procedural-3d-engine/texture/texture.cpp
2017-11-01 14:22:10 +01:00

875 lines
31 KiB
C++

/*
* Vulkan Example - Texture loading (and display) example (including mip maps)
*
* Copyright (C) 2016-2017 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <vector>
#define GLM_FORCE_RADIANS
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <gli/gli.hpp>
#include <vulkan/vulkan.h>
#include "vulkanexamplebase.h"
#include "VulkanDevice.hpp"
#include "VulkanBuffer.hpp"
#define VERTEX_BUFFER_BIND_ID 0
#define ENABLE_VALIDATION false
// Vertex layout for this example
struct Vertex {
float pos[3];
float uv[2];
float normal[3];
};
class VulkanExample : public VulkanExampleBase
{
public:
// Contains all Vulkan objects that are required to store and use a texture
// Note that this repository contains a texture class (VulkanTexture.hpp) that encapsulates texture loading functionality in a class that is used in subsequent demos
struct Texture {
VkSampler sampler;
VkImage image;
VkImageLayout imageLayout;
VkDeviceMemory deviceMemory;
VkImageView view;
uint32_t width, height;
uint32_t mipLevels;
} texture;
struct {
VkPipelineVertexInputStateCreateInfo inputState;
std::vector<VkVertexInputBindingDescription> bindingDescriptions;
std::vector<VkVertexInputAttributeDescription> attributeDescriptions;
} vertices;
vks::Buffer vertexBuffer;
vks::Buffer indexBuffer;
uint32_t indexCount;
vks::Buffer uniformBufferVS;
struct {
glm::mat4 projection;
glm::mat4 model;
glm::vec4 viewPos;
float lodBias = 0.0f;
} uboVS;
struct {
VkPipeline solid;
} pipelines;
VkPipelineLayout pipelineLayout;
VkDescriptorSet descriptorSet;
VkDescriptorSetLayout descriptorSetLayout;
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{
zoom = -2.5f;
rotation = { 0.0f, 15.0f, 0.0f };
title = "Texture loading";
settings.overlay = true;
}
~VulkanExample()
{
// Clean up used Vulkan resources
// Note : Inherited destructor cleans up resources stored in base class
destroyTextureImage(texture);
vkDestroyPipeline(device, pipelines.solid, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
vertexBuffer.destroy();
indexBuffer.destroy();
uniformBufferVS.destroy();
}
// Enable physical device features required for this example
virtual void getEnabledFeatures()
{
// Enable anisotropic filtering if supported
if (deviceFeatures.samplerAnisotropy) {
enabledFeatures.samplerAnisotropy = VK_TRUE;
};
}
// Create an image memory barrier used to change the layout of an image and put it into an active command buffer
void setImageLayout(VkCommandBuffer cmdBuffer, VkImage image, VkImageAspectFlags aspectMask, VkImageLayout oldImageLayout, VkImageLayout newImageLayout, VkImageSubresourceRange subresourceRange)
{
// Create an image barrier object
VkImageMemoryBarrier imageMemoryBarrier = vks::initializers::imageMemoryBarrier();;
imageMemoryBarrier.oldLayout = oldImageLayout;
imageMemoryBarrier.newLayout = newImageLayout;
imageMemoryBarrier.image = image;
imageMemoryBarrier.subresourceRange = subresourceRange;
// Only sets masks for layouts used in this example
// For a more complete version that can be used with other layouts see vks::tools::setImageLayout
// Source layouts (old)
switch (oldImageLayout)
{
case VK_IMAGE_LAYOUT_UNDEFINED:
// Only valid as initial layout, memory contents are not preserved
// Can be accessed directly, no source dependency required
imageMemoryBarrier.srcAccessMask = 0;
