procedural-3d-engine/examples/imgui/main.cpp
Claude Code 09ba229353
Some checks failed
Build Project / Build Ubuntu (push) Has been cancelled
Build Project / Build Windows (push) Has been cancelled
Build Project / Build macOS (push) Has been cancelled
Initial procedural 3D engine setup
- Updated README.md with modern project structure and features
- Cleaned up Android build files (not needed for desktop engine)
- Restructured as procedural 3D engine with ImGui integration
- Based on Sascha Willems Vulkan framework with dynamic rendering
- Added comprehensive build instructions and camera system docs

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-08-17 18:56:17 +02:00

2735 lines
104 KiB
C++

/*
* Procedural 3D Engine
* Copyright (c) 2025 Your Project
*
* This software is licensed under the MIT License.
* See LICENSE.md for full license information.
*
* Based on Vulkan examples by Sascha Willems (MIT License)
*/
#include <imgui.h>
#include "vulkanexamplebase.h"
#include "VulkanglTFModel.h"
#include <cmath>
#include <iostream>
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
// Enhanced Camera System with Maya-style controls
class OrbitCamera {
public:
// Constructor
OrbitCamera(glm::vec3 initialPosition = glm::vec3(0.0f, 0.0f, 8.0f),
glm::vec3 focusPoint = glm::vec3(0.0f, 0.0f, 0.0f)) {
m_currentFocusPoint = focusPoint;
m_targetFocusPoint = focusPoint;
// Calculate initial spherical coordinates from position
glm::vec3 offset = initialPosition - focusPoint;
m_currentDistance = glm::length(offset);
m_targetDistance = m_currentDistance;
// Calculate initial angles
CartesianToSpherical(initialPosition, focusPoint, m_currentDistance, m_currentAzimuth, m_currentElevation);
m_targetAzimuth = m_currentAzimuth;
m_targetElevation = m_currentElevation;
m_currentPosition = initialPosition;
// Set default parameters
m_fov = 45.0f;
m_smoothingFactor = 0.1f;
m_orbitSensitivity = 0.5f;
m_panSensitivity = 0.00003f;
m_zoomSensitivity = 0.1f;
// Set constraints
m_minDistance = 0.5f;
m_maxDistance = 100.0f;
m_minElevation = -89.0f;
m_maxElevation = 89.0f;
m_viewMatrixDirty = true;
}
// Core camera operations
void Orbit(float deltaAzimuth, float deltaElevation, float deltaTime) {
// Apply input to target angles (convert degrees to radians)
m_targetAzimuth += glm::radians(deltaAzimuth * m_orbitSensitivity);
m_targetElevation += glm::radians(deltaElevation * m_orbitSensitivity);
ClampConstraints();
}
void Pan(float deltaX, float deltaY, float deltaTime) {
// Get camera's right and up vectors for screen-space panning (like legacy)
glm::mat4 viewMatrix = GetViewMatrix();
glm::vec3 right = glm::vec3(viewMatrix[0][0], viewMatrix[1][0], viewMatrix[2][0]);
glm::vec3 up = glm::vec3(viewMatrix[0][1], viewMatrix[1][1], viewMatrix[2][1]);
// Scale pan speed by distance to focus point for consistent behavior (like legacy)
float panScale = m_currentDistance * m_panSensitivity;
// Move focus point (like legacy)
glm::vec3 panOffset = right * deltaX * panScale + up * deltaY * panScale;
m_targetFocusPoint += panOffset;
}
void Zoom(float deltaDistance, float deltaTime) {
// Apply zoom with distance-based scaling for consistent behavior (like legacy)
m_targetDistance += deltaDistance * m_zoomSensitivity * m_currentDistance * 0.1f;
m_targetDistance = glm::clamp(m_targetDistance, m_minDistance, m_maxDistance);
}
void ZoomImmediate(float deltaDistance, float deltaTime) {
// Apply zoom with immediate response (no smoothing/velocity)
float zoomAmount = deltaDistance * m_zoomSensitivity * m_currentDistance * 0.1f;
// Set both target AND current immediately (no smoothing)
m_targetDistance += zoomAmount;
m_targetDistance = glm::clamp(m_targetDistance, m_minDistance, m_maxDistance);
m_currentDistance = m_targetDistance;
m_viewMatrixDirty = true;
}
void Update(float deltaTime) {
// Smooth interpolation towards target values
float lerpFactor = 1.0f - std::pow(m_smoothingFactor, deltaTime);
m_currentDistance = glm::mix(m_currentDistance, m_targetDistance, lerpFactor);
m_currentAzimuth = LerpAngle(m_currentAzimuth, m_targetAzimuth, lerpFactor);
m_currentElevation = glm::mix(m_currentElevation, m_targetElevation, lerpFactor);
m_currentFocusPoint = glm::mix(m_currentFocusPoint, m_targetFocusPoint, lerpFactor);
UpdatePosition();
}
// Matrix access
glm::mat4 GetViewMatrix() const {
if (m_viewMatrixDirty) {
m_viewMatrix = glm::lookAt(m_currentPosition, m_currentFocusPoint, glm::vec3(0.0f, 1.0f, 0.0f));
m_viewMatrixDirty = false;
}
return m_viewMatrix;
}
glm::mat4 GetProjectionMatrix(float aspectRatio, float nearPlane = 0.1f, float farPlane = 256.0f) const {
return glm::perspective(glm::radians(m_fov), aspectRatio, nearPlane, farPlane);
}
// Getters
glm::vec3 GetPosition() const { return m_currentPosition; }
glm::vec3 GetFocusPoint() const { return m_currentFocusPoint; }
float GetDistance() const { return m_currentDistance; }
float GetFOV() const { return m_fov; }
// Focus functionality
void SetFocusToSelection(glm::vec3 selectionCenter, float selectionRadius = 1.0f) {
m_targetFocusPoint = selectionCenter;
// Adjust distance based on selection size
if (selectionRadius > 0.0f) {
float recommendedDistance = selectionRadius * 3.0f; // Good viewing distance
recommendedDistance = glm::clamp(recommendedDistance, m_minDistance, m_maxDistance);
m_targetDistance = recommendedDistance;
}
std::cout << "OrbitCamera: Focus set to selection at ("
<< selectionCenter.x << ", " << selectionCenter.y << ", " << selectionCenter.z
<< ") with radius " << selectionRadius << std::endl;
}
void FrameAll(glm::vec3 sceneCenter, float sceneRadius) {
SetFocusToSelection(sceneCenter, sceneRadius);
}
// Configuration
void SetSensitivity(float orbitSens, float panSens, float zoomSens) {
m_orbitSensitivity = orbitSens;
m_panSensitivity = panSens;
m_zoomSensitivity = zoomSens;
}
void SetSmoothingFactor(float factor) {
m_smoothingFactor = glm::clamp(factor, 0.0f, 1.0f);
}
// Immediate (non-smoothed) operations for F key focus
void SetFocusPointImmediate(glm::vec3 focusPoint) {
m_targetFocusPoint = focusPoint;
m_currentFocusPoint = focusPoint; // Immediate change, no smoothing
m_viewMatrixDirty = true;
}
void SetDistanceImmediate(float distance) {
m_targetDistance = glm::clamp(distance, m_minDistance, m_maxDistance);
m_currentDistance = m_targetDistance; // Immediate change, no smoothing
UpdatePosition();
m_viewMatrixDirty = true;
}
void SetFocusToSelectionImmediate(glm::vec3 selectionCenter, float selectionRadius = 1.0f) {
SetFocusPointImmediate(selectionCenter);
// Adjust distance based on selection size
if (selectionRadius > 0.0f) {
float recommendedDistance = selectionRadius * 3.0f; // Good viewing distance
recommendedDistance = glm::clamp(recommendedDistance, m_minDistance, m_maxDistance);
SetDistanceImmediate(recommendedDistance);
}
std::cout << "OrbitCamera: Focus set immediately to selection at ("
<< selectionCenter.x << ", " << selectionCenter.y << ", " << selectionCenter.z
<< ") with radius " << selectionRadius << std::endl;
}
void FrameAllImmediate(glm::vec3 sceneCenter, float sceneRadius) {
