/* * Vulkan Example - Dynamic uniform buffers * * Copyright (C) 2016-2023 by Sascha Willems - www.saschawillems.de * * This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT) * * Summary: * Demonstrates the use of dynamic uniform buffers. * * Instead of using one uniform buffer per-object, this example allocates one big uniform buffer * with respect to the alignment reported by the device via minUniformBufferOffsetAlignment that * contains all matrices for the objects in the scene. * * The used descriptor type VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC then allows to set a dynamic * offset used to pass data from the single uniform buffer to the connected shader binding point. */ #include "vulkanexamplebase.h" #define VERTEX_BUFFER_BIND_ID 0 #define OBJECT_INSTANCES 125 // Vertex layout for this example struct Vertex { float pos[3]; float color[3]; }; // Wrapper functions for aligned memory allocation // There is currently no standard for this in C++ that works across all platforms and vendors, so we abstract this void* alignedAlloc(size_t size, size_t alignment) { void *data = nullptr; #if defined(_MSC_VER) || defined(__MINGW32__) data = _aligned_malloc(size, alignment); #else int res = posix_memalign(&data, alignment, size); if (res != 0) data = nullptr; #endif return data; } void alignedFree(void* data) { #if defined(_MSC_VER) || defined(__MINGW32__) _aligned_free(data); #else free(data); #endif } class VulkanExample : public VulkanExampleBase { public: vks::Buffer vertexBuffer; vks::Buffer indexBuffer; uint32_t indexCount{ 0 }; struct { vks::Buffer view; vks::Buffer dynamic; } uniformBuffers; struct { glm::mat4 projection; glm::mat4 view; } uboVS; // Store random per-object rotations glm::vec3 rotations[OBJECT_INSTANCES]; glm::vec3 rotationSpeeds[OBJECT_INSTANCES]; // One big uniform buffer that contains all matrices // Note that we need to manually allocate the data to cope for GPU-specific uniform buffer offset alignments struct UboDataDynamic { glm::mat4* model{ nullptr }; } uboDataDynamic; VkPipeline pipeline{ VK_NULL_HANDLE }; VkPipelineLayout pipelineLayout{ VK_NULL_HANDLE }; VkDescriptorSet descriptorSet{ VK_NULL_HANDLE }; VkDescriptorSetLayout descriptorSetLayout{ VK_NULL_HANDLE }; float animationTimer{ 0.0f }; size_t dynamicAlignment{ 0 }; VulkanExample() : VulkanExampleBase() { title = "Dynamic uniform buffers"; camera.type = Camera::CameraType::lookat; camera.setPosition(glm::vec3(0.0f, 0.0f, -30.0f)); camera.setRotation(glm::vec3(0.0f)); camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 256.0f); } ~VulkanExample() { if (device) { if (uboDataDynamic.model) { alignedFree(uboDataDynamic.model); } vkDestroyPipeline(device, pipeline, nullptr); vkDestroyPipelineLayout(device, pipelineLayout, nullptr); vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr); vertexBuffer.destroy(); indexBuffer.destroy(); uniformBuffers.view.destroy(); uniformBuffers.dynamic.destroy(); } } void buildCommandBuffers() { VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo(); VkClearValue clearValues[2]; clearValues[0].color = defaultClearColor; clearValues[1].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo(); renderPassBeginInfo.renderPass = renderPass; renderPassBeginInfo.renderArea.offset.x = 0; renderPassBeginInfo.renderArea.offset.y = 0; renderPassBeginInfo.renderArea.extent.width = width; renderPassBeginInfo.renderArea.extent.height = height; renderPassBeginInfo.clearValueCount = 2; renderPassBeginInfo.pClearValues = clearValues; for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) { renderPassBeginInfo.framebuffer = frameBuffers[i]; VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo)); vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f); vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0); vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor); vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline); VkDeviceSize offsets[1] = { 0 }; vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &vertexBuffer.buffer, offsets); vkCmdBindIndexBuffer(drawCmdBuffers[i], indexBuffer.buffer, 0, VK_INDEX_TYPE_UINT32); // Render multiple objects using different model matrices by dynamically offsetting into one uniform buffer for (uint32_t j = 0; j < OBJECT_INSTANCES; j++) { // One dynamic offset per dynamic descriptor to offset into the ubo containing all model matrices uint32_t dynamicOffset = j * static_cast(dynamicAlignment); // Bind the descriptor set for rendering a mesh using the dynamic offset vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 1, &dynamicOffset); vkCmdDrawIndexed(drawCmdBuffers[i], indexCount, 1, 0, 0, 0); } drawUI(drawCmdBuffers[i]); vkCmdEndRenderPass(drawCmdBuffers[i]); VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i])); } } void