break;
case VK_IMAGE_LAYOUT_PREINITIALIZED:
// Only valid as initial layout for linear images, preserves memory contents
// Make sure host writes to the image have been finished
imageMemoryBarrier.srcAccessMask = VK_ACCESS_HOST_WRITE_BIT;
break;
case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL:
// Old layout is transfer destination
// Make sure any writes to the image have been finished
imageMemoryBarrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
break;
}
// Target layouts (new)
switch (newImageLayout)
{
case VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL:
// Transfer source (copy, blit)
// Make sure any reads from the image have been finished
imageMemoryBarrier.dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT;
break;
case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL:
// Transfer destination (copy, blit)
// Make sure any writes to the image have been finished
imageMemoryBarrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
break;
case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL:
// Shader read (sampler, input attachment)
imageMemoryBarrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
break;
}
// Put barrier on top of pipeline
VkPipelineStageFlags srcStageFlags = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT;
VkPipelineStageFlags destStageFlags = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT;
// Put barrier inside setup command buffer
vkCmdPipelineBarrier(
cmdBuffer,
srcStageFlags,
destStageFlags,
VK_FLAGS_NONE,
0, nullptr,
0, nullptr,
1, &imageMemoryBarrier);
}
void loadTexture()
{
// We use the Khronos texture format (https://www.khronos.org/opengles/sdk/tools/KTX/file_format_spec/)
std::string filename = getAssetPath() + "textures/metalplate01_rgba.ktx";
// Texture data contains 4 channels (RGBA) with unnormalized 8-bit values, this is the most commonly supported format
VkFormat format = VK_FORMAT_R8G8B8A8_UNORM;
// Set to true to use linear tiled images
// This is just for learning purposes and not suggested, as linear tiled images are pretty restricted and often only support a small set of features (e.g. no mips, etc.)
bool forceLinearTiling = false;
#if defined(__ANDROID__)
// Textures are stored inside the apk on Android (compressed)
// So they need to be loaded via the asset manager
AAsset* asset = AAssetManager_open(androidApp->activity->assetManager, filename.c_str(), AASSET_MODE_STREAMING);
assert(asset);
size_t size = AAsset_getLength(asset);
assert(size > 0);
void *textureData = malloc(size);
AAsset_read(asset, textureData, size);
AAsset_close(asset);
gli::texture2d tex2D(gli::load((const char*)textureData, size));
#else
gli::texture2d tex2D(gli::load(filename));
#endif
assert(!tex2D.empty());
VkFormatProperties formatProperties;
texture.width = static_cast<uint32_t>(tex2D[0].extent().x);
texture.height = static_cast<uint32_t>(tex2D[0].extent().y);
texture.mipLevels = static_cast<uint32_t>(tex2D.levels());
// Get device properites for the requested texture format
vkGetPhysicalDeviceFormatProperties(physicalDevice, format, &formatProperties);
// Only use linear tiling if requested (and supported by the device)
// Support for linear tiling is mostly limited, so prefer to use
// optimal tiling instead
// On most implementations linear tiling will only support a very
// limited amount of formats and features (mip maps, cubemaps, arrays, etc.)
