/* * Vulkan Example - CPU based particle system * * This sample renders a particle system that is updated on the host (by the CPU) and rendered by the GPU using a vertex buffer * * Copyright (C) 2016-2023 by Sascha Willems - www.saschawillems.de * * This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT) */ #include "vulkanexamplebase.h" #include "VulkanglTFModel.h" #define PARTICLE_COUNT 512 #define FLAME_RADIUS 8.0f // The particle system is made from two different particle types // That type defines how a particle is rendered #define PARTICLE_TYPE_FLAME 0 #define PARTICLE_TYPE_SMOKE 1 struct Particle { glm::vec4 pos; glm::vec4 color; float alpha; float size; float rotation; uint32_t type; glm::vec4 vel; float rotationSpeed; }; class VulkanExample : public VulkanExampleBase { public: struct { struct { vks::Texture2D smoke; vks::Texture2D fire; // Use a custom sampler to change sampler attributes required for rotating the uvs in the shader for alpha blended textures VkSampler sampler; } particles; struct { vks::Texture2D colorMap; vks::Texture2D normalMap; } floor; } textures{}; vkglTF::Model environment; // These parameters define the particle system behaviour glm::vec3 emitterPos = glm::vec3(0.0f, -FLAME_RADIUS + 2.0f, 0.0f); glm::vec3 minVel = glm::vec3(-3.0f, 0.5f, -3.0f); glm::vec3 maxVel = glm::vec3(3.0f, 7.0f, 3.0f); struct Particles { VkBuffer buffer{ VK_NULL_HANDLE }; VkDeviceMemory memory{ VK_NULL_HANDLE }; // Store the mapped address of the particle data for reuse void *mappedMemory; // Size of the particle buffer in bytes size_t size{ 0 }; } particles; struct { vks::Buffer particles; vks::Buffer environment; } uniformBuffers; struct UniformDataParticles { glm::mat4 projection; glm::mat4 modelView; // The viewport dimension is used by the particle system vertex shader // to calculate the absolute point size based on the current viewport size glm::vec2 viewportDim; // This is the base point size for all particles float pointSize{ 10.0f }; } uniformDataParticles; struct UniformDataEnvironment { glm::mat4 projection; glm::mat4 modelView; glm::mat4 normal; glm::vec4 lightPos = glm::vec4(0.0f, 0.0f, 0.0f, 0.0f); } uniformDataEnvironment; struct { VkPipeline particles{ VK_NULL_HANDLE }; VkPipeline environment{ VK_NULL_HANDLE }; } pipelines; VkPipelineLayout pipelineLayout{ VK_NULL_HANDLE }; VkDescriptorSetLayout descriptorSetLayout{ VK_NULL_HANDLE }; struct { VkDescriptorSet particles{ VK_NULL_HANDLE }; VkDescriptorSet environment{ VK_NULL_HANDLE }; } descriptorSets; std::vector particleBuffer{}; std::default_random_engine rndEngine; VulkanExample() : VulkanExampleBase() { title = "CPU based particle system"; camera.type = Camera::CameraType::lookat; camera.setPosition(glm::vec3(0.0f, 0.0f, -75.0f)); camera.setRotation(glm::vec3(-15.0f, 45.0f, 0.0f)); camera.setPerspective(60.0f, (float)width / (float)height, 1.0f, 256.0f); timerSpeed *= 8.0f; rndEngine.seed(benchmark.active ? 0 : (unsigned)time(nullptr)); } ~VulkanExample() { if (device) { textures.particles.smoke.destroy(); textures.particles.fire.destroy(); textures.floor.colorMap.destroy(); textures.floor.normalMap.destroy(); vkDestroyPipeline(device, pipelines.particles, nullptr); vkDestroyPipeline(device, pipelines.environment, nullptr); vkDestroyPipelineLayout(device, pipelineLayout, nullptr); vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr); vkUnmapMemory(device, particles.memory); vkDestroyBuffer(device, particles.buffer, nullptr); vkFreeMemory(device, particles.memory, nullptr); uniformBuffers.environment.destroy(); uniformBuffers.particles.destroy(); vkDestroySampler(device, textures.particles.sampler, nullptr); } } virtual void getEnabledFeatures() { // Enable anisotropic filtering if supported if (deviceFeatures.samplerAnisotropy) { enabledFeatures.samplerAnisotropy = VK_TRUE; }; } void buildCommandBuffers() { VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo(); VkClearValue clearValues[2]; clearValues[0].color = defaultClearColor; clearValues[1].