/* * Vulkan Example - Using shader objects via VK_EXT_shader_object * * Copyright (C) 2023 by Sascha Willems - www.saschawillems.de * * This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT) */ #include "vulkanexamplebase.h" #include "VulkanglTFModel.h" class VulkanExample: public VulkanExampleBase { public: vkglTF::Model scene; // Same uniform buffer layout as shader struct UniformData { glm::mat4 projection; glm::mat4 modelView; glm::vec4 lightPos = glm::vec4(0.0f, 2.0f, 1.0f, 0.0f); } uniformData; vks::Buffer uniformBuffer; VkPipelineLayout pipelineLayout{ VK_NULL_HANDLE }; VkDescriptorSet descriptorSet{ VK_NULL_HANDLE }; VkDescriptorSetLayout descriptorSetLayout{ VK_NULL_HANDLE }; VkShaderEXT shaders[2]; VkPhysicalDeviceShaderObjectFeaturesEXT enabledShaderObjectFeaturesEXT{}; VkPhysicalDeviceDynamicRenderingFeaturesKHR enabledDynamicRenderingFeaturesKHR{}; PFN_vkCreateShadersEXT vkCreateShadersEXT{ VK_NULL_HANDLE }; PFN_vkDestroyShaderEXT vkDestroyShaderEXT{ VK_NULL_HANDLE }; PFN_vkCmdBindShadersEXT vkCmdBindShadersEXT{ VK_NULL_HANDLE }; PFN_vkGetShaderBinaryDataEXT vkGetShaderBinaryDataEXT{ VK_NULL_HANDLE }; // VK_EXT_shader_objects requires render passes to be dynamic PFN_vkCmdBeginRenderingKHR vkCmdBeginRenderingKHR{ VK_NULL_HANDLE }; PFN_vkCmdEndRenderingKHR vkCmdEndRenderingKHR{ VK_NULL_HANDLE }; // With VK_EXT_shader_object pipeline state must be set at command buffer creation using these functions PFN_vkCmdSetAlphaToCoverageEnableEXT vkCmdSetAlphaToCoverageEnableEXT{ VK_NULL_HANDLE }; PFN_vkCmdSetColorBlendEnableEXT vkCmdSetColorBlendEnableEXT{ VK_NULL_HANDLE }; PFN_vkCmdSetColorWriteMaskEXT vkCmdSetColorWriteMaskEXT{ VK_NULL_HANDLE }; PFN_vkCmdSetCullModeEXT vkCmdSetCullModeEXT{ VK_NULL_HANDLE }; PFN_vkCmdSetDepthBiasEnableEXT vkCmdSetDepthBiasEnableEXT{ VK_NULL_HANDLE }; PFN_vkCmdSetDepthCompareOpEXT vkCmdSetDepthCompareOpEXT{ VK_NULL_HANDLE }; PFN_vkCmdSetDepthTestEnableEXT vkCmdSetDepthTestEnableEXT{ VK_NULL_HANDLE }; PFN_vkCmdSetDepthWriteEnableEXT vkCmdSetDepthWriteEnableEXT{ VK_NULL_HANDLE }; PFN_vkCmdSetFrontFaceEXT vkCmdSetFrontFaceEXT{ VK_NULL_HANDLE }; PFN_vkCmdSetPolygonModeEXT vkCmdSetPolygonModeEXT{ VK_NULL_HANDLE }; PFN_vkCmdSetPrimitiveRestartEnableEXT vkCmdSetPrimitiveRestartEnableEXT{ VK_NULL_HANDLE }; PFN_vkCmdSetPrimitiveTopologyEXT vkCmdSetPrimitiveTopologyEXT{ VK_NULL_HANDLE }; PFN_vkCmdSetRasterizationSamplesEXT vkCmdSetRasterizationSamplesEXT{ VK_NULL_HANDLE }; PFN_vkCmdSetRasterizerDiscardEnableEXT vkCmdSetRasterizerDiscardEnableEXT{ VK_NULL_HANDLE }; PFN_vkCmdSetSampleMaskEXT vkCmdSetSampleMaskEXT{ VK_NULL_HANDLE }; PFN_vkCmdSetScissorWithCountEXT vkCmdSetScissorWithCountEXT{ VK_NULL_HANDLE }; PFN_vkCmdSetStencilTestEnableEXT vkCmdSetStencilTestEnableEXT{ VK_NULL_HANDLE }; PFN_vkCmdSetViewportWithCountEXT vkCmdSetViewportWithCountEXT{ VK_NULL_HANDLE }; // VK_EXT_vertex_input_dynamic_state PFN_vkCmdSetVertexInputEXT vkCmdSetVertexInputEXT{ VK_NULL_HANDLE }; VulkanExample() : VulkanExampleBase() { title = "Shader objects (VK_EXT_shader_object)"; camera.type = Camera::CameraType::lookat; camera.setPosition(glm::vec3(0.0f, 0.0f, -10.5f)); camera.setRotation(glm::vec3(-25.0f, 15.0f, 0.0f)); camera.setRotationSpeed(0.5f); camera.setPerspective(60.0f, (float)(width) / (float)height, 0.1f, 256.0f); enabledDeviceExtensions.push_back(VK_EXT_SHADER_OBJECT_EXTENSION_NAME); enabledDeviceExtensions.push_back(VK_KHR_DYNAMIC_RENDERING_EXTENSION_NAME); // With VK_EXT_shader_object all baked pipeline state is