/* * Vulkan Example - Text overlay rendering on-top of an existing scene using a separate render pass * * Copyright (C) 2016 by Sascha Willems - www.saschawillems.de * * This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT) */ #include #include #include #include #include #include #include #define GLM_FORCE_RADIANS #define GLM_FORCE_DEPTH_ZERO_TO_ONE #include #include #include #include #include "vulkanexamplebase.h" #include "vulkandevice.hpp" #include "../external/stb/stb_font_consolas_24_latin1.inl" #define VERTEX_BUFFER_BIND_ID 0 #define ENABLE_VALIDATION false // Vertex layout for this example std::vector vertexLayout = { vkMeshLoader::VERTEX_LAYOUT_POSITION, vkMeshLoader::VERTEX_LAYOUT_NORMAL, vkMeshLoader::VERTEX_LAYOUT_UV, vkMeshLoader::VERTEX_LAYOUT_COLOR, }; // Defines for the STB font used // STB font files can be found at http://nothings.org/stb/font/ #define STB_FONT_NAME stb_font_consolas_24_latin1 #define STB_FONT_WIDTH STB_FONT_consolas_24_latin1_BITMAP_WIDTH #define STB_FONT_HEIGHT STB_FONT_consolas_24_latin1_BITMAP_HEIGHT #define STB_FIRST_CHAR STB_FONT_consolas_24_latin1_FIRST_CHAR #define STB_NUM_CHARS STB_FONT_consolas_24_latin1_NUM_CHARS // Max. number of chars the text overlay buffer can hold #define MAX_CHAR_COUNT 2048 // Mostly self-contained text overlay class class TextOverlay { private: vk::VulkanDevice *vulkanDevice; VkQueue queue; VkFormat colorFormat; VkFormat depthFormat; uint32_t *frameBufferWidth; uint32_t *frameBufferHeight; VkSampler sampler; VkImage image; VkImageView view; VkBuffer buffer; VkDeviceMemory memory; VkDeviceMemory imageMemory; VkDescriptorPool descriptorPool; VkDescriptorSetLayout descriptorSetLayout; VkDescriptorSet descriptorSet; VkPipelineLayout pipelineLayout; VkPipelineCache pipelineCache; VkPipeline pipeline; VkRenderPass renderPass; VkCommandPool commandPool; std::vector cmdBuffers; std::vector frameBuffers; std::vector shaderStages; // Pointer to mapped vertex buffer glm::vec4 *mapped = nullptr; stb_fontchar stbFontData[STB_NUM_CHARS]; uint32_t numLetters; public: enum TextAlign { alignLeft, alignCenter, alignRight }; bool visible = true; TextOverlay( vk::VulkanDevice *vulkanDevice, VkQueue queue, std::vector &framebuffers, VkFormat colorformat, VkFormat depthformat, uint32_t *framebufferwidth, uint32_t *framebufferheight, std::vector shaderstages) { this->vulkanDevice = vulkanDevice; this->queue = queue; this->colorFormat = colorformat; this->depthFormat = depthformat; this->frameBuffers.resize(framebuffers.size()); for (uint32_t i = 0; i < framebuffers.size(); i++) { this->frameBuffers[i] = &framebuffers[i]; } this->shaderStages = shaderstages; this->frameBufferWidth = framebufferwidth; this->frameBufferHeight = framebufferheight; cmdBuffers.resize(framebuffers.size()); prepareResources(); prepareRenderPass(); preparePipeline(); } ~TextOverlay() { // Free up all Vulkan resources requested by the text overlay vkDestroySampler(vulkanDevice->logicalDevice, sampler, nullptr); vkDestroyImage(vulkanDevice->logicalDevice, image, nullptr); vkDestroyImageView(vulkanDevice->logicalDevice, view, nullptr); vkDestroyBuffer(vulkanDevice->logicalDevice, buffer, nullptr); vkFreeMemory(vulkanDevice->logicalDevice, memory, nullptr); vkFreeMemory(vulkanDevice->logicalDevice, imageMemory, nullptr); vkDestroyDescriptorSetLayout(vulkanDevice->logicalDevice, descriptorSetLayout, nullptr); vkDestroyDescriptorPool(vulkanDevice->logicalDevice, descriptorPool, nullptr); vkDestroyPipelineLayout(vulkanDevice->logicalDevice, pipelineLayout, nullptr); vkDestroyPipelineCache(vulkanDevice->logicalDevice, pipelineCache, nullptr); vkDestroyPipeline(vulkanDevice->logicalDevice, pipeline, nullptr); vkDestroyRenderPass(vulkanDevice->logicalDevice, renderPass, nullptr); vkFreeCommandBuffers(vulkanDevice->logicalDevice, commandPool, cmdBuffers.size(), cmdBuffers.data()); vkDestroyCommandPool(vulkanDevice->logicalDevice, commandPool, nullptr); } // Prepare all vulkan resources required to render the font // The text overlay uses separate resources for descriptors (pool, sets, layouts), pipelines and command buffers void prepareResources() { static unsigned char font24pixels[STB_FONT_HEIGHT][STB_FONT_WIDTH]; STB_FONT_NAME(stbFontData, font24pixels, STB_FONT_HEIGHT); // Command buffer // Pool VkCommandPoolCreateInfo cmdPoolInfo = {}; cmdPoolInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO; cmdPoolInfo.queueFamilyIndex = vulkanDevice->queueFamilyIndices.graphics; cmdPoolInfo.