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo(); renderPassBeginInfo.renderPass = renderPass; renderPassBeginInfo.renderArea.offset.x = 0; renderPassBeginInfo.renderArea.offset.y = 0; renderPassBeginInfo.renderArea.extent.width = width; renderPassBeginInfo.renderArea.extent.height = height; renderPassBeginInfo.clearValueCount = 2; renderPassBeginInfo.pClearValues = clearValues; for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) { // Set target frame buffer renderPassBeginInfo.framebuffer = frameBuffers[i]; VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo)); vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f); vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); VkRect2D scissor = vks::initializers::rect2D(width, height, 0,0); vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor); VkDeviceSize offsets[1] = { 0 }; // Environment vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets.environment, 0, nullptr); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.environment); environment.draw(drawCmdBuffers[i]); // Particle system (no index buffer) vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets.particles, 0, nullptr); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.particles); vkCmdBindVertexBuffers(drawCmdBuffers[i], 0, 1, &particles.buffer, offsets); vkCmdDraw(drawCmdBuffers[i], static_cast(particleBuffer.size()), 1, 0, 0); drawUI(drawCmdBuffers[i]); vkCmdEndRenderPass(drawCmdBuffers[i]); VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i])); } } float rnd(float range) { std::uniform_real_distribution rndDist(0.0f, range); return rndDist(rndEngine); } void initParticle(Particle *particle, glm::vec3 emitterPos) { particle->vel = glm::vec4(0.0f, minVel.y + rnd(maxVel.y - minVel.y), 0.0f, 0.0f); particle->alpha = rnd(0.75f); particle->size = 1.0f + rnd(0.5f); particle->color = glm::vec4(1.0f); particle->type = PARTICLE_TYPE_FLAME; particle->rotation = rnd(2.0f * float(M_PI)); particle->rotationSpeed = rnd(2.0f) - rnd(2.0f); // Get random sphere point float theta = rnd(2.0f * float(M_PI)); float phi = rnd(float(M_PI)) - float(M_PI) / 2.0f; float r = rnd(FLAME_RADIUS); particle->pos.x = r * cos(theta) * cos(phi); particle->pos.y = r * sin(phi); particle->pos.z = r * sin(theta) * cos(phi); particle->pos += glm::vec4(emitterPos, 0.0f); } // Change the type of a particle, e.g. from flame to smoke void transitionParticle(Particle *particle) { switch (particle->type) { case PARTICLE_TYPE_FLAME: // Flame particles have a chance of turning into smoke if (rnd(1.0f) < 0.05f) { particle->alpha = 0.0f; particle->color = glm::vec4(0.25f + rnd(0.25f)); particle->pos.x *= 0.5f; particle->pos.z *= 0.5f; particle->vel = glm::vec4(rnd(1.0f) - rnd(1.0f), (minVel.y * 2) + rnd(maxVel.y - minVel.y), rnd(1.0f) - rnd(1.0f), 0.0f); particle->size = 1.0f + rnd(0.5f); particle->rotationSpeed = rnd(1.0f) - rnd(1.0f); particle->type = PARTICLE_TYPE_SMOKE; } else { initParticle(particle, emitterPos); } break; case PARTICLE_TYPE_SMOKE: // Respawn at end of life initParticle(particle, emitterPos); break; } } // Initialize the particle system and create a vertex buffer for rendering the particles void prepareParticles() { particleBuffer.resize(PARTICLE_COUNT); for (auto& particle : particleBuffer) { initParticle(&particle, emitterPos); particle.alpha = 1.0f - (abs(particle.pos.y) / (FLAME_RADIUS * 2.0f)); } particles.size = particleBuffer.size() * sizeof(Particle); VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_VERTEX_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, particles.size, &particles.buffer, &particles.memory, particleBuffer.data())); // Map the memory and store the pointer for reuse VK_CHECK_RESULT(vkMapMemory(device, particles.memory, 0, particles.size, 0, &particles.mappedMemory)); } // Update the state of all particles void updateParticles() { float particleTimer = frameTimer * 0.45f; for (auto& particle : particleBuffer) { switch (particle.type) { case PARTICLE_TYPE_FLAME: particle.pos.y -= particle.vel.y * particleTimer * 3.5f; particle.alpha += particleTimer * 2.5f; particle.size -= particleTimer * 0.5f; break; case PARTICLE_TYPE_SMOKE: particle.pos -= particle.vel * frameTimer * 1.0f; particle.alpha += particleTimer * 1.25f; particle.size += particleTimer * 0.125f; particle.color -= particleTimer * 0.05f; break; } particle.rotation += particleTimer * particle.rotationSpeed; // If a particle has faded out, turn it into the other type (e.g. flame to smoke and vice versa) if (particle.alpha > 2.0f) { transitionParticle(&particle); } } // Copy the updated particles to the vertex buffer size_t size = particleBuffer.size() * sizeof(Particle); memcpy(particles.mappedMemory, particleBuffer.data(), size); } void loadAssets() { // Particles textures.particles.smoke.loadFromFile(getAssetPath() + "textures/particle_smoke.ktx", VK_FORMAT_R8G8B8A8_UNORM, vulkanDevice, queue); textures.particles.fire.loadFromFile(getAssetPath() + "textures/particle_fire.ktx", VK_FORMAT_R8G8B8A8_UNORM, vulkanDevice, queue); // Floor textures.floor.colorMap.loadFromFile(getAssetPath() + "textures/fireplace_colormap_rgba.ktx", VK_FORMAT_R8G8B8A8_UNORM, vulkanDevice, queue); textures.floor.normalMap.loadFromFile(getAssetPath() + "textures/fireplace_normalmap_rgba.ktx", VK_FORMAT_R8G8B8A8_UNORM, vulkanDevice, queue); // Create a custom sampler to be used with the particle textures // Create sampler VkSamplerCreateInfo samplerCreateInfo = vks::initializers::samplerCreateInfo(); samplerCreateInfo.magFilter = VK_FILTER_LINEAR; samplerCreateInfo.minFilter = VK_FILTER_LINEAR; samplerCreateInfo.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR; // Different address mode samplerCreateInfo.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER; samplerCreateInfo.addressModeV = samplerCreateInfo.addressModeU; samplerCreateInfo.addressModeW = samplerCreateInfo.addressModeU; samplerCreateInfo.mipLodBias = 0.0f; samplerCreateInfo.compareOp = VK_COMPARE_OP_NEVER; samplerCreateInfo.minLod = 0.0f; // Both particle textures have the same number of mip maps samplerCreateInfo.maxLod = float(textures.particles.fire.mipLevels); if (vulkanDevice->features.samplerAnisotropy) { // Enable anisotropic filtering samplerCreateInfo.maxAnisotropy = 8.0f; samplerCreateInfo.anisotropyEnable = VK_TRUE; } // Use a different border color (than the normal texture loader) for additive blending samplerCreateInfo.borderColor = VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK; VK_CHECK_RESULT(vkCreateSampler(device, &samplerCreateInfo, nullptr, &textures.particles.sampler)); const uint32_t glTFLoadingFlags = vkglTF::FileLoadingFlags::PreTransformVertices | vkglTF::FileLoadingFlags::PreMultiplyVertexColors | vkglTF::FileLoadingFlags::FlipY; environment.loadFromFile(getAssetPath() + "models/fireplace.gltf", vulkanDevice, queue, glTFLoadingFlags); } void setupDescriptors() { // Pool std::vector poolSizes = { vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2), vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 4) }; VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, 2); VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool)); // Layout std::vector setLayoutBindings = { // Binding 0 : Vertex shader uniform buffer vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0), // Binding 1 : Fragment shader image sampler vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1), // Binding 1 : Fragment shader image sampler vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT,2) }; VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout)); // Sets std::vector writeDescriptorSets; VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1); VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.particles)); // Image descriptor for the color map texture VkDescriptorImageInfo texDescriptorSmoke = vks::initializers::descriptorImageInfo(textures.particles.sampler, textures.particles.smoke.view, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL); VkDescriptorImageInfo