/* * Vulkan Example - Deferred shading multiple render targets (aka G-Buffer) example * * Copyright (C) 2016 by Sascha Willems - www.saschawillems.de * * This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT) */ #include #include #include #include #include #define GLM_FORCE_RADIANS #define GLM_FORCE_DEPTH_ZERO_TO_ONE #include #include #include #include "vulkanexamplebase.h" #define VERTEX_BUFFER_BIND_ID 0 #define ENABLE_VALIDATION false // Texture properties #define TEX_DIM 1024 #define TEX_FILTER VK_FILTER_LINEAR // Offscreen frame buffer properties #define FB_DIM TEX_DIM // Vertex layout for this example std::vector vertexLayout = { vkMeshLoader::VERTEX_LAYOUT_POSITION, vkMeshLoader::VERTEX_LAYOUT_UV, vkMeshLoader::VERTEX_LAYOUT_COLOR, vkMeshLoader::VERTEX_LAYOUT_NORMAL }; class VulkanExample : public VulkanExampleBase { public: bool debugDisplay = true; struct { vkTools::VulkanTexture colorMap; } textures; struct { vkMeshLoader::MeshBuffer example; vkMeshLoader::MeshBuffer quad; } meshes; struct { VkPipelineVertexInputStateCreateInfo inputState; std::vector bindingDescriptions; std::vector attributeDescriptions; } vertices; struct { glm::mat4 projection; glm::mat4 model; glm::mat4 view; } uboVS, uboOffscreenVS; struct Light { glm::vec4 position; glm::vec4 color; float radius; float quadraticFalloff; float linearFalloff; float _pad; }; struct { Light lights[5]; glm::vec4 viewPos; } uboFragmentLights; struct { vkTools::UniformData vsFullScreen; vkTools::UniformData vsOffscreen; vkTools::UniformData fsLights; } uniformData; struct { VkPipeline deferred; VkPipeline offscreen; VkPipeline debug; } pipelines; struct { VkPipelineLayout deferred; VkPipelineLayout offscreen; } pipelineLayouts; struct { VkDescriptorSet offscreen; } descriptorSets; VkDescriptorSet descriptorSet; VkDescriptorSetLayout descriptorSetLayout; // Framebuffer for offscreen rendering struct FrameBufferAttachment { VkImage image; VkDeviceMemory mem; VkImageView view; VkFormat format; }; struct FrameBuffer { int32_t width, height; VkFramebuffer frameBuffer; FrameBufferAttachment position, normal, albedo; FrameBufferAttachment depth; VkRenderPass renderPass; } offScreenFrameBuf; // Texture targets struct { vkTools::VulkanTexture position; vkTools::VulkanTexture normal; vkTools::VulkanTexture albedo; } textureTargets; VkCommandBuffer offScreenCmdBuffer = VK_NULL_HANDLE; VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION) { zoom = -8.0f; rotation = { 0.0f, 0.0f, 0.0f }; width = 1024; height = 1024; title = "Vulkan Example - Deferred shading"; } ~VulkanExample() { // Clean up used Vulkan resources // Note : Inherited destructor cleans up resources stored in base class // Texture targets textureLoader->destroyTexture(textureTargets.position); textureLoader->destroyTexture(textureTargets.normal); textureLoader->destroyTexture(textureTargets.albedo); // Frame buffer // Color attachments vkDestroyImageView(device, offScreenFrameBuf.position.view, nullptr); vkDestroyImage(device, offScreenFrameBuf.position.image, nullptr); vkFreeMemory(device, offScreenFrameBuf.position.mem, nullptr); vkDestroyImageView(device, offScreenFrameBuf.normal.view, nullptr); vkDestroyImage(device, offScreenFrameBuf.normal.image, nullptr); vkFreeMemory(device, offScreenFrameBuf.normal.mem, nullptr); vkDestroyImageView(device, offScreenFrameBuf.albedo.view, nullptr); vkDestroyImage(device, offScreenFrameBuf.albedo.image, nullptr); vkFreeMemory(device, offScreenFrameBuf.albedo.mem, nullptr); // Depth attachment vkDestroyImageView(device, offScreenFrameBuf.depth.view, nullptr); vkDestroyImage(device, offScreenFrameBuf.depth.image, nullptr); vkFreeMemory(device, offScreenFrameBuf.depth.mem, nullptr); vkDestroyFramebuffer(device, offScreenFrameBuf.frameBuffer, nullptr); vkDestroyPipeline(device, pipelines.deferred, nullptr); vkDestroyPipeline(device, pipelines.offscreen, nullptr); vkDestroyPipeline(device, pipelines.debug, nullptr); vkDestroyPipelineLayout(device, pipelineLayouts.deferred, nullptr); vkDestroyPipelineLayout(device, pipelineLayouts.offscreen, nullptr); vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr); // Meshes vkMeshLoader::freeMeshBufferResources(device, &meshes.example); vkMeshLoader::freeMeshBufferResources(device, &meshes.quad); // Uniform buffers vkTools::destroyUniformData(device, &uniformData.vsOffscreen); vkTools::destroyUniformData(device, &uniformData.vsFullScreen); vkTools::destroyUniformData(device, &uniformData.fsLights); vkFreeCommandBuffers(device, cmdPool, 1, &offScreenCmdBuffer); vkDestroyRenderPass(device, offScreenFrameBuf.renderPass, nullptr); textureLoader->destroyTexture(textures.colorMap); } // Preapre an empty texture as the blit target from // the offscreen framebuffer void prepareTextureTarget(vkTools::VulkanTexture *target, VkFormat format) { VkFormatProperties formatProperties; VkResult err; uint32_t width = TEX_DIM; uint32_t height = TEX_DIM; // Prepare blit target texture target->width = width; target->height = height; VkImageCreateInfo imageCreateInfo = vkTools::initializers::imageCreateInfo(); imageCreateInfo.imageType = VK_IMAGE_TYPE_2D; imageCreateInfo.format = format; imageCreateInfo.extent = { width, height, 1 }; imageCreateInfo.mipLevels = 1; imageCreateInfo.arrayLayers = 1; imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT; imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL; // Texture will be sampled in a shader and is also the blit destination imageCreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT; imageCreateInfo.flags = 0; VkMemoryAllocateInfo memAllocInfo = vkTools::initializers::memoryAllocateInfo(); VkMemoryRequirements memReqs; err = vkCreateImage(device, &imageCreateInfo, nullptr, &target->image); assert(!err); vkGetImageMemoryRequirements(device, target->image, &memReqs); memAllocInfo.allocationSize = memReqs.size; getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &memAllocInfo.memoryTypeIndex); err = vkAllocateMemory(device, &memAllocInfo, nullptr, &target->deviceMemory); assert(!err); err = vkBindImageMemory(device, target->image, target->deviceMemory, 0); assert(!err); // Image memory barrier // Set initial layout for the offscreen texture to shader read // Will be transformed while updating the texture textureTargets.position.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; vkTools::setImageLayout( setupCmdBuffer, target->image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_UNDEFINED, textureTargets.position.imageLayout); // Create sampler VkSamplerCreateInfo sampler = vkTools::initializers::samplerCreateInfo(); sampler.magFilter = TEX_FILTER; sampler.minFilter = TEX_FILTER; sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR; sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER; sampler.addressModeV = sampler.addressModeV; sampler.addressModeW = sampler.addressModeV; sampler.mipLodBias = 0.0f; sampler.maxAnisotropy = 0; sampler.compareOp = VK_COMPARE_OP_NEVER; sampler.minLod = 0.0f; sampler.maxLod = 0.0f; sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE; err = vkCreateSampler(device, &sampler, nullptr, &target->sampler); assert(!err); // Create image view VkImageViewCreateInfo view = {}; view.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO; view.pNext = NULL; view.image = VK_NULL_HANDLE; view.viewType = VK_IMAGE_VIEW_TYPE_2D; view.format = format; view.components = { VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A }; view.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 }; view.image = target->image; err = vkCreateImageView(device, &view, nullptr, &target->view); assert(!err); } void prepareTextureTargets() { createSetupCommandBuffer(); prepareTextureTarget(&textureTargets.position, VK_FORMAT_R16G16B16A16_SFLOAT); prepareTextureTarget(&textureTargets.normal, VK_FORMAT_R16G16B16A16_SFLOAT); prepareTextureTarget(&textureTargets.albedo, VK_FORMAT_R8G8B8A8_UNORM); flushSetupCommandBuffer(); } // Create a frame buffer attachment void createAttachment( VkFormat format, VkImageUsageFlagBits usage, FrameBufferAttachment *attachment) { VkImageAspectFlags aspectMask = 0; VkImageLayout imageLayout; attachment->format = format; if (usage & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT) { aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; imageLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; } if (usage & VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) { aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT; imageLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; } assert(aspectMask > 0); VkImageCreateInfo image = vkTools::initializers::imageCreateInfo(); image.imageType = VK_IMAGE_TYPE_2D; image.format = format; image.extent.width = offScreenFrameBuf.width; image.extent.height = offScreenFrameBuf.height; image.mipLevels = 1; image.arrayLayers = 1; image.samples = VK_SAMPLE_COUNT_1_BIT; image.tiling = VK_IMAGE_TILING_OPTIMAL; image.usage = usage | VK_IMAGE_USAGE_TRANSFER_SRC_BIT; VkMemoryAllocateInfo memAlloc = vkTools::initializers::memoryAllocateInfo(); VkImageViewCreateInfo imageView = vkTools::initializers::imageViewCreateInfo(); imageView.viewType = VK_IMAGE_VIEW_TYPE_2D; imageView.format = format; imageView.subresourceRange = {}; imageView.subresourceRange.aspectMask = aspectMask; imageView.subresourceRange.baseMipLevel = 0; imageView.subresourceRange.levelCount = 1; imageView.subresourceRange.baseArrayLayer = 0; imageView.subresourceRange.layerCount = 1; VkMemoryRequirements memReqs; VkResult err = vkCreateImage(device, &image, nullptr, &attachment->image); assert(!err); vkGetImageMemoryRequirements(device, attachment->image, &memReqs); memAlloc.allocationSize = memReqs.size; getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &memAlloc.memoryTypeIndex); err = vkAllocateMemory(device, &memAlloc, nullptr, &attachment->mem); assert(!err); err = vkBindImageMemory(device, attachment->image, attachment->mem, 0); assert(!err); vkTools::setImageLayout( setupCmdBuffer, attachment->image, aspectMask, VK_IMAGE_LAYOUT_UNDEFINED, imageLayout); imageView.image = attachment->image; err = vkCreateImageView(device, &imageView, nullptr, &attachment->view); assert(!err); } // Prepare a new framebuffer for offscreen rendering // The contents of this framebuffer are then // blitted to our render target void prepareOffscreenFramebuffer() { offScreenFrameBuf.width = FB_DIM; offScreenFrameBuf.height = FB_DIM; VkResult err; // Color attachments // (World space) Positions createAttachment( VK_FORMAT_R16G16B16A16_SFLOAT, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, &offScreenFrameBuf.position); // (World space) Normals createAttachment( VK_FORMAT_R16G16B16A16_SFLOAT, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, &offScreenFrameBuf.normal); // Albedo (color) createAttachment( VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, &offScreenFrameBuf.albedo); // Depth attachment // Find a suitable depth format VkFormat attDepthFormat; VkBool32 validDepthFormat = vkTools::getSupportedDepthFormat(physicalDevice, &attDepthFormat); assert(validDepthFormat); createAttachment( attDepthFormat, VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, &offScreenFrameBuf.depth); // Set up separate renderpass with references // to the color and depth attachments std::array attachmentDescs; // Init attachment properties for (uint32_t i = 0; i < 4; ++i) { attachmentDescs[i].samples = VK_SAMPLE_COUNT_1_BIT; attachmentDescs[i].loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; attachmentDescs[i].storeOp = VK_ATTACHMENT_STORE_OP_STORE; attachmentDescs[i].stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; attachmentDescs[i].stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; if (i == 3) { attachmentDescs[i].initialLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; attachmentDescs[i].finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; } else { attachmentDescs[i].initialLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; attachmentDescs[i].finalLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; } } // Formats attachmentDescs[0].format = offScreenFrameBuf.position.format; attachmentDescs[1].format = offScreenFrameBuf.normal.format; attachmentDescs[2].format = offScreenFrameBuf.albedo.format; attachmentDescs[3].format = offScreenFrameBuf.depth.format; std::vector colorReferences; colorReferences.push_back({ 0, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL }); colorReferences.push_back({ 1, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL }); colorReferences.push_back({ 2, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL }); VkAttachmentReference depthReference = {}; depthReference.attachment = 3; depthReference.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; VkSubpassDescription subpass = {}; subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS; subpass.pColorAttachments = colorReferences.data(); subpass.colorAttachmentCount = colorReferences.size(); subpass.pDepthStencilAttachment = &depthReference; VkRenderPassCreateInfo renderPassInfo = {}; renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO; renderPassInfo.pAttachments = attachmentDescs.data(); renderPassInfo.attachmentCount = attachmentDescs.size(); renderPassInfo.subpassCount = 1; renderPassInfo.pSubpasses = &subpass; err = vkCreateRenderPass(device, &renderPassInfo, nullptr, &offScreenFrameBuf.renderPass); assert(!err); std::array attachments; attachments[0] = offScreenFrameBuf.position.view; attachments[1] = offScreenFrameBuf.normal.view; attachments[2] = offScreenFrameBuf.albedo.view; // depth attachments[3] = offScreenFrameBuf.depth.view; VkFramebufferCreateInfo fbufCreateInfo = {}; fbufCreateInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO; fbufCreateInfo.pNext = NULL; fbufCreateInfo.renderPass = offScreenFrameBuf.renderPass; fbufCreateInfo.pAttachments = attachments.data(); fbufCreateInfo.attachmentCount = attachments.size(); fbufCreateInfo.width = offScreenFrameBuf.width; fbufCreateInfo.height = offScreenFrameBuf.height; fbufCreateInfo.layers = 1; err = vkCreateFramebuffer(device, &fbufCreateInfo, nullptr, &offScreenFrameBuf.frameBuffer); assert(!err); flushSetupCommandBuffer(); createSetupCommandBuffer(); } // Blit frame buffer attachment to texture target void blit(VkImage source, VkImage dest) { // Image memory barrier // Transform frame buffer color attachment to transfer source layout // Makes sure that writes to the color attachment are finished before // using it as source for the blit vkTools::setImageLayout( offScreenCmdBuffer, source, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL); // Image memory barrier // Transform texture from shader read (initial layout) to transfer destination layout // Makes sure that reads from texture are finished before // using it as a transfer destination for the blit vkTools::setImageLayout( offScreenCmdBuffer, dest, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL); // Blit offscreen color buffer to our texture target VkImageBlit imgBlit; imgBlit.