyPipeline(device, pipeline, nullptr); } vkDestroyPipelineLayout(device, pipelineLayout, nullptr); vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr); vkMeshLoader::freeMeshBufferResources(device, &meshes.quad); vkTools::destroyUniformData(device, &uniformDataVS); vkFreeCommandBuffers(device, cmdPool, 1, &computeCmdBuffer); textureLoader->destroyTexture(textureColorMap); textureLoader->destroyTexture(textureComputeTarget); } // Prepare a texture target that is used to store compute shader calculations void prepareTextureTarget(vkTools::VulkanTexture *tex, uint32_t width, uint32_t height, VkFormat format) { VkFormatProperties formatProperties; // Get device properties for the requested texture format vkGetPhysicalDeviceFormatProperties(physicalDevice, format, &formatProperties); // Check if requested image format supports image storage operations assert(formatProperties.optimalTilingFeatures & VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT); // Prepare blit target texture tex->width = width; tex->height = height; VkImageCreateInfo imageCreateInfo = vkTools::initializers::imageCreateInfo(); imageCreateInfo.imageType = VK_IMAGE_TYPE_2D; imageCreateInfo.format = format; imageCreateInfo.extent = { width, height, 1 }; imageCreateInfo.mipLevels = 1; imageCreateInfo.arrayLayers = 1; imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT; imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL; // Image will be sampled in the fragment shader and used as storage target in the compute shader imageCreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_STORAGE_BIT; imageCreateInfo.flags = 0; VkMemoryAllocateInfo memAllocInfo = vkTools::initializers::memoryAllocateInfo(); VkMemoryRequirements memReqs; VK_CHECK_RESULT(vkCreateImage(device, &imageCreateInfo, nullptr, &tex->image)); vkGetImageMemoryRequirements(device, tex->image, &memReqs); memAllocInfo.allocationSize = memReqs.size; memAllocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &tex->deviceMemory)); VK_CHECK_RESULT(vkBindImageMemory(device, tex->image, tex->deviceMemory, 0)); VkCommandBuffer layoutCmd = VulkanExampleBase::createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true); tex->imageLayout = VK_IMAGE_LAYOUT_GENERAL; vkTools::setImageLayout( layoutCmd, tex->image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_UNDEFINED, tex->imageLayout); VulkanExampleBase::flushCommandBuffer(layoutCmd, queue, true); // Create sampler VkSamplerCreateInfo sampler = vkTools::initializers::samplerCreateInfo(); sampler.magFilter = VK_FILTER_LINEAR; sampler.minFilter = VK_FILTER_LINEAR; sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR; sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER; sampler.addressModeV = sampler.addressModeU; sampler.addressModeW = sampler.addressModeU; sampler.mipLodBias = 0.0f; sampler.maxAnisotropy = 0; sampler.compareOp = VK_COMPARE_OP_NEVER; sampler.minLod = 0.0f; sampler.maxLod = 0.0f; sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE; VK_CHECK_RESULT(vkCreateSampler(device, &sampler, nullptr, &tex->sampler)); // Create image view VkImageViewCreateInfo view = vkTools::initializers::imageViewCreateInfo(); view.image = VK_NULL_HANDLE; view.viewType = VK_IMAGE_VIEW_TYPE_2D; view.format = format; view.components = { VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A }; view.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 }; view.image = tex->image; VK_CHECK_RESULT(vkCreateImageView(device, &view, nullptr, &tex->view)); } void loadTextures() { textureLoader->loadTexture( getAssetPath() + "textures/het_kanonschot_rgba8.ktx", VK_FORMAT_R8G8B8A8_UNORM, &textureColorMap, false, VK_IMAGE_USAGE_SAMPLED_BIT); } void buildCommandBuffers() { // Destroy command buffers if already present if (!checkCommandBuffers()) { destroyCommandBuffers(); createCommandBuffers(); } VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo(); VkClearValue clearValues[2]; clearValues[0].color = defaultClearColor; clearValues[1].