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT; VK_CHECK_RESULT(vkCreateCommandPool(vulkanDevice->logicalDevice, &cmdPoolInfo, nullptr, &commandPool)); VkCommandBufferAllocateInfo cmdBufAllocateInfo = vkTools::initializers::commandBufferAllocateInfo( commandPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY, (uint32_t)cmdBuffers.size()); VK_CHECK_RESULT(vkAllocateCommandBuffers(vulkanDevice->logicalDevice, &cmdBufAllocateInfo, cmdBuffers.data())); // Vertex buffer VkDeviceSize bufferSize = MAX_CHAR_COUNT * sizeof(glm::vec4); VkBufferCreateInfo bufferInfo = vkTools::initializers::bufferCreateInfo(VK_BUFFER_USAGE_VERTEX_BUFFER_BIT, bufferSize); VK_CHECK_RESULT(vkCreateBuffer(vulkanDevice->logicalDevice, &bufferInfo, nullptr, &buffer)); VkMemoryRequirements memReqs; VkMemoryAllocateInfo allocInfo = vkTools::initializers::memoryAllocateInfo(); vkGetBufferMemoryRequirements(vulkanDevice->logicalDevice, buffer, &memReqs); allocInfo.allocationSize = memReqs.size; allocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT); VK_CHECK_RESULT(vkAllocateMemory(vulkanDevice->logicalDevice, &allocInfo, nullptr, &memory)); VK_CHECK_RESULT(vkBindBufferMemory(vulkanDevice->logicalDevice, buffer, memory, 0)); // Font texture VkImageCreateInfo imageInfo = vkTools::initializers::imageCreateInfo(); imageInfo.imageType = VK_IMAGE_TYPE_2D; imageInfo.format = VK_FORMAT_R8_UNORM; imageInfo.extent.width = STB_FONT_WIDTH; imageInfo.extent.height = STB_FONT_HEIGHT; imageInfo.extent.depth = 1; imageInfo.mipLevels = 1; imageInfo.arrayLayers = 1; imageInfo.samples = VK_SAMPLE_COUNT_1_BIT; imageInfo.tiling = VK_IMAGE_TILING_OPTIMAL; imageInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT; imageInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; imageInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; VK_CHECK_RESULT(vkCreateImage(vulkanDevice->logicalDevice, &imageInfo, nullptr, &image)); vkGetImageMemoryRequirements(vulkanDevice->logicalDevice, image, &memReqs); allocInfo.allocationSize = memReqs.size; allocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); VK_CHECK_RESULT(vkAllocateMemory(vulkanDevice->logicalDevice, &allocInfo, nullptr, &imageMemory)); VK_CHECK_RESULT(vkBindImageMemory(vulkanDevice->logicalDevice, image, imageMemory, 0)); // Staging struct { VkDeviceMemory memory; VkBuffer buffer; } stagingBuffer; VkBufferCreateInfo bufferCreateInfo = vkTools::initializers::bufferCreateInfo(); bufferCreateInfo.size = allocInfo.allocationSize; bufferCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT; bufferCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; VK_CHECK_RESULT(vkCreateBuffer(vulkanDevice->logicalDevice, &bufferCreateInfo, nullptr, &stagingBuffer.buffer)); // Get memory requirements for the staging buffer (alignment, memory type bits) vkGetBufferMemoryRequirements(vulkanDevice->logicalDevice, stagingBuffer.buffer, &memReqs); allocInfo.allocationSize = memReqs.size; // Get memory type index for a host visible buffer allocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT); VK_CHECK_RESULT(vkAllocateMemory(vulkanDevice->logicalDevice, &allocInfo, nullptr, &stagingBuffer.memory)); VK_CHECK_RESULT(vkBindBufferMemory(vulkanDevice->logicalDevice, stagingBuffer.buffer, stagingBuffer.memory, 0)); uint8_t *data; VK_CHECK_RESULT(vkMapMemory(vulkanDevice->logicalDevice, stagingBuffer.memory, 0, allocInfo.allocationSize, 0, (void **)&data)); // Size of the font texture is WIDTH * HEIGHT * 1 byte (only one channel) memcpy(data, &font24pixels[0][0], STB_FONT_WIDTH * STB_FONT_HEIGHT); vkUnmapMemory(vulkanDevice->logicalDevice, stagingBuffer.memory); // Copy to image VkCommandBuffer copyCmd; cmdBufAllocateInfo.commandBufferCount = 1; VK_CHECK_RESULT(vkAllocateCommandBuffers(vulkanDevice->logicalDevice, &cmdBufAllocateInfo, ©Cmd)); VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo(); VK_CHECK_RESULT(vkBeginCommandBuffer(copyCmd, &cmdBufInfo)); // Prepare for transfer vkTools::setImageLayout( copyCmd, image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL); VkBufferImageCopy bufferCopyRegion = {}; bufferCopyRegion.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; bufferCopyRegion.imageSubresource.mipLevel = 0; bufferCopyRegion.imageSubresource.layerCount = 1; bufferCopyRegion.imageExtent.width = STB_FONT_WIDTH; bufferCopyRegion.imageExtent.height = STB_FONT_HEIGHT; bufferCopyRegion.imageExtent.depth = 1; vkCmdCopyBufferToImage( copyCmd, stagingBuffer.buffer, image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &bufferCopyRegion ); // Prepare for shader read vkTools::setImageLayout( copyCmd, image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL); VK_CHECK_RESULT(vkEndCommandBuffer(copyCmd)); VkSubmitInfo submitInfo = vkTools::initializers::submitInfo(); submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = ©Cmd; VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE)); VK_CHECK_RESULT(vkQueueWaitIdle(queue)); vkFreeCommandBuffers(vulkanDevice->logicalDevice, commandPool, 1, ©Cmd); vkFreeMemory(vulkanDevice->logicalDevice, stagingBuffer.memory, nullptr); vkDestroyBuffer(vulkanDevice->logicalDevice, stagingBuffer.buffer, nullptr); VkImageViewCreateInfo imageViewInfo = vkTools::initializers::imageViewCreateInfo(); imageViewInfo.image = image; imageViewInfo.viewType = VK_IMAGE_VIEW_TYPE_2D; imageViewInfo.format = imageInfo.format; imageViewInfo.components = { VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A }; imageViewInfo.