SetFocusPointImmediate(sceneCenter);
// Calculate distance needed to frame the scene
float distance = sceneRadius / glm::tan(glm::radians(m_fov * 0.5f)) * 1.5f; // 1.5x padding
SetDistanceImmediate(distance);
}
void PanImmediate(float deltaX, float deltaY, float deltaTime) {
// Get camera's right and up vectors for screen-space panning (like Pan method)
glm::mat4 viewMatrix = GetViewMatrix();
glm::vec3 right = glm::vec3(viewMatrix[0][0], viewMatrix[1][0], viewMatrix[2][0]);
glm::vec3 up = glm::vec3(viewMatrix[0][1], viewMatrix[1][1], viewMatrix[2][1]);
// Scale pan speed by distance to focus point for consistent behavior
float panScale = m_currentDistance * m_panSensitivity;
// Calculate pan offset
glm::vec3 panOffset = right * deltaX * panScale + up * deltaY * panScale;
// Set both target AND current immediately (no smoothing)
m_targetFocusPoint += panOffset;
m_currentFocusPoint += panOffset;
m_viewMatrixDirty = true;
}
private:
// Current state (interpolated)
glm::vec3 m_currentPosition;
glm::vec3 m_currentFocusPoint;
float m_currentDistance;
float m_currentAzimuth; // Horizontal angle around focus point
float m_currentElevation; // Vertical angle (pitch)
// Target state (immediate input response)
glm::vec3 m_targetFocusPoint;
float m_targetDistance;
float m_targetAzimuth;
float m_targetElevation;
// Camera parameters
float m_fov; // Field of view in degrees
float m_smoothingFactor; // 0.0 = no smoothing, 1.0 = maximum smoothing
// Sensitivity settings
float m_orbitSensitivity;
float m_panSensitivity;
float m_zoomSensitivity;
// Constraints
float m_minDistance;
float m_maxDistance;
float m_minElevation; // In degrees
float m_maxElevation; // In degrees
// Cached matrices to avoid recalculation
mutable glm::mat4 m_viewMatrix;
mutable bool m_viewMatrixDirty;
// Internal methods
void UpdatePosition() {
m_currentPosition = SphericalToCartesian(m_currentDistance, m_currentAzimuth, m_currentElevation) + m_currentFocusPoint;
m_viewMatrixDirty = true;
}
void ClampConstraints() {
m_targetDistance = glm::clamp(m_targetDistance, m_minDistance, m_maxDistance);
m_targetElevation = glm::clamp(m_targetElevation, glm::radians(m_minElevation), glm::radians(m_maxElevation));
// Normalize azimuth to 0-2π range
while (m_targetAzimuth > 2.0f * M_PI) m_targetAzimuth -= 2.0f * M_PI;
while (m_targetAzimuth < 0.0f) m_targetAzimuth += 2.0f * M_PI;
}
glm::vec3 SphericalToCartesian(float distance, float azimuth, float elevation) const {
// Standard spherical coordinate conversion (input in radians)
float x = distance * glm::cos(elevation) * glm::cos(azimuth);
float y = distance * glm::sin(elevation);
float z = distance * glm::cos(elevation) * glm::sin(azimuth);
return glm::vec3(x, y, z);
}
void CartesianToSpherical(glm::vec3 position, glm::vec3 center, float& distance, float& azimuth, float& elevation) const {
glm::vec3 offset = position - center;
distance = glm::length(offset);
if (distance < 0.001f) {
// Very close to center, use default values
azimuth = 0.0f;
elevation = 0.0f;
return;
}
// Normalize offset for angle calculations
glm::vec3 normalized = offset / distance;
// Calculate azimuth (horizontal angle) - using atan for proper quadrant
azimuth = glm::atan(normalized.z, normalized.x);
// Calculate elevation (vertical angle) - use asin but clamp input to avoid NaN
float sinElevation = glm::clamp(normalized.y, -1.0f, 1.0f);
elevation = glm::asin(sinElevation);
}
float LerpAngle(float from, float to, float t) const {
// Handle angle wraparound for smooth interpolation (using radians)
float difference = to - from;
// Wrap difference to [-π, π] range
if (difference > M_PI) difference -= 2.0f * M_PI;
if (difference < -M_PI) difference += 2.0f * M_PI;
return from + difference * t;
}
};
// Procedural Geometry Generation
struct ProceduralVertex {
glm::vec3 position;
glm::vec3 normal;
glm::vec3 color;
};
struct ProceduralShape {
std::vector<ProceduralVertex> vertices;
std::vector<uint32_t> indices;
std::string name;
int type; // 0=cube, 1=sphere, 2=cylinder, 3=plane, 4=cone, 5=torus
// Shape parameters
struct {
float width = 2.0f, height = 2.0f, depth = 2.0f;
int subdivisions = 1;
float radius = 1.0f;
int segments = 16;
float majorRadius = 1.0f, minorRadius = 0.3f;
} params;
};
class ProceduralGeometry {
public:
static ProceduralShape generateCube(float width = 4.0f, float height = 4.0f, float depth = 4.0f) {
ProceduralShape shape;
shape.name = "Cube";
shape.type = 0;
shape.params.width = width;
shape.params.height = height;
shape.params.depth = depth;
float w = width * 0.5f;
float h = height * 0.5f;
float d = depth * 0.5f;
// Define 24 vertices (4 per face, 6 faces) with colors
shape.vertices = {
// Front face (red)
{{-w, -h, d}, {0, 0, 1}, {1, 0, 0}}, {{ w, -h, d}, {0, 0, 1}, {1, 0, 0}},
{{ w, h, d}, {0, 0, 1}, {1, 0, 0}}, {{-w, h, d}, {0, 0, 1}, {1, 0, 0}},
// Back face (green)
{{ w, -h, -d}, {0, 0, -1}, {0, 1, 0}}, {{-w, -h, -d}, {0, 0, -1}, {0, 1, 0}},
{{-w, h, -d}, {0, 0, -1}, {0, 1, 0}}, {{ w, h, -d}, {0, 0, -1}, {0, 1, 0}},
// Left face (blue)
{{-w, -h, -d}, {-1, 0, 0}, {0, 0, 1}}, {{-w, -h, d}, {-1, 0, 0}, {0, 0, 1}},
{{-w, h, d}, {-1, 0, 0}, {0, 0, 1}}, {{-w, h, -d}, {-1, 0, 0}, {0, 0, 1}},
// Right face (yellow)
{{ w, -h, d}, {1, 0, 0}, {1, 1, 0}}, {{ w, -h, -d}, {1, 0, 0}, {1, 1, 0}},
{{ w, h, -d}, {1, 0, 0}, {1, 1, 0}}, {{ w, h, d}, {1, 0, 0}, {1, 1, 0}},
// Top face (magenta)
{{-w, h, d}, {0, 1, 0}, {1, 0, 1}}, {{ w, h, d}, {0, 1, 0}, {1, 0, 1}},
{{ w, h, -d}, {0, 1, 0}, {1, 0, 1}}, {{-w, h, -d}, {0, 1, 0}, {1, 0, 1}},
// Bottom face (cyan)
{{-w, -h, -d}, {0, -1, 0}, {0, 1, 1}}, {{ w, -h, -d}, {0, -1, 0}, {0, 1, 1}},
{{ w, -h, d}, {0, -1, 0}, {0, 1, 1}}, {{-w, -h, d}, {0, -1, 0}, {0, 1, 1}}
};
// Define indices for 12 triangles (2 per face)
shape.indices = {
0,1,2, 0,2,3, // Front
4,5,6, 4,6,7, // Back
8,9,10, 8,10,11, // Left
12,13,14, 12,14,15, // Right
16,17,18, 16,18,19, // Top
20,21,22, 20,22,23 // Bottom
};
return shape;
}
static ProceduralShape generateSphere(float radius = 1.0f, int segments = 16) {
ProceduralShape shape;
shape.name = "Sphere";
shape.type = 1;
shape.params.radius = radius;
shape.params.segments = segments;
// Generate sphere vertices using spherical coordinates
for (int lat = 0; lat <= segments; ++lat) {
float theta = lat * M_PI / segments;
float sinTheta = sin(theta);
float cosTheta = cos(theta);
for (int lon = 0; lon <= segments; ++lon) {
float phi = lon * 2 * M_PI / segments;
float sinPhi = sin(phi);
float cosPhi = cos(phi);
glm::vec3 pos(radius * sinTheta * cosPhi, radius * cosTheta, radius * sinTheta * sinPhi);
glm::vec3 normal = glm::normalize(pos);
glm::vec3 color(0.8f, 0.8f, 0.8f); // Light gray color for sphere
shape.vertices.push_back({pos, normal, color});
}
}
// Generate indices
for (int lat = 0; lat < segments; ++lat) {
for (int lon = 0; lon < segments; ++lon) {
int first = lat * (segments + 1) + lon;
int second = first + segments + 1;
shape.indices.push_back(first);
shape.indices.push_back(second);
shape.indices.push_back(first + 1);
shape.indices.push_back(second);
shape.indices.push_back(second + 1);
shape.indices.push_back(first + 1);