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo(); renderPassBeginInfo.renderPass = renderPass; renderPassBeginInfo.renderArea.offset.x = 0; renderPassBeginInfo.renderArea.offset.y = 0; renderPassBeginInfo.renderArea.extent.width = width; renderPassBeginInfo.renderArea.extent.height = height; renderPassBeginInfo.clearValueCount = 2; renderPassBeginInfo.pClearValues = clearValues; for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) { // Set target frame buffer renderPassBeginInfo.framebuffer = frameBuffers[i]; VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo)); // Image memory barrier to make sure that compute // shader writes are finished before sampling // from the texture VkImageMemoryBarrier imageMemoryBarrier = {}; imageMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER; imageMemoryBarrier.pNext = NULL; imageMemoryBarrier.oldLayout = VK_IMAGE_LAYOUT_GENERAL; imageMemoryBarrier.newLayout = VK_IMAGE_LAYOUT_GENERAL; imageMemoryBarrier.image = textureComputeTarget.image; imageMemoryBarrier.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 }; imageMemoryBarrier.srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT; imageMemoryBarrier.dstAccessMask = VK_ACCESS_INPUT_ATTACHMENT_READ_BIT; // todo : use different pipeline stage bits vkCmdPipelineBarrier( drawCmdBuffers[i], VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_FLAGS_NONE, 0, nullptr, 0, nullptr, 1, &imageMemoryBarrier); vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); VkViewport viewport = vkTools::initializers::viewport((float)width * 0.5f, (float)height, 0.0f, 1.0f); vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); VkRect2D scissor = vkTools::initializers::rect2D(width, height, 0, 0); vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor); VkDeviceSize offsets[1] = { 0 }; vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &meshes.quad.vertices.buf, offsets); vkCmdBindIndexBuffer(drawCmdBuffers[i], meshes.quad.indices.buf, 0, VK_INDEX_TYPE_UINT32); // Left (pre compute) vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSetBaseImage, 0, NULL); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.postCompute); vkCmdDrawIndexed(drawCmdBuffers[i], meshes.quad.indexCount, 1, 0, 0, 0); // Right (post compute) vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSetPostCompute, 0, NULL); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.postCompute); viewport.x = (float)width / 2.0f; vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); vkCmdDrawIndexed(drawCmdBuffers[i], meshes.quad.indexCount, 1, 0, 0, 0); vkCmdEndRenderPass(drawCmdBuffers[i]); VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i])); } } void buildComputeCommandBuffer() { VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo(); VK_CHECK_RESULT(vkBeginCommandBuffer(computeCmdBuffer, &cmdBufInfo)); vkCmdBindPipeline(computeCmdBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, pipelines.compute[pipelines.computeIndex]); vkCmdBindDescriptorSets(computeCmdBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, computePipelineLayout, 0, 1, &computeDescriptorSet, 0, 0); vkCmdDispatch(computeCmdBuffer, textureComputeTarget.width / 16, textureComputeTarget.height / 16, 1); vkEndCommandBuffer(computeCmdBuffer); } // Setup vertices for a single uv-mapped quad void generateQuad() { #define dim 1.0f std::vector vertexBuffer = { { { dim, dim, 0.0f }, { 1.0f, 1.0f } }, { { -dim, dim, 0.0f }, { 0.0f, 1.0f } }, { { -dim, -dim, 0.0f }, { 0.0f, 0.0f } }, { { dim, -dim, 0.0f }, { 1.0f, 0.0f } } }; #undef dim createBuffer( VK_BUFFER_USAGE_VERTEX_BUFFER_BIT, vertexBuffer.size() * sizeof(Vertex), vertexBuffer.data(), &meshes.quad.vertices.buf, &meshes.quad.vertices.mem); // Setup