VkBool32 useStaging = true;
// Only use linear tiling if forced
if (forceLinearTiling)
{
// Don't use linear if format is not supported for (linear) shader sampling
useStaging = !(formatProperties.linearTilingFeatures & VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT);
}
VkMemoryAllocateInfo memAllocInfo = vks::initializers::memoryAllocateInfo();
VkMemoryRequirements memReqs = {};
if (useStaging)
{
// Create a host-visible staging buffer that contains the raw image data
VkBuffer stagingBuffer;
VkDeviceMemory stagingMemory;
VkBufferCreateInfo bufferCreateInfo = vks::initializers::bufferCreateInfo();
bufferCreateInfo.size = tex2D.size();
// This buffer is used as a transfer source for the buffer copy
bufferCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
bufferCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
VK_CHECK_RESULT(vkCreateBuffer(device, &bufferCreateInfo, nullptr, &stagingBuffer));
// Get memory requirements for the staging buffer (alignment, memory type bits)
vkGetBufferMemoryRequirements(device, stagingBuffer, &memReqs);
memAllocInfo.allocationSize = memReqs.size;
// Get memory type index for a host visible buffer
memAllocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &stagingMemory));
VK_CHECK_RESULT(vkBindBufferMemory(device, stagingBuffer, stagingMemory, 0));
// Copy texture data into staging buffer
uint8_t *data;
VK_CHECK_RESULT(vkMapMemory(device, stagingMemory, 0, memReqs.size, 0, (void **)&data));
memcpy(data, tex2D.data(), tex2D.size());
vkUnmapMemory(device, stagingMemory);
// Setup buffer copy regions for each mip level
std::vector<VkBufferImageCopy> bufferCopyRegions;
uint32_t offset = 0;
for (uint32_t i = 0; i < texture.mipLevels; i++)
{
VkBufferImageCopy bufferCopyRegion = {};
bufferCopyRegion.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
bufferCopyRegion.imageSubresource.mipLevel = i;
bufferCopyRegion.imageSubresource.baseArrayLayer = 0;
bufferCopyRegion.imageSubresource.layerCount = 1;
bufferCopyRegion.imageExtent.width = static_cast<uint32_t>(tex2D[i].extent().x);
bufferCopyRegion.imageExtent.height = static_cast<uint32_t>(tex2D[i].extent().y);
bufferCopyRegion.imageExtent.depth = 1;
bufferCopyRegion.bufferOffset = offset;
bufferCopyRegions.push_back(bufferCopyRegion);
offset += static_cast<uint32_t>(tex2D[i].size());
}
// Create optimal tiled target image
VkImageCreateInfo imageCreateInfo = vks::initializers::imageCreateInfo();
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
imageCreateInfo.format = format;
imageCreateInfo.mipLevels = texture.mipLevels;
imageCreateInfo.arrayLayers = 1;
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
imageCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
// Set initial layout of the image to undefined
imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
imageCreateInfo.extent = { texture.width, texture.height, 1 };
imageCreateInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
VK_CHECK_RESULT(vkCreateImage(device, &imageCreateInfo, nullptr, &texture.image));
vkGetImageMemoryRequirements(device, texture.image, &memReqs);
memAllocInfo.allocationSize = memReqs.size;
memAllocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &texture.deviceMemory));
VK_CHECK_RESULT(vkBindImageMemory(device, texture.image, texture.deviceMemory, 0));
VkCommandBuffer copyCmd = VulkanExampleBase::createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
// Image barrier for optimal image
// The sub resource range describes the regions of the image we will be transition
VkImageSubresourceRange subresourceRange = {};
// Image only contains color data
subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
// Start at first mip level
subresourceRange.baseMipLevel = 0;
// We will transition on all mip levels
subresourceRange.levelCount = texture.mipLevels;
// The 2D texture only has one layer
subresourceRange.layerCount = 1;
// Optimal image will be used as destination for the copy, so we must transfer from our
// initial undefined image layout to the transfer destination layout
setImageLayout(
copyCmd,
texture.image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
subresourceRange);
// Copy mip levels from staging buffer
vkCmdCopyBufferToImage(
copyCmd,
stagingBuffer,
texture.image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
static_cast<uint32_t>(bufferCopyRegions.size()),
bufferCopyRegions.data());
// Change texture image layout to shader read after all mip levels have been copied
texture.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
setImageLayout(
copyCmd,
texture.image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
texture.imageLayout,
subresourceRange);
VulkanExampleBase::flushCommandBuffer(copyCmd, queue, true);
// Clean up staging resources
vkFreeMemory(device, stagingMemory, nullptr);
vkDestroyBuffer(device, stagingBuffer, nullptr);
}
else
{
VkImage mappableImage;
VkDeviceMemory mappableMemory;
// Load mip map level 0 to linear tiling image
VkImageCreateInfo imageCreateInfo = vks::initializers::imageCreateInfo();
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
imageCreateInfo.format = format;
imageCreateInfo.mipLevels = 1;
imageCreateInfo.arrayLayers = 1;
imageCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
imageCreateInfo.tiling = VK_IMAGE_TILING_LINEAR;
imageCreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT;
imageCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_PREINITIALIZED;
imageCreateInfo.extent = { texture.width, texture.height, 1 };
VK_CHECK_RESULT(vkCreateImage(device, &imageCreateInfo, nullptr, &mappableImage));
// Get memory requirements for this image
// like size and alignment
vkGetImageMemoryRequirements(device, mappableImage, &memReqs);
// Set memory allocation size to required memory size
memAllocInfo.allocationSize = memReqs.size;
// Get memory type that can be mapped to host memory
memAllocInfo.memoryTypeIndex = vulkanDevice->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
// Allocate host memory
VK_CHECK_RESULT(vkAllocateMemory(device, &memAllocInfo, nullptr, &mappableMemory));
// Bind allocated image for use
VK_CHECK_RESULT(vkBindImageMemory(device, mappableImage, mappableMemory, 0));
// Get sub resource layout
// Mip map count, array layer, etc.