set dynamically at command buffer creation, so we need to enable additional extensions enabledDeviceExtensions.push_back(VK_EXT_EXTENDED_DYNAMIC_STATE_EXTENSION_NAME); enabledDeviceExtensions.push_back(VK_EXT_VERTEX_INPUT_DYNAMIC_STATE_EXTENSION_NAME); // Since we are not requiring Vulkan 1.2, we need to enable some additional extensios for dynamic rendering enabledDeviceExtensions.push_back(VK_KHR_MAINTENANCE2_EXTENSION_NAME); enabledDeviceExtensions.push_back(VK_KHR_MULTIVIEW_EXTENSION_NAME); enabledDeviceExtensions.push_back(VK_KHR_CREATE_RENDERPASS_2_EXTENSION_NAME); enabledDeviceExtensions.push_back(VK_KHR_DEPTH_STENCIL_RESOLVE_EXTENSION_NAME); enabledInstanceExtensions.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME); enabledShaderObjectFeaturesEXT.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_OBJECT_FEATURES_EXT; enabledShaderObjectFeaturesEXT.shaderObject = VK_TRUE; enabledDynamicRenderingFeaturesKHR.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DYNAMIC_RENDERING_FEATURES_KHR; enabledDynamicRenderingFeaturesKHR.dynamicRendering = VK_TRUE; enabledDynamicRenderingFeaturesKHR.pNext = &enabledShaderObjectFeaturesEXT; deviceCreatepNextChain = &enabledDynamicRenderingFeaturesKHR; } ~VulkanExample() { if (device) { vkDestroyPipelineLayout(device, pipelineLayout, nullptr); vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr); uniformBuffer.destroy(); vkDestroyShaderEXT(device, shaders[0], nullptr); vkDestroyShaderEXT(device, shaders[1], nullptr); } } void loadAssets() { const uint32_t glTFLoadingFlags = vkglTF::FileLoadingFlags::PreTransformVertices | vkglTF::FileLoadingFlags::PreMultiplyVertexColors | vkglTF::FileLoadingFlags::FlipY; scene.loadFromFile(getAssetPath() + "models/treasure_smooth.gltf", vulkanDevice, queue, glTFLoadingFlags); } void setupDescriptors() { // Pool std::vector poolSizes = { vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1) }; VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, 2); VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool)); // Layout std::vector setLayoutBindings = { // Binding 0 : Vertex shader uniform buffer vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0) }; VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout)); VkPipelineLayoutCreateInfo pipelineLayoutCI = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayout, 1); VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCI, nullptr, &pipelineLayout)); // Sets VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1); VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet)); std::vector writeDescriptorSets = { // Binding 0 : Vertex shader uniform buffer vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffer.descriptor) }; vkUpdateDescriptorSets(device, static_cast(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, nullptr); } // Loads a binary shader file void _loadShader(std::string filename, char* &code, size_t &size) { // @todo: Android std::ifstream is(filename, std::ios::binary | std::ios::in | std::ios::ate); if (is.is_open()) { size = is.tellg(); is.seekg(0, std::ios::beg); code = new char[size]; is.read(code, size); is.close(); assert(size > 0); } else { vks::tools::exitFatal("Error: Could not open shader " + filename, VK_ERROR_UNKNOWN); } } void createShaderObjects() { size_t shaderCodeSizes[2]{}; char* shaderCodes[2]{}; VkShaderCreateInfoEXT shaderCreateInfos[2]{}; // With VK_EXT_shader_object we can generate an implementation dependent binary file that's faster to