}
}
return shape;
}
static ProceduralShape generatePlane(float width = 2.0f, float height = 2.0f, int subdivisions = 1) {
ProceduralShape shape;
shape.name = "Plane";
shape.type = 3;
shape.params.width = width;
shape.params.height = height;
shape.params.subdivisions = subdivisions;
float w = width * 0.5f;
float h = height * 0.5f;
// Simple quad for now
shape.vertices = {
{{-w, 0, -h}, {0, 1, 0}, {0.5f, 0.5f, 0.5f}}, // Gray plane
{{ w, 0, -h}, {0, 1, 0}, {0.5f, 0.5f, 0.5f}},
{{ w, 0, h}, {0, 1, 0}, {0.5f, 0.5f, 0.5f}},
{{-w, 0, h}, {0, 1, 0}, {0.5f, 0.5f, 0.5f}}
};
shape.indices = {0, 1, 2, 0, 2, 3};
return shape;
}
static ProceduralShape generateGrid(float size = 10.0f, int divisions = 10) {
ProceduralShape shape;
shape.name = "Grid";
shape.type = 6; // Grid type
shape.params.width = size;
shape.params.subdivisions = divisions;
float step = size / divisions;
float halfSize = size * 0.5f;
// Create grid lines (white grid)
glm::vec3 gridColor(1.0f, 1.0f, 1.0f);
for (int i = 0; i <= divisions; ++i) {
float pos = -halfSize + i * step;
// Horizontal lines
shape.vertices.push_back({{-halfSize, 0, pos}, {0, 1, 0}, gridColor});
shape.vertices.push_back({{ halfSize, 0, pos}, {0, 1, 0}, gridColor});
// Vertical lines
shape.vertices.push_back({{pos, 0, -halfSize}, {0, 1, 0}, gridColor});
shape.vertices.push_back({{pos, 0, halfSize}, {0, 1, 0}, gridColor});
}
// Generate indices for lines
for (int i = 0; i < (divisions + 1) * 4; i += 2) {
shape.indices.push_back(i);
shape.indices.push_back(i + 1);
}
return shape;
}
static ProceduralShape generateCone(float radius = 1.0f, float height = 2.0f, int segments = 16) {
ProceduralShape shape;
shape.name = "Cone";
shape.type = 4; // Cone type
shape.params.radius = radius;
shape.params.height = height;
shape.params.segments = segments;
// Add tip vertex (red cone tip)
shape.vertices.push_back({{0, height * 0.5f, 0}, {0, 1, 0}, {1.0f, 0.0f, 0.0f}});
// Add center vertex for base (dark red)
shape.vertices.push_back({{0, -height * 0.5f, 0}, {0, -1, 0}, {0.5f, 0.0f, 0.0f}});
// Generate base vertices
for (int i = 0; i <= segments; ++i) {
float angle = (float)i / segments * 2.0f * M_PI;
float x = cos(angle) * radius;
float z = sin(angle) * radius;
glm::vec3 color(0.8f, 0.2f, 0.2f); // Light red
// Base vertex
shape.vertices.push_back({{x, -height * 0.5f, z}, {0, -1, 0}, color});
// Side vertex (for side triangles)
glm::vec3 sideNormal = glm::normalize(glm::vec3(x, radius / height, z));
shape.vertices.push_back({{x, -height * 0.5f, z}, sideNormal, color});
}
// Generate indices
// Side triangles (tip to base edge)
for (int i = 0; i < segments; ++i) {
int baseStart = 2 + segments + 1;
shape.indices.push_back(0); // tip
shape.indices.push_back(baseStart + (i + 1) * 2);
shape.indices.push_back(baseStart + i * 2);
}
// Base triangles
for (int i = 0; i < segments; ++i) {
shape.indices.push_back(1); // center
shape.indices.push_back(2 + i);
shape.indices.push_back(2 + ((i + 1) % (segments + 1)));
}
return shape;
}
static ProceduralShape generateCylinder(float radius = 1.0f, float height = 2.0f, int segments = 16) {
ProceduralShape shape;
shape.name = "Cylinder";
shape.type = 5; // Cylinder type
shape.params.radius = radius;
shape.params.height = height;
shape.params.segments = segments;
float halfHeight = height * 0.5f;
// Add center vertices for caps (blue cylinder)
shape.vertices.push_back({{0, halfHeight, 0}, {0, 1, 0}, {0.0f, 0.0f, 1.0f}}); // top center
shape.vertices.push_back({{0, -halfHeight, 0}, {0, -1, 0}, {0.0f, 0.0f, 1.0f}}); // bottom center
// Generate side vertices (double for proper normals)
for (int i = 0; i <= segments; ++i) {
float angle = (float)i / segments * 2.0f * M_PI;
float x = cos(angle) * radius;
float z = sin(angle) * radius;
glm::vec3 normal = glm::normalize(glm::vec3(x, 0, z));
glm::vec3 color(0.2f, 0.4f, 1.0f); // Light blue
// Top vertices
shape.vertices.push_back({{x, halfHeight, z}, {0, 1, 0}, color}); // top cap
shape.vertices.push_back({{x, halfHeight, z}, normal, color}); // top side
// Bottom vertices
shape.vertices.push_back({{x, -halfHeight, z}, {0, -1, 0}, color}); // bottom cap
shape.vertices.push_back({{x, -halfHeight, z}, normal, color}); // bottom side
}
// Generate indices
for (int i = 0; i < segments; ++i) {
int topCapStart = 2;
int bottomCapStart = 4;
// Top cap triangles
shape.indices.push_back(0); // top center
shape.indices.push_back(topCapStart + ((i + 1) % (segments + 1)) * 4);
shape.indices.push_back(topCapStart + i * 4);
// Bottom cap triangles
shape.indices.push_back(1); // bottom center
shape.indices.push_back(bottomCapStart + i * 4);
shape.indices.push_back(bottomCapStart + ((i + 1) % (segments + 1)) * 4);
// Side quads (as two triangles)
int topSide1 = topCapStart + 1 + i * 4;
int topSide2 = topCapStart + 1 + ((i + 1) % (segments + 1)) * 4;
int bottomSide1 = bottomCapStart + 1 + i * 4;
int bottomSide2 = bottomCapStart + 1 + ((i + 1) % (segments + 1)) * 4;
// First triangle
shape.indices.push_back(topSide1);
shape.indices.push_back(bottomSide1);
shape.indices.push_back(topSide2);
// Second triangle
shape.indices.push_back(topSide2);
shape.indices.push_back(bottomSide1);
shape.indices.push_back(bottomSide2);
}
return shape;
}
static ProceduralShape generateTorus(float majorRadius = 1.0f, float minorRadius = 0.3f, int majorSegments = 16, int minorSegments = 8) {
ProceduralShape shape;
shape.name = "Torus";
shape.type = 6; // Torus type
shape.params.majorRadius = majorRadius;
shape.params.minorRadius = minorRadius;
shape.params.segments = majorSegments;
shape.params.subdivisions = minorSegments;
// Generate vertices
for (int i = 0; i <= majorSegments; ++i) {
float majorAngle = (float)i / majorSegments * 2.0f * M_PI;
float cosMajor = cos(majorAngle);
float sinMajor = sin(majorAngle);
for (int j = 0; j <= minorSegments; ++j) {
float minorAngle = (float)j / minorSegments * 2.0f * M_PI;
float cosMinor = cos(minorAngle);
float sinMinor = sin(minorAngle);
// Calculate position
float x = (majorRadius + minorRadius * cosMinor) * cosMajor;
float y = minorRadius * sinMinor;
float z = (majorRadius + minorRadius * cosMinor) * sinMajor;
// Calculate normal
glm::vec3 center(majorRadius * cosMajor, 0, majorRadius * sinMajor);
glm::vec3 position(x, y, z);
glm::vec3 normal = glm::normalize(position - center);
// Use orange color for torus
glm::vec3 color(1.0f, 0.5f, 0.0f);
shape.vertices.push_back({{x, y, z}, normal, color});
}
}
// Generate indices
for (int i = 0; i < majorSegments; ++i) {
for (int j = 0; j < minorSegments; ++j) {
int current = i * (minorSegments + 1) + j;
int next = ((i + 1) % (majorSegments + 1)) * (minorSegments + 1) + j;
// First triangle
shape.indices.push_back(current);
shape.indices.push_back(next);
shape.indices.push_back(current + 1);
// Second triangle
shape.indices.push_back(next);
shape.indices.push_back(next + 1);
shape.indices.push_back(current + 1);
}
}
return shape;
}
};
// Simple Scene Object for basic hierarchy
struct SceneObject {
std::string name;
std::string type;
std::string subtype; // For procedural shapes (Cube, Sphere, etc.)