texDescriptorFire = vks::initializers::descriptorImageInfo(textures.particles.sampler, textures.particles.fire.view, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL); writeDescriptorSets = { // Binding 0: Vertex shader uniform buffer vks::initializers::writeDescriptorSet(descriptorSets.particles, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.particles.descriptor), // Binding 1: Smoke texture vks::initializers::writeDescriptorSet(descriptorSets.particles, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &texDescriptorSmoke), // Binding 1: Fire texture array vks::initializers::writeDescriptorSet(descriptorSets.particles, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2, &texDescriptorFire) }; vkUpdateDescriptorSets(device, static_cast(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, nullptr); // Environment VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.environment)); writeDescriptorSets = { // Binding 0: Vertex shader uniform buffer vks::initializers::writeDescriptorSet(descriptorSets.environment, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.environment.descriptor), // Binding 1: Color map vks::initializers::writeDescriptorSet(descriptorSets.environment, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &textures.floor.colorMap.descriptor), // Binding 2: Normal map vks::initializers::writeDescriptorSet(descriptorSets.environment, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2, &textures.floor.normalMap.descriptor), }; vkUpdateDescriptorSets(device, static_cast(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, nullptr); } void preparePipelines() { // Layout VkPipelineLayoutCreateInfo pipelineLayoutCI = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayout, 1); VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCI, nullptr, &pipelineLayout)); // Pipelines VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_POINT_LIST, 0, VK_FALSE); VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0); VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE); VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState); VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL); VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0); VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0); std::vector dynamicStateEnables = {VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR}; VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables); std::array shaderStages; VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass); pipelineCI.pInputAssemblyState = &inputAssemblyState; pipelineCI.pRasterizationState = &rasterizationState; pipelineCI.pColorBlendState = &colorBlendState; pipelineCI.pMultisampleState = &multisampleState; pipelineCI.pViewportState = &viewportState; pipelineCI.pDepthStencilState = &depthStencilState; pipelineCI.pDynamicState = &dynamicState; pipelineCI.stageCount = static_cast(shaderStages.size()); pipelineCI.pStages = shaderStages.data(); // Particle rendering pipeline { // Vertex input state VkVertexInputBindingDescription vertexInputBinding = vks::initializers::vertexInputBindingDescription(0, sizeof(Particle), VK_VERTEX_INPUT_RATE_VERTEX); std::vector vertexInputAttributes = { vks::initializers::vertexInputAttributeDescription(0, 0, VK_FORMAT_R32G32B32A32_SFLOAT, offsetof(Particle, pos)), // Location 0: Position vks::initializers::vertexInputAttributeDescription(0, 1, VK_FORMAT_R32G32B32A32_SFLOAT, offsetof(Particle, color)), // Location 1: Color vks::initializers::vertexInputAttributeDescription(0, 2, VK_FORMAT_R32_SFLOAT, offsetof(Particle, alpha)), // Location 2: Alpha vks::initializers::vertexInputAttributeDescription(0, 3, VK_FORMAT_R32_SFLOAT, offsetof(Particle, size)), // Location 3: Size vks::initializers::vertexInputAttributeDescription(0, 4, VK_FORMAT_R32_SFLOAT, offsetof(Particle, rotation)), // Location 4: Rotation vks::initializers::vertexInputAttributeDescription(0, 5, VK_FORMAT_R32_SINT, offsetof(Particle, type)), // Location 5: Particle