indices std::vector indexBuffer = { 0,1,2, 2,3,0 }; meshes.quad.indexCount = indexBuffer.size(); createBuffer( VK_BUFFER_USAGE_INDEX_BUFFER_BIT, indexBuffer.size() * sizeof(uint32_t), indexBuffer.data(), &meshes.quad.indices.buf, &meshes.quad.indices.mem); } void setupVertexDescriptions() { // Binding description vertices.bindingDescriptions.resize(1); vertices.bindingDescriptions[0] = vkTools::initializers::vertexInputBindingDescription( VERTEX_BUFFER_BIND_ID, sizeof(Vertex), VK_VERTEX_INPUT_RATE_VERTEX); // Attribute descriptions // Describes memory layout and shader positions vertices.attributeDescriptions.resize(2); // Location 0 : Position vertices.attributeDescriptions[0] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 0, VK_FORMAT_R32G32B32_SFLOAT, 0); // Location 1 : Texture coordinates vertices.attributeDescriptions[1] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 1, VK_FORMAT_R32G32_SFLOAT, sizeof(float) * 3); // Assign to vertex buffer vertices.inputState = vkTools::initializers::pipelineVertexInputStateCreateInfo(); vertices.inputState.vertexBindingDescriptionCount = vertices.bindingDescriptions.size(); vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data(); vertices.inputState.vertexAttributeDescriptionCount = vertices.attributeDescriptions.size(); vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data(); } void setupDescriptorPool() { std::vector poolSizes = { vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2), // Graphics pipeline uses image samplers for display vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 4), // Compute pipeline uses a sampled image for reading vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, 1), // Compute pipelines uses a storage image to write result vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 1), }; VkDescriptorPoolCreateInfo descriptorPoolInfo = vkTools::initializers::descriptorPoolCreateInfo( poolSizes.size(), poolSizes.data(), 3); VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool)); } void setupDescriptorSetLayout() { std::vector setLayoutBindings = { // Binding 0 : Vertex shader uniform buffer vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0), // Binding 1 : Fragment shader image sampler vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1) }; VkDescriptorSetLayoutCreateInfo descriptorLayout = vkTools::initializers::descriptorSetLayoutCreateInfo( setLayoutBindings.data(), setLayoutBindings.size()); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout)); VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = vkTools::initializers::pipelineLayoutCreateInfo( &descriptorSetLayout, 1); VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout)); } void setupDescriptorSet() { VkDescriptorSetAllocateInfo allocInfo = vkTools::initializers::descriptorSetAllocateInfo( descriptorPool, &descriptorSetLayout, 1); VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSetPostCompute)); // Image descriptor for the color map texture VkDescriptorImageInfo texDescriptor = vkTools::initializers::descriptorImageInfo( textureComputeTarget.sampler, textureComputeTarget.view, VK_IMAGE_LAYOUT_GENERAL); std::vector writeDescriptorSets = { // Binding 0 : Vertex shader uniform buffer vkTools::initializers::writeDescriptorSet( descriptorSetPostCompute, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformDataVS.descriptor), // Binding 1 : Fragment shader texture sampler vkTools::initializers::writeDescriptorSet( descriptorSetPostCompute, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &texDescriptor) }; vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL); // Base image (before compute post process) allocInfo = vkTools::initializers::descriptorSetAllocateInfo( descriptorPool, &descriptorSetLayout, 1); VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSetBaseImage)); VkDescriptorImageInfo texDescriptorBaseImage = vkTools::initializers::descriptorImageInfo( textureColorMap.sampler, textureColorMap.view, VK_IMAGE_LAYOUT_GENERAL); std::vector baseImageWriteDescriptorSets = { // Binding 0 : Vertex shader uniform buffer vkTools::initializers::writeDescriptorSet( descriptorSetBaseImage, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformDataVS.descriptor), // Binding 1 : Fragment shader texture sampler vkTools::initializers::writeDescriptorSet( descriptorSetBaseImage, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &texDescriptorBaseImage) }; vkUpdateDescriptorSets(device, baseImageWriteDescriptorSets.size(), baseImageWriteDescriptorSets.data(), 0, NULL); } // Create a separate command buffer for compute commands void createComputeCommandBuffer() { VkCommandBufferAllocateInfo cmdBufAllocateInfo = vkTools::initializers::commandBufferAllocateInfo( cmdPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY, 1); VK_CHECK_RESULT(vkAllocateCommandBuffers(device, &cmdBufAllocateInfo, &computeCmdBuffer)); } void preparePipelines() { VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vkTools::initializers::pipelineInputAssemblyStateCreateInfo( VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE); VkPipelineRasterizationStateCreateInfo rasterizationState = vkTools::initializers::pipelineRasterizationStateCreateInfo( VK_POLYGON_MODE_FILL, VK_CULL_MODE_NONE, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0); VkPipelineColorBlendAttachmentState blendAttachmentState = vkTools::initializers::pipelineColorBlendAttachmentState( 0xf, VK_FALSE); VkPipelineColorBlendStateCreateInfo colorBlendState = vkTools::initializers::pipelineColorBlendStateCreateInfo( 1, &blendAttachmentState); VkPipelineDepthStencilStateCreateInfo depthStencilState = vkTools::initializers::pipelineDepthStencilStateCreateInfo( VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL); VkPipelineViewportStateCreateInfo viewportState = vkTools::initializers::pipelineViewportStateCreateInfo(1, 1, 0); VkPipelineMultisampleStateCreateInfo multisampleState = vkTools::initializers::pipelineMultisampleStateCreateInfo( VK_SAMPLE_COUNT_1_BIT, 0); std::vector dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR }; VkPipelineDynamicStateCreateInfo dynamicState = vkTools::initializers::pipelineDynamicStateCreateInfo( dynamicStateEnables.data(), dynamicStateEnables.size(), 0); // Rendering pipeline // Load shaders std::array shaderStages; shaderStages[0] = loadShader(getAssetPath() + "shaders/computeshader/texture.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getAssetPath() + "shaders/computeshader/texture.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); VkGraphicsPipelineCreateInfo pipelineCreateInfo = vkTools::initializers::pipelineCreateInfo( pipelineLayout, renderPass, 0); pipelineCreateInfo.pVertexInputState = &vertices.inputState; pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState; pipelineCreateInfo.pRasterizationState = &rasterizationState; pipelineCreateInfo.pColorBlendState = &colorBlendState; pipelineCreateInfo.pMultisampleState = &multisampleState; pipelineCreateInfo.pViewportState = &viewportState; pipelineCreateInfo.pDepthStencilState = &depthStencilState; pipelineCreateInfo.pDynamicState = &dynamicState; pipelineCreateInfo.stageCount = shaderStages.size(); pipelineCreateInfo.pStages = shaderStages.data(); pipelineCreateInfo.renderPass = renderPass; VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.postCompute)); } void prepareCompute() { // Create compute pipeline // Compute pipelines are created separate from graphics pipelines // even if they use the same queue std::vector setLayoutBindings = { // Binding 0 : Sampled image (read) vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, VK_SHADER_STAGE_COMPUTE_BIT, 0), // Binding 1 : Sampled image (write) vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, VK_SHADER_STAGE_COMPUTE_BIT, 1), }; VkDescriptorSetLayoutCreateInfo descriptorLayout = vkTools::initializers::descriptorSetLayoutCreateInfo( setLayoutBindings.data(), setLayoutBindings.size()); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &computeDescriptorSetLayout)); VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = vkTools::initializers::pipelineLayoutCreateInfo( &computeDescriptorSetLayout, 1); VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &computePipelineLayout)); VkDescriptorSetAllocateInfo allocInfo = vkTools::initializers::descriptorSetAllocateInfo( descriptorPool, &computeDescriptorSetLayout, 1); VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &computeDescriptorSet)); std::vector computeTexDescriptors = { vkTools::initializers::descriptorImageInfo( VK_NULL_HANDLE, textureColorMap.view, VK_IMAGE_LAYOUT_GENERAL), vkTools::initializers::descriptorImageInfo( VK_NULL_HANDLE, textureComputeTarget.view, VK_IMAGE_LAYOUT_GENERAL) }; std::vector computeWriteDescriptorSets = { // Binding 0 : Sampled image (read) vkTools::initializers::writeDescriptorSet( computeDescriptorSet, VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, 0, &computeTexDescriptors[0]), // Binding 1 : Sampled image (write) vkTools::initializers::writeDescriptorSet( computeDescriptorSet, VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, 1, &computeTexDescriptors[1]) }; vkUpdateDescriptorSets(device, computeWriteDescriptorSets.size(), computeWriteDescriptorSets.data(), 0, NULL); // Create compute shader pipelines VkComputePipelineCreateInfo computePipelineCreateInfo = vkTools::initializers::computePipelineCreateInfo( computePipelineLayout, 0); // One pipeline for each effect std::vector shaderNames = { "sharpen", "edgedetect", "emboss" }; for (auto& shaderName : shaderNames) { std::string fileName = getAssetPath() + "shaders/computeshader/" + shaderName + ".comp.spv"; computePipelineCreateInfo.stage = loadShader(fileName.c_str(), VK_SHADER_STAGE_COMPUTE_BIT); VkPipeline pipeline; VK_CHECK_RESULT(vkCreateComputePipelines(device, pipelineCache, 1, &computePipelineCreateInfo, nullptr, &pipeline)); pipelines.compute.push_back(pipeline); } } // Prepare and initialize uniform buffer containing shader uniforms void prepareUniformBuffers() { // Vertex shader uniform buffer block createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, sizeof(uboVS), &uboVS, &uniformDataVS.buffer, &uniformDataVS.memory, &uniformDataVS.descriptor); updateUniformBuffers(); } void updateUniformBuffers() { // Vertex shader uniform buffer block uboVS.projection = glm::perspective(glm::radians(60.0f), (float)width*0.5f / (float)height, 0.1f, 256.0f); glm::mat4 viewMatrix = glm::translate(glm::mat4(), glm::vec3(0.0f, 0.0f, zoom)); uboVS.model = viewMatrix * glm::translate(glm::mat4(), cameraPos); uboVS.model = glm::rotate(uboVS.model, glm::radians(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f)); uboVS.model = glm::rotate(uboVS.model, glm::radians(rotation.y), glm::vec3(0.0f, 1.0f, 0.0f)); uboVS.model = glm::rotate(uboVS.model, glm::radians(rotation.z), glm::vec3(0.0f, 0.0f, 1.0f)); uint8_t *pData; VK_CHECK_RESULT(vkMapMemory(device, uniformDataVS.memory, 0, sizeof(uboVS), 0, (void **)&pData)); memcpy(pData, &uboVS, sizeof(uboVS)); vkUnmapMemory(device, uniformDataVS.memory); } // Find and create a compute capable device queue void getComputeQueue() { uint32_t queueIndex = 0; uint32_t queueCount; vkGetPhysicalDeviceQueueFamilyProperties(physicalDevice, &queueCount, NULL); assert(queueCount >= 1); std::vector queueProps; queueProps.resize(queueCount); vkGetPhysicalDeviceQueueFamilyProperties(physicalDevice, &queueCount, queueProps.data()); for (queueIndex = 0; queueIndex < queueCount; queueIndex++) { if (queueProps[queueIndex].queueFlags & VK_QUEUE_COMPUTE_BIT) break; } assert(queueIndex < queueCount); VkDeviceQueueCreateInfo queueCreateInfo = {}; queueCreateInfo.queueFamilyIndex = queueIndex; queueCreateInfo.queueCount = 1; vkGetDeviceQueue(device, queueIndex, 0, &computeQueue); } void draw() { VulkanExampleBase::prepareFrame(); submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer]; VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE)); VulkanExampleBase::submitFrame(); // Submit compute VkSubmitInfo computeSubmitInfo = vkTools::initializers::submitInfo(); computeSubmitInfo.commandBufferCount = 1; computeSubmitInfo.pCommandBuffers = &computeCmdBuffer; VK_CHECK_RESULT(vkQueueSubmit(computeQueue, 1, &computeSubmitInfo, VK_NULL_HANDLE)); } void prepare() { VulkanExampleBase::prepare(); loadTextures(); generateQuad(); getComputeQueue(); createComputeCommandBuffer(); setupVertexDescriptions(); prepareUniformBuffers(); prepareTextureTarget(&textureComputeTarget, textureColorMap.width, textureColorMap.height, VK_FORMAT_R8G8B8A8_UNORM); setupDescriptorSetLayout(); preparePipelines(); setupDescriptorPool(); setupDescriptorSet(); prepareCompute(); buildCommandBuffers(); buildComputeCommandBuffer(); prepared = true; } virtual void render() { if (!prepared) return; draw(); } virtual void viewChanged() { updateUniformBuffers(); } virtual void keyPressed(uint32_t keyCode) { switch (keyCode) { case 0x6B: case GAMEPAD_BUTTON_R1: switchComputePipeline(1); break; case 0x6D: case GAMEPAD_BUTTON_L1: switchComputePipeline(-1); break; } } virtual void getOverlayText(VulkanTextOverlay *textOverlay) { #if defined(__ANDROID__) textOverlay->addText("Press \"L1/R1\" to change shaders", 5.0f, 85.0f, VulkanTextOverlay::alignLeft); #else textOverlay->addText("Press \"NUMPAD +/-\" to change shaders", 5.0f, 85.0f, VulkanTextOverlay::alignLeft); #endif } virtual void switchComputePipeline(int32_t dir) { if ((dir < 0) && (pipelines.computeIndex > 0)) { pipelines.computeIndex--; buildComputeCommandBuffer(); } if ((dir > 0) && (pipelines.computeIndex < pipelines.compute.size()-1)) { pipelines.computeIndex++; buildComputeCommandBuffer(); } } }; VulkanExample *vulkanExample; #if defined(_WIN32) LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam) { if (vulkanExample != NULL) { vulkanExample->handleMessages(hWnd, uMsg, wParam, lParam); } return (DefWindowProc(hWnd, uMsg, wParam, lParam)); } #elif defined(__linux__) && !defined(__ANDROID__) static void handleEvent(const xcb_generic_event_t *event) { if (vulkanExample != NULL) { vulkanExample->handleEvent(event); } } #endif // Main entry point #if defined(_WIN32) // Windows entry point int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR pCmdLine, int nCmdShow) #elif defined(__ANDROID__) // Android entry point void android_main(android_app* state) #elif defined(__linux__) // Linux entry point int main(const int argc, const char *argv[]) #endif { #if defined(__ANDROID__) // Removing this may cause the compiler to omit the main entry point // which would make the application crash at start app_dummy(); #endif vulkanExample = new VulkanExample(); #if defined(_WIN32) vulkanExample->setupWindow(hInstance, WndProc); #elif defined(__ANDROID__) // Attach vulkan example to global android application state state->userData = vulkanExample; state->onAppCmd = VulkanExample::handleAppCommand; state->onInputEvent = VulkanExample::handleAppInput; vulkanExample->androidApp = state; #elif defined(__linux__) vulkanExample->setupWindow(); #endif #if !defined(__ANDROID__) vulkanExample->initSwapchain(); vulkanExample->prepare(); #endif vulkanExample->renderLoop(); delete(vulkanExample); #if !defined(__ANDROID__) return 0; #endif }