bool visible = true;
// Simple geometry data (for procedural shapes)
std::vector<ProceduralVertex> vertices;
std::vector<uint32_t> indices;
glm::vec3 position = {0.0f, 0.0f, 0.0f}; // Place objects at world origin
glm::vec3 rotation = {0.0f, 0.0f, 0.0f};
glm::vec3 scale = {1.0f, 1.0f, 1.0f}; // Default unit scale
// Procedural shape parameters (for real-time editing)
struct ProceduralParams {
// Cube parameters
float cubeWidth = 2.0f;
float cubeHeight = 2.0f;
float cubeDepth = 2.0f;
int cubeSubdivisions = 1;
// Sphere parameters
float sphereRadius = 1.0f;
int sphereSegments = 16;
// Cylinder parameters
float cylinderRadius = 1.0f;
float cylinderHeight = 2.0f;
int cylinderSegments = 16;
// Cone parameters
float coneRadius = 1.0f;
float coneHeight = 2.0f;
int coneSegments = 16;
// Plane parameters
float planeWidth = 2.0f;
float planeHeight = 2.0f;
int planeSubdivisions = 1;
// Torus parameters
float torusMajorRadius = 1.0f;
float torusMinorRadius = 0.3f;
int torusMajorSegments = 16;
int torusMinorSegments = 8;
} proceduralParams;
// Persistent Vulkan buffers (created once, used multiple times)
vks::Buffer vertexBuffer;
vks::Buffer indexBuffer;
bool buffersCreated = false;
SceneObject(const std::string& objName, const std::string& objType = "Object")
: name(objName), type(objType) {}
// Cleanup buffers when object is destroyed
void destroyBuffers(vks::VulkanDevice* device) {
if (buffersCreated) {
vertexBuffer.destroy();
indexBuffer.destroy();
buffersCreated = false;
}
}
// Calculate bounding box center for camera focus
glm::vec3 getBoundingBoxCenter() const {
if (vertices.empty()) return position;
glm::vec3 minPos = vertices[0].position;
glm::vec3 maxPos = vertices[0].position;
for (const auto& vertex : vertices) {
minPos = glm::min(minPos, vertex.position);
maxPos = glm::max(maxPos, vertex.position);
}
// Apply object transformation
glm::vec3 center = (minPos + maxPos) * 0.5f;
center = position + center * scale; // Simple transform (rotation not included for simplicity)
return center;
}
// Calculate bounding radius for camera focus
float getBoundingRadius() const {
if (vertices.empty()) return 1.0f;
glm::vec3 center = getBoundingBoxCenter();
float maxRadius = 0.0f;
for (const auto& vertex : vertices) {
glm::vec3 transformedPos = position + vertex.position * scale;
float distance = glm::length(transformedPos - center);
maxRadius = std::max(maxRadius, distance);
}
return std::max(maxRadius, 0.5f); // Minimum radius of 0.5
}
// Regenerate geometry based on current procedural parameters
void regenerateGeometry() {
if (type != "Procedural") return;
ProceduralShape shape;
if (subtype == "Cube") {
shape = ProceduralGeometry::generateCube(proceduralParams.cubeWidth,
proceduralParams.cubeHeight,
proceduralParams.cubeDepth);
} else if (subtype == "Sphere") {
shape = ProceduralGeometry::generateSphere(proceduralParams.sphereRadius,
proceduralParams.sphereSegments);
} else if (subtype == "Cylinder") {
shape = ProceduralGeometry::generateCylinder(proceduralParams.cylinderRadius,
proceduralParams.cylinderHeight,
proceduralParams.cylinderSegments);
} else if (subtype == "Cone") {
shape = ProceduralGeometry::generateCone(proceduralParams.coneRadius,
proceduralParams.coneHeight,
proceduralParams.coneSegments);
} else if (subtype == "Plane") {
shape = ProceduralGeometry::generatePlane(proceduralParams.planeWidth,
proceduralParams.planeHeight,
proceduralParams.planeSubdivisions);
} else if (subtype == "Torus") {
shape = ProceduralGeometry::generateTorus(proceduralParams.torusMajorRadius,
proceduralParams.torusMinorRadius,
proceduralParams.torusMajorSegments,
proceduralParams.torusMinorSegments);
}
// Update geometry data
vertices = shape.vertices;
indices = shape.indices;
// Destroy existing buffers if they exist (to handle size changes)
if (buffersCreated) {
vertexBuffer.destroy();
indexBuffer.destroy();
}
// Mark buffers as needing recreation
buffersCreated = false;
}
};
// Simple scene management
struct SimpleSceneManager {
std::vector<SceneObject> objects;
int selectedIndex = -1;
vks::VulkanDevice* device = nullptr;
void addObject(const std::string& name, const std::string& type = "Procedural") {
objects.emplace_back(name, type);
selectedIndex = static_cast<int>(objects.size() - 1);
}
void addProceduralShape(const std::string& shapeName, const std::string& shapeType) {
std::string fullName = shapeName + " " + std::to_string(getObjectCount() + 1);
objects.emplace_back(fullName, "Procedural");
// Generate actual geometry based on shape type
SceneObject& newObj = objects.back();
newObj.subtype = shapeType; // Set the shape subtype (Cube, Sphere, etc.)