VkImageSubresource subRes = {};
subRes.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
VkSubresourceLayout subResLayout;
void *data;
// Get sub resources layout
// Includes row pitch, size offsets, etc.
vkGetImageSubresourceLayout(device, mappableImage, &subRes, &subResLayout);
// Map image memory
VK_CHECK_RESULT(vkMapMemory(device, mappableMemory, 0, memReqs.size, 0, &data));
// Copy image data into memory
memcpy(data, tex2D[subRes.mipLevel].data(), tex2D[subRes.mipLevel].size());
vkUnmapMemory(device, mappableMemory);
// Linear tiled images don't need to be staged
// and can be directly used as textures
texture.image = mappableImage;
texture.deviceMemory = mappableMemory;
texture.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
VkCommandBuffer copyCmd = VulkanExampleBase::createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
// Setup image memory barrier transfer image to shader read layout
// The sub resource range describes the regions of the image we will be transition
VkImageSubresourceRange subresourceRange = {};
// Image only contains color data
subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
// Start at first mip level
subresourceRange.baseMipLevel = 0;
// Only one mip level, most implementations won't support more for linear tiled images
subresourceRange.levelCount = 1;
// The 2D texture only has one layer
subresourceRange.layerCount = 1;
setImageLayout(
copyCmd,
texture.image,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_PREINITIALIZED,
texture.imageLayout,
subresourceRange);
VulkanExampleBase::flushCommandBuffer(copyCmd, queue, true);
}
// Create a texture sampler
// In Vulkan textures are accessed by samplers
// This separates all the sampling information from the texture data. This means you could have multiple sampler objects for the same texture with different settings
// Note: Similar to the samplers available with OpenGL 3.3
VkSamplerCreateInfo sampler = vks::initializers::samplerCreateInfo();
sampler.magFilter = VK_FILTER_LINEAR;
sampler.minFilter = VK_FILTER_LINEAR;
sampler.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
sampler.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT;
sampler.addressModeV = VK_SAMPLER_ADDRESS_MODE_REPEAT;
sampler.addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT;
sampler.mipLodBias = 0.0f;
sampler.compareOp = VK_COMPARE_OP_NEVER;
sampler.minLod = 0.0f;
// Set max level-of-detail to mip level count of the texture
sampler.maxLod = (useStaging) ? (float)texture.mipLevels : 0.0f;
// Enable anisotropic filtering
// This feature is optional, so we must check if it's supported on the device
if (vulkanDevice->features.samplerAnisotropy)
{
// Use max. level of anisotropy for this example
sampler.maxAnisotropy = vulkanDevice->properties.limits.maxSamplerAnisotropy;
sampler.anisotropyEnable = VK_TRUE;
}
else
{
// The device does not support anisotropic filtering
sampler.maxAnisotropy = 1.0;
sampler.anisotropyEnable = VK_FALSE;
}
sampler.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
VK_CHECK_RESULT(vkCreateSampler(device, &sampler, nullptr, &texture.sampler));
// Create image view
// Textures are not directly accessed by the shaders and
// are abstracted by image views containing additional
// information and sub resource ranges
VkImageViewCreateInfo view = vks::initializers::imageViewCreateInfo();
view.viewType = VK_IMAGE_VIEW_TYPE_2D;
view.format = format;
view.components = { VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A };
// The subresource range describes the set of mip levels (and array layers) that can be accessed through this image view
// It's possible to create multiple image views for a single image referring to different (and/or overlapping) ranges of the image
view.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
view.subresourceRange.baseMipLevel = 0;
view.subresourceRange.baseArrayLayer = 0;
view.subresourceRange.layerCount = 1;
// Linear tiling usually won't support mip maps
// Only set mip map count if optimal tiling is used
view.subresourceRange.levelCount = (useStaging) ? texture.mipLevels : 1;
// The view will be based on the texture's image
view.image = texture.image;
VK_CHECK_RESULT(vkCreateImageView(device, &view, nullptr, &texture.view));
}
// Free all Vulkan resources used by a texture object
void destroyTextureImage(Texture texture)
{
vkDestroyImageView(device, texture.view, nullptr);
vkDestroyImage(device, texture.image, nullptr);
vkDestroySampler(device, texture.sampler, nullptr);
vkFreeMemory(device, texture.deviceMemory, nullptr);
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = defaultClearColor;
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
// Set target frame buffer
renderPassBeginInfo.framebuffer = frameBuffers[i];
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.solid);
VkDeviceSize offsets[1] = { 0 };