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 }; VK_CHECK_RESULT(vkCreateImageView(vulkanDevice->logicalDevice, &imageViewInfo, nullptr, &view)); // Sampler VkSamplerCreateInfo samplerInfo = vkTools::initializers::samplerCreateInfo(); samplerInfo.magFilter = VK_FILTER_LINEAR; samplerInfo.minFilter = VK_FILTER_LINEAR; samplerInfo.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR; samplerInfo.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT; samplerInfo.addressModeV = VK_SAMPLER_ADDRESS_MODE_REPEAT; samplerInfo.addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT; samplerInfo.mipLodBias = 0.0f; samplerInfo.compareOp = VK_COMPARE_OP_NEVER; samplerInfo.minLod = 0.0f; samplerInfo.maxLod = 1.0f; samplerInfo.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE; VK_CHECK_RESULT(vkCreateSampler(vulkanDevice->logicalDevice, &samplerInfo, nullptr, &sampler)); // Descriptor // Font uses a separate descriptor pool std::array poolSizes; poolSizes[0] = vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1); VkDescriptorPoolCreateInfo descriptorPoolInfo = vkTools::initializers::descriptorPoolCreateInfo( poolSizes.size(), poolSizes.data(), 1); VK_CHECK_RESULT(vkCreateDescriptorPool(vulkanDevice->logicalDevice, &descriptorPoolInfo, nullptr, &descriptorPool)); // Descriptor set layout std::array setLayoutBindings; setLayoutBindings[0] = vkTools::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 0); VkDescriptorSetLayoutCreateInfo descriptorSetLayoutInfo = vkTools::initializers::descriptorSetLayoutCreateInfo( setLayoutBindings.data(), setLayoutBindings.size()); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(vulkanDevice->logicalDevice, &descriptorSetLayoutInfo, nullptr, &descriptorSetLayout)); // Pipeline layout VkPipelineLayoutCreateInfo pipelineLayoutInfo = vkTools::initializers::pipelineLayoutCreateInfo( &descriptorSetLayout, 1); VK_CHECK_RESULT(vkCreatePipelineLayout(vulkanDevice->logicalDevice, &pipelineLayoutInfo, nullptr, &pipelineLayout)); // Descriptor set VkDescriptorSetAllocateInfo descriptorSetAllocInfo = vkTools::initializers::descriptorSetAllocateInfo( descriptorPool, &descriptorSetLayout, 1); VK_CHECK_RESULT(vkAllocateDescriptorSets(vulkanDevice->logicalDevice, &descriptorSetAllocInfo, &descriptorSet)); VkDescriptorImageInfo texDescriptor = vkTools::initializers::descriptorImageInfo( sampler, view, VK_IMAGE_LAYOUT_GENERAL); std::array writeDescriptorSets; writeDescriptorSets[0] = vkTools::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 0, &texDescriptor); vkUpdateDescriptorSets(vulkanDevice->logicalDevice, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL); // Pipeline cache VkPipelineCacheCreateInfo pipelineCacheCreateInfo = {}; pipelineCacheCreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO; VK_CHECK_RESULT(vkCreatePipelineCache(vulkanDevice->logicalDevice, &pipelineCacheCreateInfo, nullptr, &pipelineCache)); } // Prepare a separate pipeline for the font rendering decoupled from the main application void preparePipeline() { VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vkTools::initializers::pipelineInputAssemblyStateCreateInfo( VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP, 0, VK_FALSE); VkPipelineRasterizationStateCreateInfo rasterizationState = vkTools::initializers::pipelineRasterizationStateCreateInfo( VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_CLOCKWISE, 0); // Enable blending VkPipelineColorBlendAttachmentState blendAttachmentState = vkTools::initializers::pipelineColorBlendAttachmentState(0xf, VK_TRUE); blendAttachmentState.srcColorBlendFactor = VK_BLEND_FACTOR_ONE; blendAttachmentState.dstColorBlendFactor = VK_BLEND_FACTOR_ONE; blendAttachmentState.colorBlendOp = VK_BLEND_OP_ADD; blendAttachmentState.srcAlphaBlendFactor = VK_BLEND_FACTOR_ONE; blendAttachmentState.dstAlphaBlendFactor = VK_BLEND_FACTOR_ONE; blendAttachmentState.alphaBlendOp = VK_BLEND_OP_ADD; blendAttachmentState.colorWriteMask = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT; VkPipelineColorBlendStateCreateInfo colorBlendState = vkTools::initializers::pipelineColorBlendStateCreateInfo( 1, &blendAttachmentState); VkPipelineDepthStencilStateCreateInfo depthStencilState = vkTools::initializers::pipelineDepthStencilStateCreateInfo( VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL); VkPipelineViewportStateCreateInfo viewportState = vkTools::initializers::pipelineViewportStateCreateInfo(1, 1, 0); VkPipelineMultisampleStateCreateInfo multisampleState = vkTools::initializers::pipelineMultisampleStateCreateInfo( VK_SAMPLE_COUNT_1_BIT, 0); std::vector dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR }; VkPipelineDynamicStateCreateInfo dynamicState = vkTools::initializers::pipelineDynamicStateCreateInfo( dynamicStateEnables.data(), dynamicStateEnables.size(), 0); std::array vertexBindings = {}; vertexBindings[0] = vkTools::initializers::vertexInputBindingDescription(0, sizeof(glm::vec4), VK_VERTEX_INPUT_RATE_VERTEX); vertexBindings[1] = vkTools::initializers::vertexInputBindingDescription(1, sizeof(glm::vec4), VK_VERTEX_INPUT_RATE_VERTEX); std::array vertexAttribs = {}; // Position vertexAttribs[0] = vkTools::initializers::vertexInputAttributeDescription(0, 