load // So we check if the binray files exist and if we can load it instead of the SPIR-V bool binaryShadersLoaded = false; if (vks::tools::fileExists(getShadersPath() + "shaderobjects/phong.vert.bin") && vks::tools::fileExists(getShadersPath() + "shaderobjects/phong.frag.bin")) { // VS _loadShader(getShadersPath() + "shaderobjects/phong.vert.bin", shaderCodes[0], shaderCodeSizes[0]); shaderCreateInfos[0].sType = VK_STRUCTURE_TYPE_SHADER_CREATE_INFO_EXT; shaderCreateInfos[0].flags = VK_SHADER_CREATE_LINK_STAGE_BIT_EXT; shaderCreateInfos[0].stage = VK_SHADER_STAGE_VERTEX_BIT; shaderCreateInfos[0].nextStage = VK_SHADER_STAGE_FRAGMENT_BIT; shaderCreateInfos[0].codeType = VK_SHADER_CODE_TYPE_BINARY_EXT; shaderCreateInfos[0].pCode = shaderCodes[0]; shaderCreateInfos[0].codeSize = shaderCodeSizes[0]; shaderCreateInfos[0].pName = "main"; shaderCreateInfos[0].setLayoutCount = 1; shaderCreateInfos[0].pSetLayouts = &descriptorSetLayout; // FS _loadShader(getShadersPath() + "shaderobjects/phong.frag.bin", shaderCodes[1], shaderCodeSizes[1]); shaderCreateInfos[1].sType = VK_STRUCTURE_TYPE_SHADER_CREATE_INFO_EXT; shaderCreateInfos[1].flags = VK_SHADER_CREATE_LINK_STAGE_BIT_EXT; shaderCreateInfos[1].stage = VK_SHADER_STAGE_FRAGMENT_BIT; shaderCreateInfos[1].nextStage = 0; shaderCreateInfos[1].codeType = VK_SHADER_CODE_TYPE_BINARY_EXT; shaderCreateInfos[1].pCode = shaderCodes[1]; shaderCreateInfos[1].codeSize = shaderCodeSizes[1]; shaderCreateInfos[1].pName = "main"; shaderCreateInfos[1].setLayoutCount = 1; shaderCreateInfos[1].pSetLayouts = &descriptorSetLayout; VkResult result = vkCreateShadersEXT(device, 2, shaderCreateInfos, nullptr, shaders); // If the function returns e.g. VK_ERROR_INCOMPATIBLE_SHADER_BINARY_EXT, the binary file is no longer (or not at all) compatible with the current implementation if (result == VK_SUCCESS) { binaryShadersLoaded = true; } else { std::cout << "Could not load binary shader files (" << vks::tools::errorString(result) << ", loading SPIR - V instead\n"; } } // If the binary files weren't present, or we could not load them, we load from SPIR-V if (!binaryShadersLoaded) { // VS _loadShader(getShadersPath() + "shaderobjects/phong.vert.spv", shaderCodes[0], shaderCodeSizes[0]); shaderCreateInfos[0].sType = VK_STRUCTURE_TYPE_SHADER_CREATE_INFO_EXT; shaderCreateInfos[0].flags = VK_SHADER_CREATE_LINK_STAGE_BIT_EXT; shaderCreateInfos[0].stage = VK_SHADER_STAGE_VERTEX_BIT; shaderCreateInfos[0].nextStage = VK_SHADER_STAGE_FRAGMENT_BIT; shaderCreateInfos[0].codeType = VK_SHADER_CODE_TYPE_SPIRV_EXT; shaderCreateInfos[0].pCode = shaderCodes[0]; shaderCreateInfos[0].codeSize = shaderCodeSizes[0]; shaderCreateInfos[0].pName = "main"; shaderCreateInfos[0].setLayoutCount = 1; shaderCreateInfos[0].pSetLayouts = &descriptorSetLayout; // FS _loadShader(getShadersPath() + "shaderobjects/phong.frag.spv", shaderCodes[1], shaderCodeSizes[1]); shaderCreateInfos[1].sType = VK_STRUCTURE_TYPE_SHADER_CREATE_INFO_EXT; shaderCreateInfos[1].flags = VK_SHADER_CREATE_LINK_STAGE_BIT_EXT; shaderCreateInfos[1].stage = VK_SHADER_STAGE_FRAGMENT_BIT; shaderCreateInfos[1].nextStage = 0; shaderCreateInfos[1].codeType = VK_SHADER_CODE_TYPE_SPIRV_EXT; shaderCreateInfos[1].pCode = shaderCodes[1]; shaderCreateInfos[1].codeSize = shaderCodeSizes[1]; shaderCreateInfos[1].pName = "main"; shaderCreateInfos[1].setLayoutCount = 1; shaderCreateInfos[1].pSetLayouts = &descriptorSetLayout; VK_CHECK_RESULT(vkCreateShadersEXT(device, 2, shaderCreateInfos, nullptr, shaders)); // Store