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; imgBlit.srcSubresource.mipLevel = 0; imgBlit.srcSubresource.baseArrayLayer = 0; imgBlit.srcSubresource.layerCount = 1; imgBlit.srcOffsets[0] = { 0, 0, 0 }; imgBlit.srcOffsets[1].x = offScreenFrameBuf.width; imgBlit.srcOffsets[1].y = offScreenFrameBuf.height; imgBlit.srcOffsets[1].z = 1; imgBlit.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; imgBlit.dstSubresource.mipLevel = 0; imgBlit.dstSubresource.baseArrayLayer = 0; imgBlit.dstSubresource.layerCount = 1; imgBlit.dstOffsets[0] = { 0, 0, 0 }; imgBlit.dstOffsets[1].x = textureTargets.position.width; imgBlit.dstOffsets[1].y = textureTargets.position.height; imgBlit.dstOffsets[1].z = 1; // Blit from framebuffer image to texture image // vkCmdBlitImage does scaling and (if necessary and possible) also does format conversions vkCmdBlitImage( offScreenCmdBuffer, source, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, dest, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &imgBlit, VK_FILTER_LINEAR ); // Image memory barrier // Transform texture from transfer destination to shader read // Makes sure that writes to the texture are finished before // using it as the source for a sampler in the shader vkTools::setImageLayout( offScreenCmdBuffer, dest, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL); // Image memory barrier // Transform the framebuffer color attachment back vkTools::setImageLayout( offScreenCmdBuffer, source, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL); } // Build command buffer for rendering the scene to the offscreen frame buffer // and blitting it to the different texture targets void buildDeferredCommandBuffer() { VkResult err; // Create separate command buffer for offscreen // rendering if (offScreenCmdBuffer == VK_NULL_HANDLE) { VkCommandBufferAllocateInfo cmd = vkTools::initializers::commandBufferAllocateInfo( cmdPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY, 1); VkResult vkRes = vkAllocateCommandBuffers(device, &cmd, &offScreenCmdBuffer); assert(!vkRes); } VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo(); // Clear values for all attachments written in the fragment sahder std::array clearValues; clearValues[0].color = { { 0.0f, 0.0f, 0.0f, 0.0f } }; clearValues[1].color = { { 0.0f, 0.0f, 0.0f, 0.0f } }; clearValues[2].color = { { 0.0f, 0.0f, 0.0f, 0.0f } }; clearValues[3].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo(); renderPassBeginInfo.renderPass = offScreenFrameBuf.renderPass; renderPassBeginInfo.framebuffer = offScreenFrameBuf.frameBuffer; renderPassBeginInfo.renderArea.extent.width = offScreenFrameBuf.width; renderPassBeginInfo.renderArea.extent.height = offScreenFrameBuf.height; renderPassBeginInfo.clearValueCount = clearValues.size(); renderPassBeginInfo.pClearValues = clearValues.data(); err = vkBeginCommandBuffer(offScreenCmdBuffer, &cmdBufInfo); assert(!err); vkCmdBeginRenderPass(offScreenCmdBuffer, &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); VkViewport viewport = vkTools::initializers::viewport( (float)offScreenFrameBuf.width, (float)offScreenFrameBuf.height, 0.0f, 1.0f); vkCmdSetViewport(offScreenCmdBuffer, 0, 1, &viewport); VkRect2D scissor = vkTools::initializers::rect2D( offScreenFrameBuf.width, offScreenFrameBuf.height, 0, 0); vkCmdSetScissor(offScreenCmdBuffer, 0, 1, &scissor); vkCmdBindDescriptorSets(offScreenCmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.offscreen, 0, 1, &descriptorSets.offscreen, 0, NULL); vkCmdBindPipeline(offScreenCmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.offscreen); VkDeviceSize offsets[1] = { 0 }; vkCmdBindVertexBuffers(offScreenCmdBuffer, VERTEX_BUFFER_BIND_ID, 1, &meshes.example.vertices.buf, offsets); vkCmdBindIndexBuffer(offScreenCmdBuffer, meshes.example.indices.buf, 0, VK_INDEX_TYPE_UINT32); vkCmdDrawIndexed(offScreenCmdBuffer, meshes.example.indexCount, 1, 0, 0, 0); vkCmdEndRenderPass(offScreenCmdBuffer); blit(offScreenFrameBuf.position.image, textureTargets.position.image); blit(offScreenFrameBuf.normal.image, textureTargets.normal.image); blit(offScreenFrameBuf.albedo.image, textureTargets.albedo.image); err = vkEndCommandBuffer(offScreenCmdBuffer); assert(!err); } void loadTextures() { textureLoader->loadTexture( getAssetPath() + "models/armor/colormap.ktx", VK_FORMAT_BC3_UNORM_BLOCK, &textures.colorMap); } void reBuildCommandBuffers() { if (!checkCommandBuffers()) { destroyCommandBuffers(); createCommandBuffers(); } buildCommandBuffers(); } void buildCommandBuffers() { VkCommandBufferBeginInfo cmdBufInfo = vkTools::initializers::commandBufferBeginInfo(); VkClearValue clearValues[2]; clearValues[0].color = { { 0.0f, 0.0f, 0.2f, 0.0f } }; clearValues[1].depthStencil = { 1.0f, 0 }; VkRenderPassBeginInfo renderPassBeginInfo = vkTools::initializers::renderPassBeginInfo(); renderPassBeginInfo.renderPass = renderPass; renderPassBeginInfo.renderArea.offset.x = 0; renderPassBeginInfo.renderArea.offset.y = 0; renderPassBeginInfo.renderArea.extent.width = width; renderPassBeginInfo.renderArea.extent.height = height; renderPassBeginInfo.clearValueCount = 2; renderPassBeginInfo.pClearValues = clearValues; VkResult err; for (int32_t i = 0; i < drawCmdBuffers.size(); ++i) { // Set target frame buffer renderPassBeginInfo.framebuffer = frameBuffers[i]; err = vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo); assert(!err); vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE); VkViewport viewport = vkTools::initializers::viewport( (float)width, (float)height, 0.0f, 1.0f); vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); VkRect2D scissor = vkTools::initializers::rect2D( width, height, 0, 0); vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor); VkDeviceSize offsets[1] = { 0 }; vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayouts.deferred, 0, 1, &descriptorSet, 0, NULL); if (debugDisplay) { vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.debug); vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &meshes.quad.vertices.buf, offsets); vkCmdBindIndexBuffer(drawCmdBuffers[i], meshes.quad.indices.buf, 0, VK_INDEX_TYPE_UINT32); vkCmdDrawIndexed(drawCmdBuffers[i], meshes.quad.indexCount, 1, 0, 0, 1); // Move viewport to display final composition in lower right corner viewport.x = viewport.width * 0.5f; viewport.y = viewport.height * 0.5f; vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport); } // Final composition as full screen quad vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.deferred); vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &meshes.quad.vertices.buf, offsets); vkCmdBindIndexBuffer(drawCmdBuffers[i], meshes.quad.indices.buf, 0, VK_INDEX_TYPE_UINT32); vkCmdDrawIndexed(drawCmdBuffers[i], 6, 1, 0, 0, 1); vkCmdEndRenderPass(drawCmdBuffers[i]); err = vkEndCommandBuffer(drawCmdBuffers[i]); assert(!err); } } void draw() { VkResult err; // Get next image in the swap chain (back/front buffer) err = swapChain.acquireNextImage(semaphores.presentComplete, ¤tBuffer); assert(!err); submitPostPresentBarrier(swapChain.buffers[currentBuffer].image); // Gather command buffers to be sumitted to the queue std::vector submitCmdBuffers = { offScreenCmdBuffer, drawCmdBuffers[currentBuffer], }; submitInfo.commandBufferCount = submitCmdBuffers.size(); submitInfo.pCommandBuffers = submitCmdBuffers.data(); // Submit to queue err = vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE); assert(!err); submitPrePresentBarrier(swapChain.buffers[currentBuffer].image); err = swapChain.queuePresent(queue, currentBuffer, semaphores.renderComplete); assert(!err); err = vkQueueWaitIdle(queue); assert(!err); } void loadMeshes() { loadMesh(getAssetPath() + "models/armor/armor.dae", &meshes.example, vertexLayout, 1.0f); } void generateQuads() { // Setup vertices for multiple screen aligned quads // Used for displaying final result and debug struct Vertex { float pos[3]; float uv[2]; float col[3]; float normal[3]; }; std::vector vertexBuffer; float x = 0.0f; float y = 0.0f; for (uint32_t i = 0; i < 3; i++) { // Last component of normal is used for debug display sampler index vertexBuffer.push_back({ { x+1.0f, y+1.0f, 0.0f }, { 1.0f, 1.0f }, { 1.0f, 1.0f, 1.0f }, { 0.0f, 0.0f, (float)i } }); vertexBuffer.push_back({ { x, y+1.0f, 0.0f }, { 0.0f, 1.0f }, { 1.0f, 1.0f, 1.0f }, { 0.0f, 0.0f, (float)i } }); vertexBuffer.push_back({ { x, y, 0.0f }, { 0.0f, 0.0f }, { 1.0f, 1.0f, 1.0f }, { 0.0f, 0.0f, (float)i } }); vertexBuffer.push_back({ { x+1.0f, y, 0.0f }, { 1.0f, 0.0f }, { 1.0f, 1.0f, 1.0f }, { 0.0f, 0.0f, (float)i } }); x += 1.0f; if (x > 1.0f) { x = 0.0f; y += 1.0f; } } createBuffer( VK_BUFFER_USAGE_VERTEX_BUFFER_BIT, vertexBuffer.size() * sizeof(Vertex), vertexBuffer.data(), &meshes.quad.vertices.buf, &meshes.quad.vertices.mem); // Setup indices std::vector indexBuffer = { 0,1,2, 2,3,0 }; for (uint32_t i = 0; i < 3; ++i) { uint32_t indices[6] = { 0,1,2, 2,3,0 }; for (auto index : indices) { indexBuffer.push_back(i * 4 + index); } } meshes.quad.indexCount = indexBuffer.size(); createBuffer( VK_BUFFER_USAGE_INDEX_BUFFER_BIT, indexBuffer.size() * sizeof(uint32_t), indexBuffer.data(), &meshes.quad.indices.buf, &meshes.quad.indices.mem); } void setupVertexDescriptions() { // Binding description vertices.bindingDescriptions.resize(1); vertices.bindingDescriptions[0] = vkTools::initializers::vertexInputBindingDescription( VERTEX_BUFFER_BIND_ID, vkMeshLoader::vertexSize(vertexLayout), VK_VERTEX_INPUT_RATE_VERTEX); // Attribute descriptions vertices.attributeDescriptions.resize(4); // Location 0 : Position vertices.attributeDescriptions[0] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 0, VK_FORMAT_R32G32B32_SFLOAT, 0); // Location 1 : Texture coordinates vertices.attributeDescriptions[1] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 1, VK_FORMAT_R32G32_SFLOAT, sizeof(float) * 3); // Location 2 : Color vertices.attributeDescriptions[2] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 2, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 5); // Location 3 : Normal vertices.attributeDescriptions[3] = vkTools::initializers::vertexInputAttributeDescription( VERTEX_BUFFER_BIND_ID, 3, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 8); vertices.inputState = vkTools::initializers::pipelineVertexInputStateCreateInfo(); vertices.inputState.vertexBindingDescriptionCount = vertices.bindingDescriptions.size(); vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data(); vertices.inputState.vertexAttributeDescriptionCount = vertices.attributeDescriptions.size(); vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data(); } void setupDescriptorPool() { std::vector poolSizes = { vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 8), vkTools::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 8) }; VkDescriptorPoolCreateInfo descriptorPoolInfo = vkTools::initializers::descriptorPoolCreateInfo( poolSizes.size(), poolSizes.data(), 2); VkResult vkRes = vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool); assert(!vkRes); } void setupDescriptorSetLayout() { // Deferred shading layout std::vector setLayoutBindings = { // Binding 0 : Vertex shader uniform buffer vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0), // Binding 1 : Position texture target / Scene colormap vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1), // Binding 2 : Normals texture target vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 2), // Binding 3 : Albedo texture target vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 3), // Binding 4 : Fragment shader uniform buffer vkTools::initializers::descriptorSetLayoutBinding( VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_FRAGMENT_BIT, 4), }; VkDescriptorSetLayoutCreateInfo descriptorLayout = vkTools::initializers::descriptorSetLayoutCreateInfo( setLayoutBindings.data(), setLayoutBindings.size()); VkResult err = vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout); assert(!err); VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = vkTools::initializers::pipelineLayoutCreateInfo( &descriptorSetLayout, 1); err = vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayouts.deferred); assert(!err); // Offscreen (scene) rendering pipeline layout err = vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayouts.offscreen); assert(!err); } void setupDescriptorSet() { // Textured quad descriptor set VkDescriptorSetAllocateInfo allocInfo = vkTools::initializers::descriptorSetAllocateInfo( descriptorPool, &descriptorSetLayout, 1); VkResult vkRes = vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet); assert(!vkRes); // Image descriptor for the offscreen texture targets VkDescriptorImageInfo texDescriptorPosition = vkTools::initializers::descriptorImageInfo( textureTargets.position.sampler, textureTargets.position.view, VK_IMAGE_LAYOUT_GENERAL); VkDescriptorImageInfo texDescriptorNormal = vkTools::initializers::descriptorImageInfo( textureTargets.normal.sampler, textureTargets.normal.view, VK_IMAGE_LAYOUT_GENERAL); VkDescriptorImageInfo texDescriptorAlbedo = vkTools::initializers::descriptorImageInfo( textureTargets.albedo.sampler, textureTargets.albedo.view, VK_IMAGE_LAYOUT_GENERAL); std::vector writeDescriptorSets = { // Binding 0 : Vertex shader uniform buffer vkTools::initializers::writeDescriptorSet( descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformData.vsFullScreen.descriptor), // Binding 1 : Position texture target vkTools::initializers::writeDescriptorSet( descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &texDescriptorPosition), // Binding 2 : Normals texture target vkTools::initializers::writeDescriptorSet( descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2, &texDescriptorNormal), // Binding 3 : Albedo texture target vkTools::initializers::writeDescriptorSet( descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 3, &texDescriptorAlbedo), // Binding 4 : Fragment shader uniform buffer vkTools::initializers::writeDescriptorSet( descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 4, &uniformData.fsLights.descriptor), }; vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL); // Offscreen (scene) vkRes = vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.offscreen); assert(!vkRes); VkDescriptorImageInfo texDescriptorSceneColormap = vkTools::initializers::descriptorImageInfo( textures.colorMap.sampler, textures.colorMap.view, VK_IMAGE_LAYOUT_GENERAL); std::vector offScreenWriteDescriptorSets = { // Binding 0 : Vertex shader uniform buffer vkTools::initializers::writeDescriptorSet( descriptorSets.offscreen, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformData.vsOffscreen.descriptor), // Binding 1 : Scene color map vkTools::initializers::writeDescriptorSet( descriptorSets.offscreen, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &texDescriptorSceneColormap) }; vkUpdateDescriptorSets(device, offScreenWriteDescriptorSets.size(), offScreenWriteDescriptorSets.data(), 0, NULL); } void preparePipelines() { VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vkTools::initializers::pipelineInputAssemblyStateCreateInfo( VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE); VkPipelineRasterizationStateCreateInfo rasterizationState = vkTools::initializers::pipelineRasterizationStateCreateInfo( VK_POLYGON_MODE_FILL, VK_CULL_MODE_NONE, VK_FRONT_FACE_CLOCKWISE, 0); VkPipelineColorBlendAttachmentState blendAttachmentState = vkTools::initializers::pipelineColorBlendAttachmentState( 0xf, VK_FALSE); VkPipelineColorBlendStateCreateInfo colorBlendState = vkTools::initializers::pipelineColorBlendStateCreateInfo( 1, &blendAttachmentState); VkPipelineDepthStencilStateCreateInfo depthStencilState = vkTools::initializers::pipelineDepthStencilStateCreateInfo( VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL); VkPipelineViewportStateCreateInfo viewportState = vkTools::initializers::pipelineViewportStateCreateInfo(1, 1, 0); VkPipelineMultisampleStateCreateInfo multisampleState = vkTools::initializers::pipelineMultisampleStateCreateInfo( VK_SAMPLE_COUNT_1_BIT, 0); std::vector dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR }; VkPipelineDynamicStateCreateInfo dynamicState = vkTools::initializers::pipelineDynamicStateCreateInfo( dynamicStateEnables.data(), dynamicStateEnables.size(), 0); // Final fullscreen pass pipeline std::array shaderStages; shaderStages[0] = loadShader(getAssetPath() + "shaders/deferred/deferred.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getAssetPath() + "shaders/deferred/deferred.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); VkGraphicsPipelineCreateInfo pipelineCreateInfo = vkTools::initializers::pipelineCreateInfo( pipelineLayouts.deferred, renderPass, 0); pipelineCreateInfo.pVertexInputState = &vertices.inputState; pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState; pipelineCreateInfo.pRasterizationState = &rasterizationState; pipelineCreateInfo.pColorBlendState = &colorBlendState; pipelineCreateInfo.pMultisampleState = &multisampleState; pipelineCreateInfo.pViewportState = &viewportState; pipelineCreateInfo.pDepthStencilState = &depthStencilState; pipelineCreateInfo.pDynamicState = &dynamicState; pipelineCreateInfo.stageCount = shaderStages.size(); pipelineCreateInfo.pStages = shaderStages.data(); VkResult err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.deferred); assert(!err); // Debug display pipeline shaderStages[0] = loadShader(getAssetPath() + "shaders/deferred/debug.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getAssetPath() + "shaders/deferred/debug.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.debug); assert(!err); // Offscreen pipeline shaderStages[0] = loadShader(getAssetPath() + "shaders/deferred/mrt.vert.spv", VK_SHADER_STAGE_VERTEX_BIT); shaderStages[1] = loadShader(getAssetPath() + "shaders/deferred/mrt.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT); // Separate render pass pipelineCreateInfo.renderPass = offScreenFrameBuf.renderPass; // Separate layout pipelineCreateInfo.layout = pipelineLayouts.offscreen; // Blend attachment states required for all color attachments // This is important, as color write mask will otherwise be 0x0 and you // won't see anything rendered to the attachment std::array blendAttachmentStates = { vkTools::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE), vkTools::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE), vkTools::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE) }; colorBlendState.attachmentCount = blendAttachmentStates.size(); colorBlendState.pAttachments = blendAttachmentStates.data(); err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.offscreen); assert(!err); } // Prepare and initialize uniform buffer containing shader uniforms void prepareUniformBuffers() { // Fullscreen vertex shader createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, sizeof(uboVS), &uboVS, &uniformData.vsFullScreen.buffer, &uniformData.vsFullScreen.memory, &uniformData.vsFullScreen.descriptor); // Deferred vertex shader createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, sizeof(uboOffscreenVS), &uboOffscreenVS, &uniformData.vsOffscreen.buffer, &uniformData.vsOffscreen.memory, &uniformData.vsOffscreen.descriptor); // Deferred fragment shader createBuffer( VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, sizeof(uboFragmentLights), &uboFragmentLights, &uniformData.fsLights.buffer, &uniformData.fsLights.memory, &uniformData.fsLights.descriptor); // Update updateUniformBuffersScreen(); updateUniformBufferDeferredMatrices(); updateUniformBufferDeferredLights(); } void updateUniformBuffersScreen() { if (debugDisplay) { uboVS.projection = glm::ortho(0.0f, 2.0f, 0.0f, 2.0f, -1.0f, 1.0f); } else { uboVS.projection = glm::ortho(0.0f, 1.0f, 0.0f, 1.0f, -1.0f, 1.0f); } uboVS.model = glm::mat4(); uint8_t *pData; VkResult err = vkMapMemory(device, uniformData.vsFullScreen.memory, 0, sizeof(uboVS), 0, (void **)&pData); assert(!err); memcpy(pData, &uboVS, sizeof(uboVS)); vkUnmapMemory(device, uniformData.vsFullScreen.memory); } void updateUniformBufferDeferredMatrices() { uboOffscreenVS.projection = glm::perspective(glm::radians(45.0f), (float)width / (float)height, 0.1f, 256.0f); uboOffscreenVS.view = glm::translate(glm::mat4(), glm::vec3(0.0f, 