// Place all objects at world origin (0,0,0)
// Users can move them via transform controls in Inspector
newObj.position.x = 0.0f;
newObj.position.y = 0.0f;
newObj.position.z = 0.0f;
// Initialize procedural parameters based on shape type (use regenerateGeometry to create initial geometry)
newObj.regenerateGeometry();
// Create Vulkan buffers for the geometry (delayed until first render)
// createBuffersForObject(newObj);
selectedIndex = static_cast<int>(objects.size() - 1);
}
void createBuffersForObject(SceneObject& obj) {
// Enhanced validation
if (!device) {
std::cout << "Error: Device not available for buffer creation" << std::endl;
return;
}
if (obj.vertices.empty() || obj.indices.empty()) {
std::cout << "Error: Cannot create buffers for " << obj.name << " - geometry data is empty" << std::endl;
return;
}
if (obj.buffersCreated) {
std::cout << "Info: Buffers already created for " << obj.name << std::endl;
return;
}
// Validate geometry data size
if (obj.vertices.size() > 1000000 || obj.indices.size() > 3000000) {
std::cout << "Warning: Large geometry for " << obj.name << " - vertices: " << obj.vertices.size() << ", indices: " << obj.indices.size() << std::endl;
}
try {
std::cout << "Creating buffers for " << obj.name << " with " << obj.vertices.size() << " vertices and " << obj.indices.size() << " indices" << std::endl;
// Create vertex buffer
VkDeviceSize vertexBufferSize = obj.vertices.size() * sizeof(ProceduralVertex);
if (vertexBufferSize == 0) {
std::cout << "Error: Zero vertex buffer size for " << obj.name << std::endl;
return;
}
VkResult result = device->createBuffer(
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&obj.vertexBuffer,
vertexBufferSize,
(void*)obj.vertices.data()
);
if (result != VK_SUCCESS) {
std::cout << "Failed to create vertex buffer for " << obj.name << " - VkResult: " << result << std::endl;
return;
}
// Validate vertex buffer creation
if (obj.vertexBuffer.buffer == VK_NULL_HANDLE) {
std::cout << "Error: Vertex buffer handle is null for " << obj.name << std::endl;
return;
}
// Create index buffer
VkDeviceSize indexBufferSize = obj.indices.size() * sizeof(uint32_t);
if (indexBufferSize == 0) {
std::cout << "Error: Zero index buffer size for " << obj.name << std::endl;
obj.vertexBuffer.destroy();
return;
}
result = device->createBuffer(
VK_BUFFER_USAGE_INDEX_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&obj.indexBuffer,
indexBufferSize,
(void*)obj.indices.data()
);
if (result != VK_SUCCESS) {
std::cout << "Failed to create index buffer for " << obj.name << " - VkResult: " << result << std::endl;
obj.vertexBuffer.destroy();
return;
}
// Validate index buffer creation
if (obj.indexBuffer.buffer == VK_NULL_HANDLE) {
std::cout << "Error: Index buffer handle is null for " << obj.name << std::endl;
obj.vertexBuffer.destroy();
return;
}
obj.buffersCreated = true;
std::cout << "Successfully created buffers for " << obj.name << " (vertex: " << vertexBufferSize << " bytes, index: " << indexBufferSize << " bytes)" << std::endl;
}
catch (const std::exception& e) {
std::cout << "Exception creating buffers for " << obj.name << ": " << e.what() << std::endl;
obj.buffersCreated = false;
// Clean up any partially created buffers
if (obj.vertexBuffer.buffer != VK_NULL_HANDLE) {
obj.vertexBuffer.destroy();
}
if (obj.indexBuffer.buffer != VK_NULL_HANDLE) {
obj.indexBuffer.destroy();
}
}
}
void removeObject(int index) {
if (index >= 0 && index < objects.size()) {
// Clean up buffers before removing object
objects[index].destroyBuffers(device);
objects.erase(objects.begin() + index);
if (selectedIndex >= objects.size()) {
selectedIndex = static_cast<int>(objects.size() - 1);
}
}
}
void clearScene() {
// Clean up all buffers before clearing
for (auto& obj : objects) {
obj.destroyBuffers(device);
}
objects.clear();
selectedIndex = -1;
}
int getObjectCount() const {
return static_cast<int>(objects.size());
}
// Selection management
void setSelectedIndex(int index) {
if (index >= -1 && index < static_cast<int>(objects.size())) {
selectedIndex = index;
}
}
int getSelectedIndex() const {
return selectedIndex;
}
SceneObject* getSelectedObject() {
if (selectedIndex >= 0 && selectedIndex < static_cast<int>(objects.size())) {
return &objects[selectedIndex];
}
return nullptr;
}
bool hasSelection() const {
return selectedIndex >= 0 && selectedIndex < static_cast<int>(objects.size());
}
void clearSelection() {
selectedIndex = -1;
}
} sceneManager;
// Options and values to display/toggle from the UI
struct UISettings {
bool displayModels = false;
bool displayBackground = false;
bool animateLight = false;
float lightSpeed = 0.25f;
std::array<float, 50> frameTimes{};
float frameTimeMin = 9999.0f, frameTimeMax = 0.0f;
float lightTimer = 0.0f;
bool showGrid = true;
float gridSize = 10.0f;
int gridDivisions = 10;
// Panel visibility settings (for Windows menu)
bool showViewportPanel = true;
bool showInspectorPanel = true;
bool showSceneHierarchyPanel = true;
bool showAssetBrowserPanel = true;
bool showConsolePanel = false; // Hidden by default
} uiSettings;
// ----------------------------------------------------------------------------
// ImGUI class
// ----------------------------------------------------------------------------
class ImGUI {
private:
// Vulkan resources for rendering the UI
VkSampler sampler;
vks::Buffer vertexBuffer;
vks::Buffer indexBuffer;
int32_t vertexCount = 0;
int32_t indexCount = 0;
VkDeviceMemory fontMemory = VK_NULL_HANDLE;
VkImage fontImage = VK_NULL_HANDLE;
VkImageView fontView = VK_NULL_HANDLE;
VkPipelineCache pipelineCache;
VkPipelineLayout pipelineLayout;
VkPipeline pipeline;
VkDescriptorPool descriptorPool;
VkDescriptorSetLayout descriptorSetLayout;
VkDescriptorSet descriptorSet;
vks::VulkanDevice *device;
VkPhysicalDeviceDriverProperties driverProperties = {};
VulkanExampleBase *example;
ImGuiStyle vulkanStyle;
int selectedStyle = 0;
public:
// UI params are set via push constants
struct PushConstBlock {
glm::vec2 scale;
glm::vec2 translate;
} pushConstBlock;
ImGUI(VulkanExampleBase *example) : example(example)
{
device = example->vulkanDevice;
ImGui::CreateContext();
//SRS - Set ImGui font and style scale factors to handle retina and other HiDPI displays
ImGuiIO& io = ImGui::GetIO();
io.FontGlobalScale = example->ui.scale;
ImGuiStyle& style = ImGui::GetStyle();
style.ScaleAllSizes(example->ui.scale);
};
~ImGUI()
{
ImGui::DestroyContext();
// Release all Vulkan resources required for rendering imGui
vertexBuffer.destroy();
indexBuffer.destroy();
vkDestroyImage(device->logicalDevice, fontImage, nullptr);
vkDestroyImageView(device->logicalDevice, fontView, nullptr);
vkFreeMemory(device->logicalDevice, fontMemory, nullptr);
vkDestroySampler(device->logicalDevice, sampler, nullptr);
vkDestroyPipelineCache(device->logicalDevice, pipelineCache, nullptr);
vkDestroyPipeline(device->logicalDevice, pipeline, nullptr);
vkDestroyPipelineLayout(device->logicalDevice, pipelineLayout, nullptr);
vkDestroyDescriptorPool(device->logicalDevice, descriptorPool, nullptr);
vkDestroyDescriptorSetLayout(device->logicalDevice, descriptorSetLayout, nullptr);
}
// Initialize styles, keys, etc.