0, VK_FORMAT_R32G32_SFLOAT, 0); // UV vertexAttribs[1] = vkTools::initializers::vertexInputAttributeDescription(1, 1, VK_FORMAT_R32G32_SFLOAT, sizeof(glm::vec2)); VkPipelineVertexInputStateCreateInfo inputState = vkTools::initializers::pipelineVertexInputStateCreateInfo(); inputState.vertexBindingDescriptionCount = vertexBindings.size(); inputState.pVertexBindingDescriptions = vertexBindings.data(); inputState.vertexAttributeDescriptionCount = vertexAttribs.size(); inputState.pVertexAttributeDescriptions = vertexAttribs.data(); VkGraphicsPipelineCreateInfo pipelineCreateInfo = vkTools::initializers::pipelineCreateInfo( pipelineLayout, renderPass, 0); pipelineCreateInfo.pVertexInputState = &inputState; pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState; pipelineCreateInfo.pRasterizationState = &rasterizationState; pipelineCreateInfo.pColorBlendState = &colorBlendState; pipelineCreateInfo.pMultisampleState = &multisampleState; pipelineCreateInfo.pViewportState = &viewportState; pipelineCreateInfo.pDepthStencilState = &depthStencilState; pipelineCreateInfo.pDynamicState = &dynamicState; pipelineCreateInfo.stageCount = shaderStages.size(); pipelineCreateInfo.pStages = shaderStages.data(); VK_CHECK_RESULT(vkCreateGraphicsPipelines(vulkanDevice->logicalDevice, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipeline)); } // Prepare a separate render pass for rendering the text as an overlay void prepareRenderPass() { VkAttachmentDescription attachments[2] = {}; // Color attachment attachments[0].format = colorFormat; attachments[0].samples = VK_SAMPLE_COUNT_1_BIT; // Don't clear the framebuffer (like the renderpass from the example does) attachments[0].loadOp = VK_ATTACHMENT_LOAD_OP_LOAD; attachments[0].storeOp = VK_ATTACHMENT_STORE_OP_STORE; attachments[0].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; attachments[0].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; attachments[0].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; attachments[0].finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR; // Depth attachment attachments[1].format = depthFormat; attachments[1].samples = VK_SAMPLE_COUNT_1_BIT; attachments[1].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; attachments[1].storeOp = VK_ATTACHMENT_STORE_OP_STORE; attachments[1].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; attachments[1].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; attachments[1].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; attachments[1].finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; VkAttachmentReference colorReference = {}; colorReference.attachment = 0; colorReference.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; VkAttachmentReference depthReference = {}; depthReference.attachment = 1; depthReference.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; // Use subpass dependencies for image layout transitions VkSubpassDependency subpassDependencies[2] = {}; // Transition from final to initial (VK_SUBPASS_EXTERNAL refers to all commmands executed outside of the actual renderpass) subpassDependencies[0].srcSubpass = VK_SUBPASS_EXTERNAL; subpassDependencies[0].dstSubpass = 0; subpassDependencies[0].srcStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT; subpassDependencies[0].dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; subpassDependencies[0].srcAccessMask = VK_ACCESS_MEMORY_READ_BIT; subpassDependencies[0].dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; subpassDependencies[0].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT; // Transition from initial to final subpassDependencies[1].srcSubpass = 0; subpassDependencies[1].dstSubpass = VK_SUBPASS_EXTERNAL; subpassDependencies[1].srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; subpassDependencies[1].dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT; subpassDependencies[1].srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; subpassDependencies[1].dstAccessMask = VK_ACCESS_MEMORY_READ_BIT; subpassDependencies[1].dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT; VkSubpassDescription subpassDescription = {}; subpassDescription.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS; subpassDescription.flags = 0; subpassDescription.inputAttachmentCount = 0; subpassDescription.pInputAttachments = NULL; subpassDescription.colorAttachmentCount = 1; subpassDescription.pColorAttachments = &colorReference; subpassDescription.pResolveAttachments = NULL; subpassDescription.pDepthStencilAttachment = &depthReference; subpassDescription.preserveAttachmentCount = 0; subpassDescription.pPreserveAttachments = NULL; VkRenderPassCreateInfo renderPassInfo = {}; renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO; renderPassInfo.pNext = NULL; renderPassInfo.attachmentCount = 2; renderPassInfo.pAttachments = attachments; renderPassInfo.subpassCount = 1; renderPassInfo.pSubpasses = &subpassDescription; renderPassInfo.dependencyCount = 2; renderPassInfo.pDependencies = subpassDependencies; VK_CHECK_RESULT(vkCreateRenderPass(vulkanDevice->logicalDevice, &renderPassInfo, nullptr, &renderPass)); } // Map