0.0f, zoom)); uboOffscreenVS.view = glm::rotate(uboOffscreenVS.view, glm::radians(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f)); uboOffscreenVS.view = glm::rotate(uboOffscreenVS.view, glm::radians(rotation.y), glm::vec3(0.0f, 1.0f, 0.0f)); uboOffscreenVS.view = glm::rotate(uboOffscreenVS.view, glm::radians(rotation.z), glm::vec3(0.0f, 0.0f, 1.0f)); uboOffscreenVS.model = glm::mat4(); uboOffscreenVS.model = glm::translate(glm::mat4(), glm::vec3(0.0f, 0.25f, 0.0f)); uint8_t *pData; VkResult err = vkMapMemory(device, uniformData.vsOffscreen.memory, 0, sizeof(uboOffscreenVS), 0, (void **)&pData); assert(!err); memcpy(pData, &uboOffscreenVS, sizeof(uboOffscreenVS)); vkUnmapMemory(device, uniformData.vsOffscreen.memory); } // Update fragment shader light position uniform block void updateUniformBufferDeferredLights() { // White light from above uboFragmentLights.lights[0].position = glm::vec4(0.0f, 3.0f, 1.0f, 0.0f); uboFragmentLights.lights[0].color = glm::vec4(1.5f); uboFragmentLights.lights[0].radius = 15.0f; uboFragmentLights.lights[0].linearFalloff = 0.3f; uboFragmentLights.lights[0].quadraticFalloff = 0.4f; // Red light uboFragmentLights.lights[1].position = glm::vec4(-2.0f, 0.0f, 0.0f, 0.0f); uboFragmentLights.lights[1].color = glm::vec4(1.5f, 0.0f, 0.0f, 0.0f); uboFragmentLights.lights[1].radius = 15.0f; uboFragmentLights.lights[1].linearFalloff = 0.4f; uboFragmentLights.lights[1].quadraticFalloff = 0.3f; // Blue light uboFragmentLights.lights[2].position = glm::vec4(2.0f, 1.0f, 0.0f, 0.0f); uboFragmentLights.lights[2].color = glm::vec4(0.0f, 0.0f, 2.5f, 0.0f); uboFragmentLights.lights[2].radius = 10.0f; uboFragmentLights.lights[2].linearFalloff = 0.45f; uboFragmentLights.lights[2].quadraticFalloff = 0.35f; // Belt glow uboFragmentLights.lights[3].position = glm::vec4(0.0f, 0.7f, 0.5f, 0.0f); uboFragmentLights.lights[3].color = glm::vec4(2.5f, 2.5f, 0.0f, 0.0f); uboFragmentLights.lights[3].radius = 5.0f; uboFragmentLights.lights[3].linearFalloff = 8.0f; uboFragmentLights.lights[3].quadraticFalloff = 6.0f; // Green light uboFragmentLights.lights[4].position = glm::vec4(3.0f, 2.0f, 1.0f, 0.0f); uboFragmentLights.lights[4].color = glm::vec4(0.0f, 1.5f, 0.0f, 0.0f); uboFragmentLights.lights[4].radius = 10.0f; uboFragmentLights.lights[4].linearFalloff = 0.8f; uboFragmentLights.lights[4].quadraticFalloff = 0.6f; // Current view position uboFragmentLights.viewPos = glm::vec4(0.0f, 0.0f, -zoom, 0.0f); uint8_t *pData; VkResult err = vkMapMemory(device, uniformData.fsLights.memory, 0, sizeof(uboFragmentLights), 0, (void **)&pData); assert(!err); memcpy(pData, &uboFragmentLights, sizeof(uboFragmentLights)); vkUnmapMemory(device, uniformData.fsLights.memory); } void prepare() { VulkanExampleBase::prepare(); loadTextures(); generateQuads(); loadMeshes(); setupVertexDescriptions(); prepareOffscreenFramebuffer(); prepareUniformBuffers(); prepareTextureTargets(); setupDescriptorSetLayout(); preparePipelines(); setupDescriptorPool(); setupDescriptorSet(); buildCommandBuffers(); buildDeferredCommandBuffer(); prepared = true; } virtual void render() { if (!prepared) return; vkDeviceWaitIdle(device); draw(); vkDeviceWaitIdle(device); } virtual void viewChanged() { updateUniformBufferDeferredMatrices(); } void toggleDebugDisplay() { debugDisplay = !debugDisplay; reBuildCommandBuffers(); updateUniformBuffersScreen(); } }; VulkanExample *vulkanExample; #if defined(_WIN32) LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam) { if (vulkanExample != NULL) { vulkanExample->handleMessages(hWnd, uMsg, wParam, lParam); if (uMsg == WM_KEYDOWN) { switch (wParam) { case 0x44: vulkanExample->toggleDebugDisplay(); break; } } } return (DefWindowProc(hWnd, uMsg, wParam, lParam)); } #elif defined(__linux__) && !defined(__ANDROID__) static void handleEvent(const xcb_generic_event_t *event) { if (vulkanExample != NULL) { vulkanExample->handleEvent(event); } } #endif // Main entry point #if defined(_WIN32) // Windows entry point int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR pCmdLine, int nCmdShow) #elif defined(__ANDROID__) // Android entry point void android_main(android_app* state) #elif defined(__linux__) // Linux entry point int main(const int argc, const char *argv[]) #endif { #if defined(__ANDROID__) // Removing this may cause the compiler to omit the main entry point // which would make the application crash at start app_dummy(); #endif vulkanExample = new VulkanExample(); #if defined(_WIN32) vulkanExample->setupWindow(hInstance, WndProc); #elif defined(__ANDROID__) // Attach vulkan example to global android application state state->userData = vulkanExample; state->onAppCmd = VulkanExample::handleAppCommand; state->onInputEvent = VulkanExample::handleAppInput; vulkanExample->androidApp = state; #elif defined(__linux__) vulkanExample->setupWindow(); #endif #if !defined(__ANDROID__) vulkanExample->initSwapchain(); vulkanExample->prepare(); #endif vulkanExample->renderLoop(); delete(vulkanExample); #if !defined(__ANDROID__) return 0; #endif }