void init(float width, float height)
{
// Color scheme
vulkanStyle = ImGui::GetStyle();
vulkanStyle.Colors[ImGuiCol_TitleBg] = ImVec4(1.0f, 0.0f, 0.0f, 0.6f);
vulkanStyle.Colors[ImGuiCol_TitleBgActive] = ImVec4(1.0f, 0.0f, 0.0f, 0.8f);
vulkanStyle.Colors[ImGuiCol_MenuBarBg] = ImVec4(1.0f, 0.0f, 0.0f, 0.4f);
vulkanStyle.Colors[ImGuiCol_Header] = ImVec4(1.0f, 0.0f, 0.0f, 0.4f);
vulkanStyle.Colors[ImGuiCol_CheckMark] = ImVec4(0.0f, 1.0f, 0.0f, 1.0f);
setStyle(0);
// Dimensions
ImGuiIO& io = ImGui::GetIO();
io.DisplaySize = ImVec2(width, height);
io.DisplayFramebufferScale = ImVec2(1.0f, 1.0f);
#if defined(_WIN32)
// If we directly work with os specific key codes, we need to map special key types like tab
io.KeyMap[ImGuiKey_Tab] = VK_TAB;
io.KeyMap[ImGuiKey_LeftArrow] = VK_LEFT;
io.KeyMap[ImGuiKey_RightArrow] = VK_RIGHT;
io.KeyMap[ImGuiKey_UpArrow] = VK_UP;
io.KeyMap[ImGuiKey_DownArrow] = VK_DOWN;
io.KeyMap[ImGuiKey_Backspace] = VK_BACK;
io.KeyMap[ImGuiKey_Enter] = VK_RETURN;
io.KeyMap[ImGuiKey_Space] = VK_SPACE;
io.KeyMap[ImGuiKey_Delete] = VK_DELETE;
#endif
}
void setStyle(uint32_t index)
{
switch (index)
{
case 0:
{
ImGuiStyle& style = ImGui::GetStyle();
style = vulkanStyle;
break;
}
case 1:
ImGui::StyleColorsClassic();
break;
case 2:
ImGui::StyleColorsDark();
break;
case 3:
ImGui::StyleColorsLight();
break;
case 4: // Blue theme
{
ImGuiStyle& style = ImGui::GetStyle();
style = ImGui::GetStyle();
style.Colors[ImGuiCol_TitleBg] = ImVec4(0.0f, 0.3f, 0.8f, 0.6f);
style.Colors[ImGuiCol_TitleBgActive] = ImVec4(0.0f, 0.4f, 1.0f, 0.8f);
style.Colors[ImGuiCol_MenuBarBg] = ImVec4(0.0f, 0.2f, 0.6f, 0.4f);
style.Colors[ImGuiCol_Header] = ImVec4(0.0f, 0.3f, 0.7f, 0.4f);
style.Colors[ImGuiCol_CheckMark] = ImVec4(0.0f, 1.0f, 1.0f, 1.0f);
style.Colors[ImGuiCol_WindowBg] = ImVec4(0.05f, 0.05f, 0.15f, 0.9f);
break;
}
case 5: // Green theme
{
ImGuiStyle& style = ImGui::GetStyle();
style = ImGui::GetStyle();
style.Colors[ImGuiCol_TitleBg] = ImVec4(0.0f, 0.6f, 0.2f, 0.6f);
style.Colors[ImGuiCol_TitleBgActive] = ImVec4(0.0f, 0.8f, 0.3f, 0.8f);
style.Colors[ImGuiCol_MenuBarBg] = ImVec4(0.0f, 0.4f, 0.1f, 0.4f);
style.Colors[ImGuiCol_Header] = ImVec4(0.0f, 0.5f, 0.2f, 0.4f);
style.Colors[ImGuiCol_CheckMark] = ImVec4(0.0f, 1.0f, 0.0f, 1.0f);
style.Colors[ImGuiCol_WindowBg] = ImVec4(0.05f, 0.15f, 0.05f, 0.9f);
break;
}
case 6: // Purple theme
{
ImGuiStyle& style = ImGui::GetStyle();
style = ImGui::GetStyle();
style.Colors[ImGuiCol_TitleBg] = ImVec4(0.5f, 0.0f, 0.8f, 0.6f);
style.Colors[ImGuiCol_TitleBgActive] = ImVec4(0.7f, 0.0f, 1.0f, 0.8f);
style.Colors[ImGuiCol_MenuBarBg] = ImVec4(0.3f, 0.0f, 0.6f, 0.4f);
style.Colors[ImGuiCol_Header] = ImVec4(0.4f, 0.0f, 0.7f, 0.4f);
style.Colors[ImGuiCol_CheckMark] = ImVec4(1.0f, 0.0f, 1.0f, 1.0f);
style.Colors[ImGuiCol_WindowBg] = ImVec4(0.1f, 0.05f, 0.15f, 0.9f);
break;
}
}
}
// Initialize all Vulkan resources used by the ui
void initResources(VkRenderPass renderPass, VkQueue copyQueue, const std::string& shadersPath, VkFormat colorFormat = VK_FORMAT_UNDEFINED, VkFormat depthFormat = VK_FORMAT_UNDEFINED)
{
ImGuiIO& io = ImGui::GetIO();
// Create font texture
unsigned char* fontData;
int texWidth, texHeight;
io.Fonts->GetTexDataAsRGBA32(&fontData, &texWidth, &texHeight);
VkDeviceSize uploadSize = texWidth*texHeight * 4 * sizeof(char);
//SRS - Get Vulkan device driver information if available, use later for display
if (device->extensionSupported(VK_KHR_DRIVER_PROPERTIES_EXTENSION_NAME))
{
VkPhysicalDeviceProperties2 deviceProperties2 = {};
deviceProperties2.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2;
deviceProperties2.pNext = &driverProperties;
driverProperties.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRIVER_PROPERTIES;
vkGetPhysicalDeviceProperties2(device->physicalDevice, &deviceProperties2);
}
// Create target image for copy
VkImageCreateInfo imageInfo = vks::initializers::imageCreateInfo();
imageInfo.imageType = VK_IMAGE_TYPE_2D;
imageInfo.format = VK_FORMAT_R8G8B8A8_UNORM;
imageInfo.extent.width = texWidth;
imageInfo.extent.height = texHeight;
imageInfo.extent.depth = 1;
imageInfo.mipLevels = 1;
imageInfo.arrayLayers = 1;
imageInfo.samples = VK_SAMPLE_COUNT_1_BIT;
imageInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
imageInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT;
imageInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
imageInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
VK_CHECK_RESULT(vkCreateImage(device->logicalDevice, &imageInfo, nullptr, &fontImage));
VkMemoryRequirements memReqs;
vkGetImageMemoryRequirements(device->logicalDevice, fontImage, &memReqs);
VkMemoryAllocateInfo memAllocInfo = vks::initializers::memoryAllocateInfo();
memAllocInfo.allocationSize = memReqs.size;
memAllocInfo.memoryTypeIndex = device->getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
VK_CHECK_RESULT(vkAllocateMemory(device->logicalDevice, &memAllocInfo, nullptr, &fontMemory));
VK_CHECK_RESULT(vkBindImageMemory(device->logicalDevice, fontImage, fontMemory, 0));
// Image view
VkImageViewCreateInfo viewInfo = vks::initializers::imageViewCreateInfo();
viewInfo.image = fontImage;
viewInfo.viewType = VK_IMAGE_VIEW_TYPE_2D;
viewInfo.format = VK_FORMAT_R8G8B8A8_UNORM;
viewInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
viewInfo.subresourceRange.levelCount = 1;
viewInfo.subresourceRange.layerCount = 1;
VK_CHECK_RESULT(vkCreateImageView(device->logicalDevice, &viewInfo, nullptr, &fontView));
// Staging buffers for font data upload
vks::Buffer stagingBuffer;
VK_CHECK_RESULT(device->createBuffer(
VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&stagingBuffer,
uploadSize));
stagingBuffer.map();
memcpy(stagingBuffer.mapped, fontData, uploadSize);
stagingBuffer.unmap();
// Copy buffer data to font image
VkCommandBuffer copyCmd = device->createCommandBuffer(VK_COMMAND_BUFFER_LEVEL_PRIMARY, true);
// Prepare for transfer
vks::tools::setImageLayout(
copyCmd,
fontImage,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
VK_PIPELINE_STAGE_HOST_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT);
// Copy
VkBufferImageCopy bufferCopyRegion = {};
bufferCopyRegion.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
bufferCopyRegion.imageSubresource.layerCount = 1;
bufferCopyRegion.imageExtent.width = texWidth;
bufferCopyRegion.imageExtent.height = texHeight;
bufferCopyRegion.imageExtent.depth = 1;
vkCmdCopyBufferToImage(
copyCmd,
stagingBuffer.buffer,
fontImage,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
1,
&bufferCopyRegion
);
// Prepare for shader read
vks::tools::setImageLayout(
copyCmd,
fontImage,
VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT);
device->flushCommandBuffer(copyCmd, copyQueue, true);
stagingBuffer.destroy();
// Font texture Sampler
VkSamplerCreateInfo samplerInfo = vks::initializers::samplerCreateInfo();
samplerInfo.magFilter = VK_FILTER_LINEAR;
samplerInfo.minFilter = VK_FILTER_LINEAR;
samplerInfo.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
samplerInfo.addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
samplerInfo.addressModeV = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
samplerInfo.addressModeW = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE;