buffer void beginTextUpdate() { VK_CHECK_RESULT(vkMapMemory(vulkanDevice->logicalDevice, memory, 0, VK_WHOLE_SIZE, 0, (void **)&mapped)); numLetters = 0; } // Add text to the current buffer // todo : drop shadow? color attribute? void addText(std::string text, float x, float y, TextAlign align) { assert(mapped != nullptr); const float charW = 1.5f / *frameBufferWidth; const float charH = 1.5f / *frameBufferHeight; float fbW = (float)*frameBufferWidth; float fbH = (float)*frameBufferHeight; x = (x / fbW * 2.0f) - 1.0f; y = (y / fbH * 2.0f) - 1.0f; // Calculate text width float textWidth = 0; for (auto letter : text) { stb_fontchar *charData = &stbFontData[(uint32_t)letter - STB_FIRST_CHAR]; textWidth += charData->advance * charW; } switch (align) { case alignRight: x -= textWidth; break; case alignCenter: x -= textWidth / 2.0f; break; } // Generate a uv mapped quad per char in the new text for (auto letter : text) { stb_fontchar *charData = &stbFontData[(uint32_t)letter - STB_FIRST_CHAR]; mapped->x = (x + (float)charData->x0 * charW); mapped->y = (y + (float)charData->y0 * charH); mapped->z = charData->s0; mapped->w = charData->t0; mapped++; mapped->x = (x + (float)charData->x1 * charW); mapped->y = (y + (float)charData->y0 * charH); mapped->z = charData->s1; mapped->w = charData->t0; mapped++; mapped->x = (x + (float)charData->x0 * charW); mapped->y = (y + (float)charData->y1 * charH); mapped->z = charData->s0; mapped->w = charData->t1; mapped++; mapped->x = (x + (float)charData->x1 * charW); mapped->y = (y + (float)charData->y1 * charH); mapped->z = charData->s1; mapped->w = charData->t1; mapped++; x += charData->advance * charW; numLetters++; } } // Unmap buffer and update command buffers void endTextUpdate() { vkUnmapMemory(vulkanDevice->logicalDevice, memory); mapped = nullptr; updateCommandBuffers(); } // Needs to be called by the application void updateCommandBuffers() { VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo(); VkClearValue clearValues[2]; clearValues[1].color = { { 0.0f, 0.0f, 0.0f, 0.0f } }; VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo(); renderPassBeginInfo.renderPass = renderPass; renderPassBeginInfo.renderArea.extent.width = *frameBufferWidth; renderPassBeginInfo.renderArea.extent.height = *frameBufferHeight; renderPassBeginInfo.clearValueCount = 2; renderPassBeginInfo.pClearValues = clearValues; for (int32_t i = 0; i < cmdBuffers.size(); ++i) { renderPassBeginInfo.framebuffer = *frameBuffers[i]; VK_CHECK_RESULT(vkBeginCommandBuffer(cmdBuffers[i], &cmdBufInfo)); vkCmdBeginRenderPass(cmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); VkViewport viewport = vkTools::initializers::viewport((float)*frameBufferWidth, (float)*frameBufferHeight, 0.0f, 1.0f); vkCmdSetViewport(cmdBuffers[i], 0, 1, &viewport); VkRect2D scissor = vkTools::initializers::rect2D(*frameBufferWidth, *frameBufferHeight, 0, 0); vkCmdSetScissor(cmdBuffers[i], 0, 1, &scissor); vkCmdBindPipeline(cmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline); vkCmdBindDescriptorSets(cmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL); VkDeviceSize offsets = 0; vkCmdBindVertexBuffers(cmdBuffers[i], 0, 1, &buffer, &offsets); vkCmdBindVertexBuffers(cmdBuffers[i], 1, 1, &buffer, &offsets); for (uint32_t j = 0; j < numLetters; j++) { vkCmdDraw(cmdBuffers[i], 4, 1, j * 4, 0); } vkCmdEndRenderPass(cmdBuffers[i]); VK_CHECK_RESULT(vkEndCommandBuffer(cmdBuffers[i])); } } // Submit the text command buffers to a queue // Does a queue wait idle void submit(VkQueue queue, uint32_t bufferindex) { if (!visible) { return; } VkSubmitInfo submitInfo = {}; submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &cmdBuffers[bufferindex]; VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE)); VK_CHECK_RESULT(vkQueueWaitIdle(queue)); } }; class VulkanExample : public VulkanExampleBase { public: TextOverlay *textOverlay = nullptr; struct { vkTools::VulkanTexture background; vkTools::VulkanTexture cube; } textures; struct { VkPipelineVertexInputStateCreateInfo inputState; std::vector bindingDescriptions; std::vector attributeDescriptions; } vertices; struct { vkMeshLoader::MeshBuffer cube; } meshes; struct { vkTools::UniformData vsScene; } uniformData; struct { glm::mat4 projection; glm::mat4 model; glm::vec4 lightPos = glm::vec4(0.0f, 0.0f, 0.0f, 1.0f); } uboVS; struct { VkPipeline solid; VkPipeline background; } pipelines; VkPipelineLayout pipelineLayout; VkDescriptorSetLayout descriptorSetLayout; struct { VkDescriptorSet background; VkDescriptorSet cube; } descriptorSets; VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION) { zoom = -4.5f; zoomSpeed = 2.5f; rotation = { -25.0f, 0.0f, 0.0f }; title = "Vulkan Example - Text overlay"; // Disable text overlay of the example base class enableTextOverlay = false; } ~VulkanExample() { vkDestroyPipeline(device, pipelines.solid, nullptr); vkDestroyPipeline(device, pipelines.background, nullptr); vkDestroyPipelineLayout(device, pipelineLayout, nullptr); vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr); vkMeshLoader::freeMeshBufferResources(device, &meshes.cube); textureLoader->destroyTexture(textures.background); textureLoader->destroyTexture(textures.cube); vkTools::destroyUniformData(device, &uniformData.vsScene); delete(textOverlay); } void buildCommandBuffers() { VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo(); VkClearValue clearValues[3]; clearValues[0].color = { { 0.0f, 0.0f, 0.0f, 1.0f } }; clearValues[1].