generateCube() { // Setup vertices indices for a colored cube std::vector vertices = { { { -1.0f, -1.0f, 1.0f },{ 1.0f, 0.0f, 0.0f } }, { { 1.0f, -1.0f, 1.0f },{ 0.0f, 1.0f, 0.0f } }, { { 1.0f, 1.0f, 1.0f },{ 0.0f, 0.0f, 1.0f } }, { { -1.0f, 1.0f, 1.0f },{ 0.0f, 0.0f, 0.0f } }, { { -1.0f, -1.0f, -1.0f },{ 1.0f, 0.0f, 0.0f } }, { { 1.0f, -1.0f, -1.0f },{ 0.0f, 1.0f, 0.0f } }, { { 1.0f, 1.0f, -1.0f },{ 0.0f, 0.0f, 1.0f } }, { { -1.0f, 1.0f, -1.0f },{ 0.0f, 0.0f, 0.0f } }, }; std::vector indices = { 0,1,2, 2,3,0, 1,5,6, 6,2,1, 7,6,5, 5,4,7, 4,0,3, 3,7,4, 4,5,1, 1,0,4, 3,2,6, 6,7,3, }; indexCount = static_cast(indices.size()); // Create buffers // For the sake of simplicity we won't stage the vertex data to the gpu memory // Vertex buffer VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_VERTEX_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &vertexBuffer, vertices.size() * sizeof(Vertex), vertices.data())); // Index buffer VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_INDEX_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &indexBuffer, indices.size() * sizeof(uint32_t), indices.data())); } void setupDescriptors() { // Pool std::vector poolSizes = { vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1), // Dynamic uniform buffer vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, 1) }; VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, 2); VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool)); // Layout std::vector setLayoutBindings = { vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0), // Dynamic uniform buffer vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, VK_SHADER_STAGE_VERTEX_BIT, 1) }; VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings); VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout)); // Set VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1); VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet)); std::vector writeDescriptorSets = { // Binding 0 : Projection/View matrix as uniform buffer vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.view.descriptor), // Binding 1 : Instance matrix as dynamic uniform buffer vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, 1, &uniformBuffers.dynamic.descriptor), }; vkUpdateDescriptorSets(device, static_cast(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, nullptr); } void preparePipelines() { // Layout VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayout, 1); VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &pipelineLayout)); // Pipeline VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE); VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_NONE, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0); VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE); VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState); VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL); VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0); VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0); std::vector dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR }; VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables); std::array shaderStages; // Vertex bindings and attributes VkVertexInputBindingDescription vertexInputBinding = { vks::initializers::vertexInputBindingDescription(VERTEX_BUFFER_BIND_ID, sizeof(Vertex), VK_VERTEX_INPUT_RATE_VERTEX) }; std::vector vertexInputAttributes = { vks::initializers::vertexInputAttributeDescription(VERTEX_BUFFER_BIND_ID, 0, VK_FORMAT_R32G32B32_SFLOAT, offsetof(Vertex, pos)), // Location 0 : Position vks::initializers::vertexInputAttributeDescription(VERTEX_BUFFER_BIND_ID, 1, VK_FORMAT_R32G32B32_SFLOAT, offsetof(Vertex, color)), // Location 1 : Color }; VkPipelineVertexInputStateCreateInfo vertexInputStateCI = vks::initializers::pipelineVertexInputStateCreateInfo(); vertexInputStateCI.vertexBindingDescriptionCount = 1; vertexInputStateCI.pVertexBindingDescriptions = &vertexInputBinding; vertexInputStateCI.vertexAttributeDescriptionCount = static_cast(vertexInputAttributes.size()); vertexInputStateCI.pVertexAttributeDescriptions = vertexInputAttributes.data(); shaderStages[0] = loadShader(getShadersPath() + "dynamicuniformbuffer/base.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getShadersPath() + "dynamicuniformbuffer/base.