samplerInfo.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
VK_CHECK_RESULT(vkCreateSampler(device->logicalDevice, &samplerInfo, nullptr, &sampler));
// Descriptor pool
std::vector<VkDescriptorPoolSize> poolSizes = {
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1)
};
VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, 2);
VK_CHECK_RESULT(vkCreateDescriptorPool(device->logicalDevice, &descriptorPoolInfo, nullptr, &descriptorPool));
// Descriptor set layout
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 0),
};
VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device->logicalDevice, &descriptorLayout, nullptr, &descriptorSetLayout));
// Descriptor set
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device->logicalDevice, &allocInfo, &descriptorSet));
VkDescriptorImageInfo fontDescriptor = vks::initializers::descriptorImageInfo(
sampler,
fontView,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL
);
std::vector<VkWriteDescriptorSet> writeDescriptorSets = {
vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 0, &fontDescriptor)
};
vkUpdateDescriptorSets(device->logicalDevice, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, nullptr);
// Pipeline cache
VkPipelineCacheCreateInfo pipelineCacheCreateInfo = {};
pipelineCacheCreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO;
VK_CHECK_RESULT(vkCreatePipelineCache(device->logicalDevice, &pipelineCacheCreateInfo, nullptr, &pipelineCache));
// Pipeline layout
// Push constants for UI rendering parameters
VkPushConstantRange pushConstantRange = vks::initializers::pushConstantRange(VK_SHADER_STAGE_VERTEX_BIT, sizeof(PushConstBlock), 0);
VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayout, 1);
pipelineLayoutCreateInfo.pushConstantRangeCount = 1;
pipelineLayoutCreateInfo.pPushConstantRanges = &pushConstantRange;
VK_CHECK_RESULT(vkCreatePipelineLayout(device->logicalDevice, &pipelineLayoutCreateInfo, nullptr, &pipelineLayout));
// Setup graphics pipeline for UI rendering
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState =
vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState =
vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_NONE, VK_FRONT_FACE_COUNTER_CLOCKWISE);
// Enable blending
VkPipelineColorBlendAttachmentState blendAttachmentState{};
blendAttachmentState.blendEnable = VK_TRUE;
blendAttachmentState.colorWriteMask = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT;
blendAttachmentState.srcColorBlendFactor = VK_BLEND_FACTOR_SRC_ALPHA;
blendAttachmentState.dstColorBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA;
blendAttachmentState.colorBlendOp = VK_BLEND_OP_ADD;
blendAttachmentState.srcAlphaBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA;
blendAttachmentState.dstAlphaBlendFactor = VK_BLEND_FACTOR_ZERO;
blendAttachmentState.alphaBlendOp = VK_BLEND_OP_ADD;
VkPipelineColorBlendStateCreateInfo colorBlendState =
vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState =
vks::initializers::pipelineDepthStencilStateCreateInfo(VK_FALSE, VK_FALSE, VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState =
vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState =
vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT);
std::vector<VkDynamicState> dynamicStateEnables = {
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_SCISSOR
};
VkPipelineDynamicStateCreateInfo dynamicState =
vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables);
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages{};
// Create pipeline - use dynamic rendering if no render pass provided
VkGraphicsPipelineCreateInfo pipelineCreateInfo;
if (renderPass == VK_NULL_HANDLE) {
// Dynamic rendering
pipelineCreateInfo = vks::initializers::pipelineCreateInfo();
pipelineCreateInfo.layout = pipelineLayout;
} else {
// Traditional render pass
pipelineCreateInfo = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass);
}
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
pipelineCreateInfo.pRasterizationState = &rasterizationState;
pipelineCreateInfo.pColorBlendState = &colorBlendState;
pipelineCreateInfo.pMultisampleState = &multisampleState;
pipelineCreateInfo.pViewportState = &viewportState;
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
pipelineCreateInfo.pDynamicState = &dynamicState;
pipelineCreateInfo.stageCount = static_cast<uint32_t>(shaderStages.size());
pipelineCreateInfo.pStages = shaderStages.data();
// Vertex bindings an attributes based on ImGui vertex definition
std::vector<VkVertexInputBindingDescription> vertexInputBindings = {
vks::initializers::vertexInputBindingDescription(0, sizeof(ImDrawVert), VK_VERTEX_INPUT_RATE_VERTEX),
};
std::vector<VkVertexInputAttributeDescription> vertexInputAttributes = {
vks::initializers::vertexInputAttributeDescription(0, 0, VK_FORMAT_R32G32_SFLOAT, offsetof(ImDrawVert, pos)), // Location 0: Position
vks::initializers::vertexInputAttributeDescription(0, 1, VK_FORMAT_R32G32_SFLOAT, offsetof(ImDrawVert, uv)), // Location 1: UV
vks::initializers::vertexInputAttributeDescription(0, 2, VK_FORMAT_R8G8B8A8_UNORM, offsetof(ImDrawVert, col)), // Location 0: Color
};
VkPipelineVertexInputStateCreateInfo vertexInputState = vks::initializers::pipelineVertexInputStateCreateInfo();
vertexInputState.vertexBindingDescriptionCount = static_cast<uint32_t>(vertexInputBindings.size());
vertexInputState.pVertexBindingDescriptions = vertexInputBindings.data();
vertexInputState.vertexAttributeDescriptionCount = static_cast<uint32_t>(vertexInputAttributes.size());
vertexInputState.pVertexAttributeDescriptions = vertexInputAttributes.data();
pipelineCreateInfo.pVertexInputState = &vertexInputState;
// Dynamic rendering create info for ImGui pipeline (only if using dynamic rendering)
VkPipelineRenderingCreateInfoKHR pipelineRenderingCreateInfo{};
if (renderPass == VK_NULL_HANDLE && colorFormat != VK_FORMAT_UNDEFINED) {
pipelineRenderingCreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_RENDERING_CREATE_INFO_KHR;
pipelineRenderingCreateInfo.colorAttachmentCount = 1;
pipelineRenderingCreateInfo.pColorAttachmentFormats = &colorFormat;
pipelineRenderingCreateInfo.depthAttachmentFormat = depthFormat;
pipelineRenderingCreateInfo.stencilAttachmentFormat = depthFormat;
// Chain into the pipeline create info
pipelineCreateInfo.pNext = &pipelineRenderingCreateInfo;
}
shaderStages[0] = example->loadShader(shadersPath + "imgui/ui.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = example->loadShader(shadersPath + "imgui/ui.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device->logicalDevice, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipeline));
}
// Starts a new imGui frame and sets up windows and ui elements
void newFrame(VulkanExampleBase *example, bool updateFrameGraph)
{
ImGui::NewFrame();
// Menu Bar
if (ImGui::BeginMainMenuBar())
{
if (ImGui::BeginMenu("File"))
{
if (ImGui::MenuItem("New Scene", "Ctrl+N")) {
// Clear scene
sceneManager.clearScene();
}
if (ImGui::MenuItem("Open Scene", "Ctrl+O")) {
// TODO: Implement scene loading
}
if (ImGui::MenuItem("Save Scene", "Ctrl+S")) {
// TODO: Implement scene saving
}
ImGui::Separator();
if (ImGui::MenuItem("Exit", "Alt+F4")) {
example->prepared = false;
}
ImGui::EndMenu();
}