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo(); renderPassBeginInfo.renderPass = renderPass; renderPassBeginInfo.renderArea.extent.width = width; renderPassBeginInfo.renderArea.extent.height = height; renderPassBeginInfo.clearValueCount = 3; renderPassBeginInfo.pClearValues = clearValues; for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) { // Set target frame buffer renderPassBeginInfo.framebuffer = frameBuffers[i]; VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo)); vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); VkViewport viewport = vkTools::initializers::viewport((float)width, (float)height, 0.0f, 1.0f); vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); VkRect2D scissor = vkTools::initializers::rect2D(width, height, 0, 0); vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor); vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets.background, 0, NULL); VkDeviceSize offsets[1] = { 0 }; vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &meshes.cube.vertices.buf, offsets); vkCmdBindIndexBuffer(drawCmdBuffers[i], meshes.cube.indices.buf, 0, VK_INDEX_TYPE_UINT32); // Background vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.background); // Vertices are generated by the vertex shader vkCmdDraw(drawCmdBuffers[i], 4, 1, 0, 0); // Cube vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.solid); vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets.cube, 0, NULL); vkCmdDrawIndexed(drawCmdBuffers[i], meshes.cube.indexCount, 1, 0, 0, 0); vkCmdEndRenderPass(drawCmdBuffers[i]); VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i])); } vkQueueWaitIdle(queue); } // Update the text buffer displayed by the text overlay void updateTextOverlay(void) { textOverlay->beginTextUpdate(); textOverlay->addText(title, 5.0f, 5.0f, TextOverlay::alignLeft); std::stringstream ss; ss << std::fixed << std::setprecision(2) << (frameTimer * 1000.0f) << "ms (" << lastFPS << " fps)"; textOverlay->addText(ss.str(), 5.0f, 25.0f, TextOverlay::alignLeft); textOverlay->addText(deviceProperties.deviceName, 5.0f, 45.0f, TextOverlay::alignLeft); textOverlay->addText("Press \"space\" to toggle text overlay", 5.0f, 65.0f, TextOverlay::alignLeft); // Display projected cube vertices for (int32_t x = -1; x <= 1; x += 2) { for (int32_t y = -1; y <= 1; y += 2) { for (int32_t z = -1; z <= 1; z += 2) { std::stringstream vpos; vpos << std::showpos << x << "/" << y << "/" << z; glm::vec3 projected = glm::project(glm::vec3((float)x, (float)y, (float)z), uboVS.model, uboVS.projection, glm::vec4(0, 0, (float)width, (float)height)); textOverlay->addText(vpos.str(), projected.x, projected.y + (y > -1 ? 5.0f : -20.0f), TextOverlay::alignCenter); } } } // Display current model view matrix textOverlay->addText("model view matrix", width, 5.0f, TextOverlay::alignRight); for (uint32_t i = 0; i < 4; i++) { ss.str(""); ss << std::fixed << std::setprecision(2) << std::showpos; ss << uboVS.model[0][i] << " " << uboVS.model[1][i] << " " << uboVS.model[2][i] << " " << uboVS.model[3][i]; textOverlay->addText(ss.str(), width, 25.0f + (float)i * 20.0f, TextOverlay::alignRight); } glm::vec3 projected = glm::project(glm::vec3(0.0f), uboVS.model, uboVS.projection, glm::vec4(0, 0, (float)width, (float)height)); textOverlay->addText("Uniform cube", projected.x, projected.y, TextOverlay::alignCenter); #if defined(__ANDROID__) // toto #else textOverlay->addText("Hold middle mouse button and drag to move", 5.0f, 85.0f, TextOverlay::alignLeft); #endif textOverlay->endTextUpdate(); } void loadTextures() { textureLoader->loadTexture(getAssetPath() + "textures/skysphere_bc3.ktx", VK_FORMAT_BC3_UNORM_BLOCK, &textures.background); textureLoader->loadTexture(getAssetPath() + "textures/round_window_bc3.ktx", VK_FORMAT_BC3_UNORM_BLOCK, &textures.cube); } void loadMeshes() { loadMesh(getAssetPath() + "models/cube.dae", &meshes.cube, vertexLayout, 1.0f); } void setupVertexDescriptions() { // Binding description vertices.bindingDescriptions.resize(1); vertices.bindingDescriptions[0] = vkTools::initializers::vertexInputBindingDescription( VERTEX_BUFFER_BIND_ID, vkMeshLoader::vertexSize(vertexLayout), VK_VERTEX_INPUT_RATE_VERTEX); // Attribute descriptions vertices.attributeDescriptions.resize(4); // Location 0 : Position vertices.attributeDescriptions[0] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 0, VK_FORMAT_R32G32B32_SFLOAT, 0); // Location 1 : Normal vertices.attributeDescriptions[1] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 1, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 3); // Location 2 : Texture