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &vertexBuffer.buffer, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], indexBuffer.buffer, 0, VK_INDEX_TYPE_UINT32);
vkCmdDrawIndexed(drawCmdBuffers[i], indexCount, 1, 0, 0, 0);
vkCmdEndRenderPass(drawCmdBuffers[i]);
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
void draw()
{
VulkanExampleBase::prepareFrame();
// Command buffer to be sumitted to the queue
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
// Submit to queue
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VulkanExampleBase::submitFrame();
}
void generateQuad()
{
// Setup vertices for a single uv-mapped quad made from two triangles
std::vector<Vertex> vertices =
{
{ { 1.0f, 1.0f, 0.0f }, { 1.0f, 1.0f },{ 0.0f, 0.0f, 1.0f } },
{ { -1.0f, 1.0f, 0.0f }, { 0.0f, 1.0f },{ 0.0f, 0.0f, 1.0f } },
{ { -1.0f, -1.0f, 0.0f }, { 0.0f, 0.0f },{ 0.0f, 0.0f, 1.0f } },
{ { 1.0f, -1.0f, 0.0f }, { 1.0f, 0.0f },{ 0.0f, 0.0f, 1.0f } }
};
// Setup indices
std::vector<uint32_t> indices = { 0,1,2, 2,3,0 };
indexCount = static_cast<uint32_t>(indices.size());
// Create buffers
// For the sake of simplicity we won't stage the vertex data to the gpu memory
// Vertex buffer
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&vertexBuffer,
vertices.size() * sizeof(Vertex),
vertices.data()));
// Index buffer
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_INDEX_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&indexBuffer,
indices.size() * sizeof(uint32_t),
indices.data()));
}
void setupVertexDescriptions()
{
// Binding description
vertices.bindingDescriptions.resize(1);
vertices.bindingDescriptions[0] =
vks::initializers::vertexInputBindingDescription(
VERTEX_BUFFER_BIND_ID,
sizeof(Vertex),
VK_VERTEX_INPUT_RATE_VERTEX);
// Attribute descriptions
// Describes memory layout and shader positions
vertices.attributeDescriptions.resize(3);
// Location 0 : Position
vertices.attributeDescriptions[0] =
vks::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
0,
VK_FORMAT_R32G32B32_SFLOAT,
offsetof(Vertex, pos));
// Location 1 : Texture coordinates
vertices.attributeDescriptions[1] =
vks::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
1,
VK_FORMAT_R32G32_SFLOAT,
offsetof(Vertex, uv));
// Location 1 : Vertex normal
vertices.attributeDescriptions[2] =
vks::initializers::vertexInputAttributeDescription(
VERTEX_BUFFER_BIND_ID,
2,
VK_FORMAT_R32G32B32_SFLOAT,
offsetof(Vertex, normal));
vertices.inputState = vks::initializers::pipelineVertexInputStateCreateInfo();
vertices.inputState.vertexBindingDescriptionCount = static_cast<uint32_t>(vertices.bindingDescriptions.size());
vertices.inputState.pVertexBindingDescriptions = vertices.bindingDescriptions.data();
vertices.inputState.vertexAttributeDescriptionCount = static_cast<uint32_t>(vertices.attributeDescriptions.size());
vertices.inputState.pVertexAttributeDescriptions = vertices.attributeDescriptions.data();
}
void setupDescriptorPool()
{
// Example uses one ubo and one image sampler
std::vector<VkDescriptorPoolSize> poolSizes =
{
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1),
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1)
};
VkDescriptorPoolCreateInfo descriptorPoolInfo =
vks::initializers::descriptorPoolCreateInfo(
static_cast<uint32_t>(poolSizes.size()),
poolSizes.data(),
2);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
}
void setupDescriptorSetLayout()
{
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings =
{
// Binding 0 : Vertex shader uniform buffer
vks::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
VK_SHADER_STAGE_VERTEX_BIT,
0),
// Binding 1 : Fragment shader image sampler
vks::initializers::descriptorSetLayoutBinding(
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
VK_SHADER_STAGE_FRAGMENT_BIT,
1)
};
VkDescriptorSetLayoutCreateInfo descriptorLayout =
vks::initializers::descriptorSetLayoutCreateInfo(
setLayoutBindings.data(),
static_cast<uint32_t>(setLayoutBindings.size()));
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout));
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo =
vks::initializers::pipelineLayoutCreateInfo(
&descriptorSetLayout,
1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout));
}
void setupDescriptorSet()
{
VkDescriptorSetAllocateInfo allocInfo =
vks::initializers::descriptorSetAllocateInfo(
descriptorPool,
&descriptorSetLayout,
1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet));
// Setup a descriptor image info for the current texture to be used as a combined image sampler
VkDescriptorImageInfo textureDescriptor;
textureDescriptor.imageView = texture.view; // The image's view (images are never directly accessed by the shader, but rather through views defining subresources)
textureDescriptor.sampler = texture.sampler; // The sampler (Telling the pipeline how to sample the texture, including repeat, border, etc.)