the binary shader files so we can try to load them at the next start size_t dataSize{ 0 }; char* data{ nullptr }; std::fstream is; vkGetShaderBinaryDataEXT(device, shaders[0], &dataSize, nullptr); data = new char[dataSize]; vkGetShaderBinaryDataEXT(device, shaders[0], &dataSize, data); is.open(getShadersPath() + "shaderobjects/phong.vert.bin", std::ios::binary | std::ios::out); is.write(data, dataSize); is.close(); delete[] data; vkGetShaderBinaryDataEXT(device, shaders[1], &dataSize, nullptr); data = new char[dataSize]; vkGetShaderBinaryDataEXT(device, shaders[1], &dataSize, data); is.open(getShadersPath() + "shaderobjects/phong.frag.bin", std::ios::binary | std::ios::out); is.write(data, dataSize); is.close(); delete[] data; } } void buildCommandBuffers() { VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo(); for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) { VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo)); // Transition color and depth images for drawing vks::tools::insertImageMemoryBarrier( drawCmdBuffers[i], swapChain.buffers[i].image, 0, VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, VkImageSubresourceRange{ VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 }); vks::tools::insertImageMemoryBarrier( drawCmdBuffers[i], depthStencil.image, 0, VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL, VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT, VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT, VkImageSubresourceRange{ VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT, 0, 1, 0, 1 }); // New structures are used to define the attachments used in dynamic rendering VkRenderingAttachmentInfoKHR colorAttachment{}; colorAttachment.sType = VK_STRUCTURE_TYPE_RENDERING_ATTACHMENT_INFO_KHR; colorAttachment.imageView = swapChain.buffers[i].view; colorAttachment.imageLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; colorAttachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; colorAttachment.storeOp = VK_ATTACHMENT_STORE_OP_STORE; colorAttachment.clearValue.color = { 0.0f,0.0f,0.0f,0.0f }; // A single depth stencil attachment info can be used, but they can also be specified separately. // When both are specified separately, the only requirement is that the image view is identical. VkRenderingAttachmentInfoKHR depthStencilAttachment{}; depthStencilAttachment.sType = VK_STRUCTURE_TYPE_RENDERING_ATTACHMENT_INFO_KHR; depthStencilAttachment.imageView = depthStencil.view; depthStencilAttachment.imageLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; depthStencilAttachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; depthStencilAttachment.storeOp = VK_ATTACHMENT_STORE_OP_STORE; depthStencilAttachment.clearValue.depthStencil = { 1.0f, 0 }; VkRenderingInfoKHR renderingInfo{}; renderingInfo.sType = VK_STRUCTURE_TYPE_RENDERING_INFO_KHR; renderingInfo.renderArea = { 0, 0, width, height }; renderingInfo.layerCount = 1; renderingInfo.colorAttachmentCount = 1; renderingInfo.pColorAttachments = &colorAttachment; renderingInfo.pDepthAttachment = &depthStencilAttachment; renderingInfo.pStencilAttachment = &depthStencilAttachment; // Begin dynamic rendering vkCmdBeginRenderingKHR(drawCmdBuffers[i], &renderingInfo); VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f); VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0); // No more pipelines required, everything is bound at command buffer level // This also means that we need to explicitly set a lot of the