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); VkGraphicsPipelineCreateInfo pipelineCreateInfo = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass, 0); pipelineCreateInfo.pVertexInputState = &vertexInputStateCI; pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState; pipelineCreateInfo.pRasterizationState = &rasterizationState; pipelineCreateInfo.pColorBlendState = &colorBlendState; pipelineCreateInfo.pMultisampleState = &multisampleState; pipelineCreateInfo.pViewportState = &viewportState; pipelineCreateInfo.pDepthStencilState = &depthStencilState; pipelineCreateInfo.pDynamicState = &dynamicState; pipelineCreateInfo.stageCount = static_cast(shaderStages.size()); pipelineCreateInfo.pStages = shaderStages.data(); VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipeline)); } // Prepare and initialize uniform buffer containing shader uniforms void prepareUniformBuffers() { // Allocate data for the dynamic uniform buffer object // We allocate this manually as the alignment of the offset differs between GPUs // Calculate required alignment based on minimum device offset alignment size_t minUboAlignment = vulkanDevice->properties.limits.minUniformBufferOffsetAlignment; dynamicAlignment = sizeof(glm::mat4); if (minUboAlignment > 0) { dynamicAlignment = (dynamicAlignment + minUboAlignment - 1) & ~(minUboAlignment - 1); } size_t bufferSize = OBJECT_INSTANCES * dynamicAlignment; uboDataDynamic.model = (glm::mat4*)alignedAlloc(bufferSize, dynamicAlignment); assert(uboDataDynamic.model); std::cout << "minUniformBufferOffsetAlignment = " << minUboAlignment << std::endl; std::cout << "dynamicAlignment = " << dynamicAlignment << std::endl; // Vertex shader uniform buffer block // Static shared uniform buffer object with projection and view matrix VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBuffers.view, sizeof(uboVS))); // Uniform buffer object with per-object matrices VK_CHECK_RESULT(vulkanDevice->createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &uniformBuffers.dynamic, bufferSize)); // Override descriptor range to [base, base + dynamicAlignment] uniformBuffers.dynamic.descriptor.range = dynamicAlignment; // Map persistent VK_CHECK_RESULT(uniformBuffers.view.map()); VK_CHECK_RESULT(uniformBuffers.dynamic.map()); // Prepare per-object matrices with offsets and random rotations std::default_random_engine rndEngine(benchmark.active ? 0 : (unsigned)time(nullptr)); std::normal_distribution rndDist(-1.0f, 1.0f); for (uint32_t i = 0; i < OBJECT_INSTANCES; i++) { rotations[i] = glm::vec3(rndDist(rndEngine), rndDist(rndEngine), rndDist(rndEngine)) * 2.0f * (float)M_PI; rotationSpeeds[i] = glm::vec3(rndDist(rndEngine), rndDist(rndEngine), rndDist(rndEngine)); } updateUniformBuffers(); updateDynamicUniformBuffer(); } void updateUniformBuffers() { // Fixed ubo with projection and view matrices uboVS.projection = camera.matrices.perspective; uboVS.view = camera.matrices.view; memcpy(uniformBuffers.view.mapped, &uboVS, sizeof(uboVS)); } void updateDynamicUniformBuffer() { // Update at max. 60 fps animationTimer += frameTimer; if (animationTimer <= 1.0f / 60.0f) { return; } // Dynamic ubo with per-object model matrices indexed by offsets in the command buffer uint32_t dim = static_cast(pow(OBJECT_INSTANCES, (1.0f / 3.0f))); glm::vec3 offset(5.0f); for (uint32_t x = 0; x < dim; x++) { for (uint32_t y = 0; y < dim; y++) { for (uint32_t z = 0; z < dim; z++) { uint32_t index = x * dim * dim + y * dim + z; // Aligned offset glm::mat4* modelMat = (glm::mat4*)(((uint64_t)uboDataDynamic.model + (index * dynamicAlignment))); // Update rotations rotations[index] += animationTimer * rotationSpeeds[index]; // Update matrices glm::vec3 pos = glm::vec3(-((dim * offset.x) / 2.0f) + offset.x / 2.0f + x * offset.x, -((dim * offset.y) / 2.0f) + offset.y / 2.0f + y * offset.y, -((dim * offset.z) / 2.0f) + offset.z / 2.0f + z * offset.z); *modelMat = glm::translate(glm::mat4(1.0f), pos); *modelMat = glm::rotate(*modelMat, rotations[index].x, glm::vec3(1.0f, 1.0f, 0.0f)); *modelMat = glm::rotate(*modelMat, rotations[index].y, glm::vec3(0.0f, 1.0f, 0.0f)); *modelMat = glm::rotate(*modelMat, rotations[index].z, glm::vec3(0.0f, 0.0f, 1.0f)); } } } animationTimer = 0.0f; memcpy(uniformBuffers.dynamic.mapped, uboDataDynamic.model, uniformBuffers.dynamic.size); // Flush to make changes visible to the host VkMappedMemoryRange memoryRange = vks::initializers::mappedMemoryRange(); memoryRange.memory = uniformBuffers.dynamic.memory; memoryRange.size = uniformBuffers.dynamic.size; vkFlushMappedMemoryRanges(device, 1, &memoryRange); } void prepare() { VulkanExampleBase::prepare(); generateCube(); prepareUniformBuffers(); setupDescriptors(); preparePipelines(); buildCommandBuffers(); prepared = true; } void draw() { VulkanExampleBase::prepareFrame(); submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer]; VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE)); VulkanExampleBase::submitFrame(); } virtual void render() { if (!prepared) return; updateUniformBuffers(); updateDynamicUniformBuffer(); draw(); } }; VULKAN_EXAMPLE_MAIN()