coordinates vertices.attributeDescriptions[2] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 2, VK_FORMAT_R32G32_SFLOAT, sizeof(float) * 6); // Location 3 : Color vertices.attributeDescriptions[3] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 3, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 8); vertices.inputState = vkTools::initializers::pipelineVertexInputStateCreateInfo(); vertices.inputState.vertexBindingDescriptionCount = vertices.bindingDescriptions.size(); vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data(); vertices.inputState.vertexAttributeDescriptionCount = vertices.attributeDescriptions.size(); vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data(); } void setupDescriptorPool() { std::vector poolSizes = { vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 2), vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2), }; VkDescriptorPoolCreateInfo descriptorPoolInfo = vkTools::initializers::descriptorPoolCreateInfo( poolSizes.size(), poolSizes.data(), 2); VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool)); } void setupDescriptorSetLayout() { std::vector setLayoutBindings = { // Binding 0 : Vertex shader uniform buffer vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0), // Binding 1 : Fragment shader combined sampler vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1), }; VkDescriptorSetLayoutCreateInfo descriptorLayout = vkTools::initializers::descriptorSetLayoutCreateInfo( setLayoutBindings.data(), setLayoutBindings.size()); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout)); VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = vkTools::initializers::pipelineLayoutCreateInfo( &descriptorSetLayout, 1); VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout)); } void setupDescriptorSet() { VkDescriptorSetAllocateInfo allocInfo = vkTools::initializers::descriptorSetAllocateInfo( descriptorPool, &descriptorSetLayout, 1); // Background VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.background)); VkDescriptorImageInfo texDescriptor = vkTools::initializers::descriptorImageInfo( textures.background.sampler, textures.background.view, VK_IMAGE_LAYOUT_GENERAL); std::vector writeDescriptorSets; // Binding 0 : Vertex shader uniform buffer writeDescriptorSets.push_back( vkTools::initializers::writeDescriptorSet( descriptorSets.background, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformData.vsScene.descriptor)); // Binding 1 : Color map writeDescriptorSets.push_back( vkTools::initializers::writeDescriptorSet( descriptorSets.background, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &texDescriptor)); vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL); // Cube VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.cube)); texDescriptor.sampler = textures.cube.sampler; texDescriptor.imageView = textures.cube.view; writeDescriptorSets[0].dstSet = descriptorSets.cube; writeDescriptorSets[1].dstSet = descriptorSets.cube; vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL); } void preparePipelines() { VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vkTools::initializers::pipelineInputAssemblyStateCreateInfo( VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE); VkPipelineRasterizationStateCreateInfo rasterizationState = vkTools::initializers::pipelineRasterizationStateCreateInfo( VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_CLOCKWISE, 0); VkPipelineColorBlendAttachmentState blendAttachmentState = vkTools::initializers::pipelineColorBlendAttachmentState( 0xf, VK_FALSE); VkPipelineColorBlendStateCreateInfo colorBlendState = vkTools::initializers::pipelineColorBlendStateCreateInfo( 1, &blendAttachmentState); VkPipelineDepthStencilStateCreateInfo depthStencilState = vkTools::initializers::pipelineDepthStencilStateCreateInfo( VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL); VkPipelineViewportStateCreateInfo viewportState = vkTools::initializers::pipelineViewportStateCreateInfo(1, 1, 0); VkPipelineMultisampleStateCreateInfo multisampleState = vkTools::initializers::pipelineMultisampleStateCreateInfo( VK_SAMPLE_COUNT_1_BIT, 0); std::vector dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR }; VkPipelineDynamicStateCreateInfo dynamicState = vkTools::initializers::pipelineDynamicStateCreateInfo( dynamicStateEnables.data(), dynamicStateEnables.size(), 0); // Wire frame rendering pipeline std::array shaderStages; shaderStages[0] = loadShader(getAssetPath() + "shaders/textoverlay/mesh.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getAssetPath() + "shaders/textoverlay/mesh.