state to be spec compliant vkCmdSetViewportWithCountEXT(drawCmdBuffers[i], 1, &viewport); vkCmdSetScissorWithCountEXT(drawCmdBuffers[i], 1, &scissor); vkCmdSetCullModeEXT(drawCmdBuffers[i], VK_CULL_MODE_BACK_BIT); vkCmdSetFrontFaceEXT(drawCmdBuffers[i], VK_FRONT_FACE_COUNTER_CLOCKWISE); vkCmdSetDepthTestEnableEXT(drawCmdBuffers[i], VK_TRUE); vkCmdSetDepthWriteEnableEXT(drawCmdBuffers[i], VK_TRUE); vkCmdSetDepthCompareOpEXT(drawCmdBuffers[i], VK_COMPARE_OP_LESS_OR_EQUAL); vkCmdSetPrimitiveTopologyEXT(drawCmdBuffers[i], VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST); vkCmdSetRasterizerDiscardEnableEXT(drawCmdBuffers[i], VK_FALSE); vkCmdSetPolygonModeEXT(drawCmdBuffers[i], VK_POLYGON_MODE_FILL); vkCmdSetRasterizationSamplesEXT(drawCmdBuffers[i], VK_SAMPLE_COUNT_1_BIT); vkCmdSetAlphaToCoverageEnableEXT(drawCmdBuffers[i], VK_FALSE); vkCmdSetDepthBiasEnableEXT(drawCmdBuffers[i], VK_FALSE); vkCmdSetStencilTestEnableEXT(drawCmdBuffers[i], VK_FALSE); vkCmdSetPrimitiveRestartEnableEXT(drawCmdBuffers[i], VK_FALSE); const uint32_t sampleMask = 0xFF; vkCmdSetSampleMaskEXT(drawCmdBuffers[i], VK_SAMPLE_COUNT_1_BIT, &sampleMask); const VkBool32 colorBlendEnables = false; const VkColorComponentFlags colorBlendComponentFlags = 0xf; const VkColorBlendEquationEXT colorBlendEquation{}; vkCmdSetColorBlendEnableEXT(drawCmdBuffers[i], 0, 1, &colorBlendEnables); vkCmdSetColorWriteMaskEXT(drawCmdBuffers[i], 0, 1, &colorBlendComponentFlags); VkVertexInputBindingDescription2EXT vertexInputBinding{}; vertexInputBinding.sType = VK_STRUCTURE_TYPE_VERTEX_INPUT_BINDING_DESCRIPTION_2_EXT; vertexInputBinding.binding = 0; vertexInputBinding.inputRate = VK_VERTEX_INPUT_RATE_VERTEX; vertexInputBinding.stride = sizeof(vkglTF::Vertex); vertexInputBinding.divisor = 1; std::vector vertexAttributes = { { VK_STRUCTURE_TYPE_VERTEX_INPUT_ATTRIBUTE_DESCRIPTION_2_EXT, nullptr, 0, 0, VK_FORMAT_R32G32B32_SFLOAT, offsetof(vkglTF::Vertex, pos) }, { VK_STRUCTURE_TYPE_VERTEX_INPUT_ATTRIBUTE_DESCRIPTION_2_EXT, nullptr, 1, 0, VK_FORMAT_R32G32B32_SFLOAT, offsetof(vkglTF::Vertex, normal) }, { VK_STRUCTURE_TYPE_VERTEX_INPUT_ATTRIBUTE_DESCRIPTION_2_EXT, nullptr, 2, 0, VK_FORMAT_R32G32B32A32_SFLOAT, offsetof(vkglTF::Vertex, color) } }; vkCmdSetVertexInputEXT(drawCmdBuffers[i], 1, &vertexInputBinding, 3, vertexAttributes.data()); vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, nullptr); scene.bindBuffers(drawCmdBuffers[i]); // Binding the shaders VkShaderStageFlagBits stages[2] = { VK_SHADER_STAGE_VERTEX_BIT, VK_SHADER_STAGE_FRAGMENT_BIT }; vkCmdBindShadersEXT(drawCmdBuffers[i], 2, stages, shaders); scene.draw(drawCmdBuffers[i]); // @todo: Currently disabled, the UI needs to be adopated to work with shader objects // drawUI(drawCmdBuffers[i]); // End dynamic rendering vkCmdEndRenderingKHR(drawCmdBuffers[i]); // Transition color image for presentation vks::tools::insertImageMemoryBarrier( drawCmdBuffers[i], swapChain.buffers[i].image, VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT, 0, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, VK_IMAGE_LAYOUT_PRESENT_SRC_KHR, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, VkImageSubresourceRange{ VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 }); VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i])); } } // Prepare and initialize uniform buffer containing shader uniforms void prepareUniformBuffers() { // Create the vertex shader uniform buffer block VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBuffer, sizeof(UniformData))); VK_CHECK_RESULT(uniformBuffer.map()); updateUniformBuffers(); } void updateUniformBuffers() { uniformData.projection = camera.matrices.perspective; uniformData.modelView = camera.matrices.view; memcpy(uniformBuffer.mapped, &uniformData, sizeof(UniformData)); } void draw() { VulkanExampleBase::prepareFrame(); submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer]; VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE)); VulkanExampleBase::submitFrame(); } void prepare() { VulkanExampleBase::prepare(); // As this is an extension, we need to explicitly load the function pointers for the shader object commands used in this sample vkCreateShadersEXT = reinterpret_cast(vkGetDeviceProcAddr(device, "vkCreateShadersEXT")); vkDestroyShaderEXT = reinterpret_cast(vkGetDeviceProcAddr(device, "vkDestroyShaderEXT")); vkCmdBindShadersEXT = reinterpret_cast(vkGetDeviceProcAddr(device, "vkCmdBindShadersEXT")); vkGetShaderBinaryDataEXT = reinterpret_cast(vkGetDeviceProcAddr(device, "vkGetShaderBinaryDataEXT")); vkCmdBeginRenderingKHR = reinterpret_cast(vkGetDeviceProcAddr(device, "vkCmdBeginRenderingKHR")); vkCmdEndRenderingKHR = reinterpret_cast(vkGetDeviceProcAddr(device, "vkCmdEndRenderingKHR")); vkCmdSetAlphaToCoverageEnableEXT = reinterpret_cast(vkGetDeviceProcAddr(device, "vkCmdSetAlphaToCoverageEnableEXT")); vkCmdSetColorBlendEnableEXT = reinterpret_cast(vkGetDeviceProcAddr(device, "vkCmdSetColorBlendEnableEXT")); vkCmdSetColorWriteMaskEXT = reinterpret_cast(vkGetDeviceProcAddr(device, "vkCmdSetColorWriteMaskEXT")); vkCmdSetCullModeEXT = reinterpret_cast(vkGetDeviceProcAddr(device, "vkCmdSetCullModeEXT")); vkCmdSetDepthBiasEnableEXT = reinterpret_cast(vkGetDeviceProcAddr(device, "vkCmdSetDepthBiasEnableEXT")); vkCmdSetDepthCompareOpEXT = reinterpret_cast(vkGetDeviceProcAddr(device, "vkCmdSetDepthCompareOpEXT")); vkCmdSetDepthTestEnableEXT = reinterpret_cast(vkGetDeviceProcAddr(device, "vkCmdSetDepthTestEnableEXT")); vkCmdSetDepthWriteEnableEXT = reinterpret_cast(vkGetDeviceProcAddr(device, "vkCmdSetDepthWriteEnableEXT")); vkCmdSetFrontFaceEXT = reinterpret_cast(vkGetDeviceProcAddr(device, "vkCmdSetFrontFaceEXT")); vkCmdSetPolygonModeEXT = reinterpret_cast(vkGetDeviceProcAddr(device, "vkCmdSetPolygonModeEXT")); vkCmdSetPrimitiveRestartEnableEXT = reinterpret_cast(vkGetDeviceProcAddr(device, "vkCmdSetPrimitiveRestartEnableEXT")); vkCmdSetPrimitiveTopologyEXT = reinterpret_cast(vkGetDeviceProcAddr(device, "vkCmdSetPrimitiveTopologyEXT")); vkCmdSetRasterizationSamplesEXT = reinterpret_cast(vkGetDeviceProcAddr(device, "vkCmdSetRasterizationSamplesEXT")); vkCmdSetRasterizerDiscardEnableEXT = reinterpret_cast(vkGetDeviceProcAddr(device, "vkCmdSetRasterizerDiscardEnableEXT")); vkCmdSetSampleMaskEXT = reinterpret_cast(vkGetDeviceProcAddr(device, "vkCmdSetSampleMaskEXT")); vkCmdSetScissorWithCountEXT = reinterpret_cast(vkGetDeviceProcAddr(device, "vkCmdSetScissorWithCountEXT")); vkCmdSetStencilTestEnableEXT = reinterpret_cast(vkGetDeviceProcAddr(device, "vkCmdSetStencilTestEnableEXT")); vkCmdSetVertexInputEXT = reinterpret_cast(vkGetDeviceProcAddr(device, "vkCmdSetVertexInputEXT")); vkCmdSetViewportWithCountEXT = reinterpret_cast(vkGetDeviceProcAddr(device, "vkCmdSetViewportWithCountEXT"));; loadAssets(); prepareUniformBuffers(); setupDescriptors(); createShaderObjects(); buildCommandBuffers(); prepared = true; } virtual void render() { if (!prepared) return; draw(); updateUniformBuffers(); } }; VULKAN_EXAMPLE_MAIN()