type }; VkPipelineVertexInputStateCreateInfo vertexInputState = vks::initializers::pipelineVertexInputStateCreateInfo(); vertexInputState.vertexBindingDescriptionCount = 1; vertexInputState.pVertexBindingDescriptions = &vertexInputBinding; vertexInputState.vertexAttributeDescriptionCount = static_cast(vertexInputAttributes.size()); vertexInputState.pVertexAttributeDescriptions = vertexInputAttributes.data(); pipelineCI.pVertexInputState = &vertexInputState; // Don t' write to depth buffer depthStencilState.depthWriteEnable = VK_FALSE; // Premulitplied alpha blendAttachmentState.blendEnable = VK_TRUE; blendAttachmentState.srcColorBlendFactor = VK_BLEND_FACTOR_ONE; blendAttachmentState.dstColorBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA; blendAttachmentState.colorBlendOp = VK_BLEND_OP_ADD; blendAttachmentState.srcAlphaBlendFactor = VK_BLEND_FACTOR_ONE; blendAttachmentState.dstAlphaBlendFactor = VK_BLEND_FACTOR_ZERO; blendAttachmentState.alphaBlendOp = VK_BLEND_OP_ADD; blendAttachmentState.colorWriteMask = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT; shaderStages[0] = loadShader(getShadersPath() + "particlesystem/particle.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getShadersPath() + "particlesystem/particle.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.particles)); } // Environment rendering pipeline (normal mapped) { // Vertex input state is taken from the glTF model loader pipelineCI.pVertexInputState = vkglTF::Vertex::getPipelineVertexInputState({ vkglTF::VertexComponent::Position, vkglTF::VertexComponent::UV, vkglTF::VertexComponent::Normal, vkglTF::VertexComponent::Tangent }); blendAttachmentState.blendEnable = VK_FALSE; depthStencilState.depthWriteEnable = VK_TRUE; inputAssemblyState.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST; shaderStages[0] = loadShader(getShadersPath() + "particlesystem/normalmap.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getShadersPath() + "particlesystem/normalmap.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.environment)); } } // Prepare and initialize uniform buffer containing shader uniforms void prepareUniformBuffers() { // Vertex shader uniform buffer block VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBuffers.particles, sizeof(UniformDataParticles))); // Vertex shader uniform buffer block VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBuffers.environment, sizeof(UniformDataEnvironment))); // Map persistent VK_CHECK_RESULT(uniformBuffers.particles.map()); VK_CHECK_RESULT(uniformBuffers.environment.map()); } void updateUniformBuffers() { // Particle system fire uniformDataParticles.projection = camera.matrices.perspective; uniformDataParticles.modelView = camera.matrices.view; uniformDataParticles.viewportDim = glm::vec2((float)width, (float)height); memcpy(uniformBuffers.particles.mapped, &uniformDataParticles, sizeof(UniformDataParticles)); // Environment uniformDataEnvironment.projection = camera.matrices.perspective; uniformDataEnvironment.modelView = camera.matrices.view; uniformDataEnvironment.normal = glm::inverseTranspose(uniformDataEnvironment.modelView); // Update light position if (!paused) { uniformDataEnvironment.lightPos.x = sin(timer * 2.0f * float(M_PI)) * 1.5f; uniformDataEnvironment.lightPos.y = 0.0f; uniformDataEnvironment.lightPos.z = cos(timer * 2.0f * float(M_PI)) * 1.5f; } memcpy(uniformBuffers.environment.mapped, &uniformDataEnvironment, sizeof(UniformDataEnvironment)); } void prepare() { VulkanExampleBase::prepare(); loadAssets(); prepareParticles(); prepareUniformBuffers(); setupDescriptors(); preparePipelines(); buildCommandBuffers(); prepared = true; } void draw() { VulkanExampleBase::prepareFrame(); submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer]; VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE)); VulkanExampleBase::submitFrame(); } virtual void render() { if (!prepared) return; updateUniformBuffers(); if (!paused) { updateParticles(); } draw(); } }; VULKAN_EXAMPLE_MAIN()