textureDescriptor.imageLayout = texture.imageLayout; // The current layout of the image (Note: Should always fit the actual use, e.g. shader read)
std::vector<VkWriteDescriptorSet> writeDescriptorSets =
{
// Binding 0 : Vertex shader uniform buffer
vks::initializers::writeDescriptorSet(
descriptorSet,
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
0,
&uniformBufferVS.descriptor),
// Binding 1 : Fragment shader texture sampler
// Fragment shader: layout (binding = 1) uniform sampler2D samplerColor;
vks::initializers::writeDescriptorSet(
descriptorSet,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, // The descriptor set will use a combined image sampler (sampler and image could be split)
1, // Shader binding point 1
&textureDescriptor) // Pointer to the descriptor image for our texture
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, NULL);
}
void preparePipelines()
{
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState =
vks::initializers::pipelineInputAssemblyStateCreateInfo(
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST,
0,
VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState =
vks::initializers::pipelineRasterizationStateCreateInfo(
VK_POLYGON_MODE_FILL,
VK_CULL_MODE_NONE,
VK_FRONT_FACE_COUNTER_CLOCKWISE,
0);
VkPipelineColorBlendAttachmentState blendAttachmentState =
vks::initializers::pipelineColorBlendAttachmentState(
0xf,
VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState =
vks::initializers::pipelineColorBlendStateCreateInfo(
1,
&blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState =
vks::initializers::pipelineDepthStencilStateCreateInfo(
VK_TRUE,
VK_TRUE,
VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState =
vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState =
vks::initializers::pipelineMultisampleStateCreateInfo(
VK_SAMPLE_COUNT_1_BIT,
0);
std::vector<VkDynamicState> dynamicStateEnables = {
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR
};
VkPipelineDynamicStateCreateInfo dynamicState =
vks::initializers::pipelineDynamicStateCreateInfo(
dynamicStateEnables.data(),
static_cast<uint32_t>(dynamicStateEnables.size()),
0);
// Load shaders
std::array<VkPipelineShaderStageCreateInfo,2> shaderStages;
shaderStages[0] = loadShader(getAssetPath() + "shaders/texture/texture.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getAssetPath() + "shaders/texture/texture.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VkGraphicsPipelineCreateInfo pipelineCreateInfo =
vks::initializers::pipelineCreateInfo(
pipelineLayout,
renderPass,
0);
pipelineCreateInfo.pVertexInputState = &vertices.inputState;
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
pipelineCreateInfo.pRasterizationState = &rasterizationState;
pipelineCreateInfo.pColorBlendState = &colorBlendState;
pipelineCreateInfo.pMultisampleState = &multisampleState;
pipelineCreateInfo.pViewportState = &viewportState;
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
pipelineCreateInfo.pDynamicState = &dynamicState;
pipelineCreateInfo.stageCount = static_cast<uint32_t>(shaderStages.size());
pipelineCreateInfo.pStages = shaderStages.data();
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.solid));
}
// Prepare and initialize uniform buffer containing shader uniforms
void prepareUniformBuffers()
{
// Vertex shader uniform buffer block
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&uniformBufferVS,
sizeof(uboVS),
&uboVS));
updateUniformBuffers();
}
void updateUniformBuffers()
{
// Vertex shader
uboVS.projection = glm::perspective(glm::radians(60.0f), (float)width / (float)height, 0.001f, 256.0f);
glm::mat4 viewMatrix = glm::translate(glm::mat4(1.0f), glm::vec3(0.0f, 0.0f, zoom));
uboVS.model = viewMatrix * glm::translate(glm::mat4(1.0f), cameraPos);
uboVS.model = glm::rotate(uboVS.model, glm::radians(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f));
uboVS.model = glm::rotate(uboVS.model, glm::radians(rotation.y), glm::vec3(0.0f, 1.0f, 0.0f));
uboVS.model = glm::rotate(uboVS.model, glm::radians(rotation.z), glm::vec3(0.0f, 0.0f, 1.0f));
uboVS.viewPos = glm::vec4(0.0f, 0.0f, -zoom, 0.0f);
VK_CHECK_RESULT(uniformBufferVS.map());
memcpy(uniformBufferVS.mapped, &uboVS, sizeof(uboVS));
uniformBufferVS.unmap();
}
void prepare()
{
VulkanExampleBase::prepare();
loadTexture();
generateQuad();
setupVertexDescriptions();
prepareUniformBuffers();
setupDescriptorSetLayout();
preparePipelines();
setupDescriptorPool();
setupDescriptorSet();
buildCommandBuffers();
prepared = true;
}
virtual void render()
{
if (!prepared)
return;
draw();
}
virtual void viewChanged()
{
updateUniformBuffers();
}
virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay)
{
if (overlay->header("Settings")) {
if (overlay->sliderFloat("LOD bias", &uboVS.lodBias, 0.0f, (float)texture.mipLevels)) {
updateUniformBuffers();
}
}
}
};
VULKAN_EXAMPLE_MAIN()