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); VkGraphicsPipelineCreateInfo pipelineCreateInfo = vkTools::initializers::pipelineCreateInfo( pipelineLayout, renderPass, 0); pipelineCreateInfo.pVertexInputState = &vertices.inputState; pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState; pipelineCreateInfo.pRasterizationState = &rasterizationState; pipelineCreateInfo.pColorBlendState = &colorBlendState; pipelineCreateInfo.pMultisampleState = &multisampleState; pipelineCreateInfo.pViewportState = &viewportState; pipelineCreateInfo.pDepthStencilState = &depthStencilState; pipelineCreateInfo.pDynamicState = &dynamicState; pipelineCreateInfo.stageCount = shaderStages.size(); pipelineCreateInfo.pStages = shaderStages.data(); VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.solid)); // Background rendering pipeline depthStencilState.depthTestEnable = VK_FALSE; depthStencilState.depthWriteEnable = VK_FALSE; rasterizationState.polygonMode = VK_POLYGON_MODE_FILL; shaderStages[0] = loadShader(getAssetPath() + "shaders/textoverlay/background.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getAssetPath() + "shaders/textoverlay/background.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.background)); } // Prepare and initialize uniform buffer containing shader uniforms void prepareUniformBuffers() { // Vertex shader uniform buffer block createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, sizeof(uboVS), &uboVS, &uniformData.vsScene.buffer, &uniformData.vsScene.memory, &uniformData.vsScene.descriptor); updateUniformBuffers(); } void updateUniformBuffers() { // Vertex shader uboVS.projection = glm::perspective(glm::radians(60.0f), (float)width / (float)height, 0.1f, 256.0f); glm::mat4 viewMatrix = glm::translate(glm::mat4(), glm::vec3(0.0f, 0.0f, zoom)); uboVS.model = viewMatrix * glm::translate(glm::mat4(), cameraPos); uboVS.model = glm::rotate(uboVS.model, glm::radians(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f)); uboVS.model = glm::rotate(uboVS.model, glm::radians(rotation.y), glm::vec3(0.0f, 1.0f, 0.0f)); uboVS.model = glm::rotate(uboVS.model, glm::radians(rotation.z), glm::vec3(0.0f, 0.0f, 1.0f)); uint8_t *pData; VK_CHECK_RESULT(vkMapMemory(device, uniformData.vsScene.memory, 0, sizeof(uboVS), 0, (void **)&pData)); memcpy(pData, &uboVS, sizeof(uboVS)); vkUnmapMemory(device, uniformData.vsScene.memory); } void prepareTextOverlay() { // Load the text rendering shaders std::vector shaderStages; shaderStages.push_back(loadShader(getAssetPath() + "shaders/textoverlay/text.vert.spv", VK_SHADER_STAGE_VERTEX_BIT)); shaderStages.push_back(loadShader(getAssetPath() + "shaders/textoverlay/text.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT)); textOverlay = new TextOverlay( vulkanDevice, queue, frameBuffers, colorformat, depthFormat, &width, &height, shaderStages ); updateTextOverlay(); } void draw() { VulkanExampleBase::prepareFrame(); // Command buffer to be sumitted to the queue submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer]; // Submit to queue VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE)); // Submit text overlay to queue textOverlay->submit(queue, currentBuffer); VulkanExampleBase::submitFrame(); } void prepare() { VulkanExampleBase::prepare(); loadTextures(); loadMeshes(); setupVertexDescriptions(); prepareUniformBuffers(); setupDescriptorSetLayout(); preparePipelines(); setupDescriptorPool(); setupDescriptorSet(); buildCommandBuffers(); prepareTextOverlay(); prepared = true; } virtual void render() { if (!prepared) return; draw(); if (frameCounter == 0) { vkDeviceWaitIdle(device); updateTextOverlay(); } } virtual void viewChanged() { vkDeviceWaitIdle(device); updateUniformBuffers(); updateTextOverlay(); } virtual void windowResized() { updateTextOverlay(); } virtual void keyPressed(uint32_t keyCode) { switch (keyCode) { case KEY_KPADD: case KEY_SPACE: textOverlay->visible = !textOverlay->visible; } } }; VulkanExample *vulkanExample; #if defined(_WIN32) LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam) { if (vulkanExample != NULL) { vulkanExample->handleMessages(hWnd, uMsg, wParam, lParam); } return (DefWindowProc(hWnd, uMsg, wParam, lParam)); } #elif defined(__linux__) && !defined(__ANDROID__) && !defined(_DIRECT2DISPLAY) static void handleEvent(const xcb_generic_event_t *event) { if (vulkanExample != NULL) { vulkanExample->handleEvent(event); } } #endif // Main entry point #if defined(_WIN32) // Windows entry point int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR pCmdLine, int nCmdShow) #elif defined(__ANDROID__) // Android entry point void android_main(android_app* state) #elif defined(__linux__) // Linux entry point int main(const int argc, const char *argv[]) #endif { #if defined(__ANDROID__) // Removing this may cause the compiler to omit the main entry point // which would make the application crash at start app_dummy(); #endif vulkanExample = new VulkanExample(); #if defined(_WIN32) vulkanExample->setupWindow(hInstance, WndProc); #elif defined(__ANDROID__) // Attach vulkan example to global android application state state->userData = vulkanExample; state->onAppCmd = VulkanExample::handleAppCommand; state->onInputEvent = VulkanExample::handleAppInput; vulkanExample->androidApp = state; #elif defined(__linux__) && !defined(_DIRECT2DISPLAY) vulkanExample->setupWindow(); #endif #if !defined(__ANDROID__) vulkanExample->initSwapchain(); vulkanExample->prepare(); #endif vulkanExample->renderLoop(); delete(vulkanExample); #if !defined(__ANDROID__) return 0; #endif }