if (ImGui::BeginMenu("Preferences"))
{
if (ImGui::BeginMenu("UI Theme"))
{
if (ImGui::MenuItem("Vulkan Red", nullptr, selectedStyle == 0)) { setStyle(0); selectedStyle = 0; }
if (ImGui::MenuItem("Classic", nullptr, selectedStyle == 1)) { setStyle(1); selectedStyle = 1; }
if (ImGui::MenuItem("Dark", nullptr, selectedStyle == 2)) { setStyle(2); selectedStyle = 2; }
if (ImGui::MenuItem("Light", nullptr, selectedStyle == 3)) { setStyle(3); selectedStyle = 3; }
if (ImGui::MenuItem("Blue", nullptr, selectedStyle == 4)) { setStyle(4); selectedStyle = 4; }
if (ImGui::MenuItem("Green", nullptr, selectedStyle == 5)) { setStyle(5); selectedStyle = 5; }
if (ImGui::MenuItem("Purple", nullptr, selectedStyle == 6)) { setStyle(6); selectedStyle = 6; }
ImGui::EndMenu();
}
ImGui::Separator();
// Viewport settings moved to dedicated Viewport panel
ImGui::EndMenu();
}
if (ImGui::BeginMenu("Windows"))
{
ImGui::MenuItem("Scene Hierarchy", nullptr, &uiSettings.showSceneHierarchyPanel);
ImGui::MenuItem("Inspector", nullptr, &uiSettings.showInspectorPanel);
ImGui::MenuItem("Viewport", nullptr, &uiSettings.showViewportPanel);
ImGui::MenuItem("Asset Browser", nullptr, &uiSettings.showAssetBrowserPanel);
ImGui::MenuItem("Console", nullptr, &uiSettings.showConsolePanel);
ImGui::Separator();
if (ImGui::MenuItem("Show All Panels")) {
uiSettings.showSceneHierarchyPanel = true;
uiSettings.showInspectorPanel = true;
uiSettings.showViewportPanel = true;
uiSettings.showAssetBrowserPanel = true;
uiSettings.showConsolePanel = true;
}
if (ImGui::MenuItem("Hide All Panels")) {
uiSettings.showSceneHierarchyPanel = false;
uiSettings.showInspectorPanel = false;
uiSettings.showViewportPanel = false;
uiSettings.showAssetBrowserPanel = false;
uiSettings.showConsolePanel = false;
}
ImGui::EndMenu();
}
if (ImGui::BeginMenu("Help"))
{
if (ImGui::MenuItem("About")) {
// TODO: Show about dialog
}
ImGui::EndMenu();
}
ImGui::EndMainMenuBar();
}
// Init imGui windows and elements
// Debug window
ImGui::SetWindowPos(ImVec2(20 * example->ui.scale, 20 * example->ui.scale), ImGuiSetCond_FirstUseEver);
ImGui::SetWindowSize(ImVec2(300 * example->ui.scale, 300 * example->ui.scale), ImGuiSetCond_Always);
ImGui::TextUnformatted(example->title.c_str());
ImGui::TextUnformatted(device->properties.deviceName);
//SRS - Display Vulkan API version and device driver information if available (otherwise blank)
ImGui::Text("Vulkan API %i.%i.%i", VK_API_VERSION_MAJOR(device->properties.apiVersion), VK_API_VERSION_MINOR(device->properties.apiVersion), VK_API_VERSION_PATCH(device->properties.apiVersion));
ImGui::Text("%s %s", driverProperties.driverName, driverProperties.driverInfo);
// Update frame time display
if (updateFrameGraph) {
std::rotate(uiSettings.frameTimes.begin(), uiSettings.frameTimes.begin() + 1, uiSettings.frameTimes.end());
float frameTime = 1000.0f / (example->frameTimer * 1000.0f);
uiSettings.frameTimes.back() = frameTime;
if (frameTime < uiSettings.frameTimeMin) {
uiSettings.frameTimeMin = frameTime;
}
if (frameTime > uiSettings.frameTimeMax) {
uiSettings.frameTimeMax = frameTime;
}
}
ImGui::PlotLines("Frame Times", &uiSettings.frameTimes[0], 50, 0, "", uiSettings.frameTimeMin, uiSettings.frameTimeMax, ImVec2(0, 80));
ImGui::Text("Orbit Camera");
ImGui::Text("Enhanced camera system active");
ImGui::Separator();
ImGui::Text("Controls:");
ImGui::BulletText("F - Focus on selection");
ImGui::BulletText("Alt+LMB - Orbit");
ImGui::BulletText("Alt+MMB - Pan");
ImGui::BulletText("Alt+RMB - Zoom");
ImGui::BulletText("Mouse Wheel - Zoom");
// Simple Scene Hierarchy Panel
if (uiSettings.showSceneHierarchyPanel) {
ImGui::SetNextWindowPos(ImVec2(20 * example->ui.scale, 360 * example->ui.scale), ImGuiSetCond_FirstUseEver);
ImGui::SetNextWindowSize(ImVec2(300 * example->ui.scale, 400 * example->ui.scale), ImGuiSetCond_FirstUseEver);
ImGui::Begin("Scene Hierarchy", &uiSettings.showSceneHierarchyPanel);
// Header with object count
ImGui::Text("Scene Objects: %d", sceneManager.getObjectCount());
ImGui::Separator();
// Render simple object list
for (int i = 0; i < sceneManager.objects.size(); i++) {
const auto& obj = sceneManager.objects[i];
bool isSelected = (sceneManager.selectedIndex == i);
// Object icon based on type
const char* icon = "[P]"; // Default procedural icon
if (obj.type == "Model") icon = "[M]";
// Visibility toggle (use object name as unique ImGui ID)
ImGui::PushStyleColor(ImGuiCol_Button, ImVec4(0, 0, 0, 0));
ImGui::PushID(obj.name.c_str()); // Use object name for unique ImGui ID
if (ImGui::SmallButton(obj.visible ? "V" : "H")) {
// Toggle visibility (note: const_cast needed for modification)
const_cast<SceneObject&>(obj).visible = !obj.visible;
}
ImGui::PopID();
ImGui::PopStyleColor();
ImGui::SameLine();
// Selectable object name with highlighting for selected objects
if (isSelected) {
ImGui::PushStyleColor(ImGuiCol_Text, ImVec4(1.0f, 0.8f, 0.2f, 1.0f)); // Gold color for selected
}
if (ImGui::Selectable((std::string(icon) + " " + obj.name).c_str(), isSelected)) {
sceneManager.setSelectedIndex(i);
std::cout << "Selected object: " << obj.name << std::endl;
}
if (isSelected) {
ImGui::PopStyleColor();
}
// Right-click context menu
if (ImGui::BeginPopupContextItem()) {
if (ImGui::MenuItem("Delete", "Del")) {
sceneManager.removeObject(i);
ImGui::EndPopup();
break; // Exit loop since we modified the vector
}
ImGui::EndPopup();
}
}
// Show message if scene is empty
if (sceneManager.getObjectCount() == 0) {
ImGui::Spacing();
ImGui::TextColored(ImVec4(0.7f, 0.7f, 0.7f, 1.0f), "Scene is empty");
ImGui::TextColored(ImVec4(0.7f, 0.7f, 0.7f, 1.0f), "Add objects from Asset Browser");
}
ImGui::End();
} // End Scene Hierarchy Panel visibility check
// Inspector Panel
if (uiSettings.showInspectorPanel) {
ImGui::SetNextWindowPos(ImVec2(1180 * example->ui.scale, 20 * example->ui.scale), ImGuiSetCond_FirstUseEver);
ImGui::SetNextWindowSize(ImVec2(300 * example->ui.scale, 700 * example->ui.scale), ImGuiSetCond_FirstUseEver);
ImGui::Begin("Inspector", &uiSettings.showInspectorPanel);
ImGui::Text("Object Properties:");
ImGui::Separator();
if (sceneManager.selectedIndex >= 0 && sceneManager.selectedIndex < sceneManager.objects.size()) {
auto& selectedObj = sceneManager.objects[sceneManager.selectedIndex]; // Non-const for editing
// Object Header with Name and Type
ImGui::Text("Selected: %s", selectedObj.name.c_str());
ImGui::SameLine();
ImGui::TextColored(ImVec4(0.6f, 0.6f, 0.6f, 1.0f), "(%s)", selectedObj.type.c_str());
ImGui::Separator();
// Transform Section (collapsible like legacy 3D engine)
if (ImGui::CollapsingHeader("Transform", ImGuiTreeNodeFlags_DefaultOpen)) {
// Position Vector3 control
float pos[3] = { selectedObj.position.x, selectedObj.position.y, selectedObj.position.z };
if (ImGui::DragFloat3("Position", pos, 0.1f)) {
selectedObj.position = glm::vec3(pos[0], pos[1], pos[2]);
}
ImGui::SameLine();
if (ImGui::SmallButton("Reset##pos")) {
selectedObj.position = glm::vec3(0.0f, 0.0f, 0.0f);
}
// Rotation Vector3 control (degrees)
float rot[3] = { selectedObj.rotation.x, selectedObj.rotation.y, selectedObj.rotation.z };
if (ImGui::DragFloat3("Rotation", rot, 1.0f, -360.0f, 360.0f)) {
selectedObj.rotation = glm::vec3(rot[0], rot[1], rot[2]);
}
ImGui::SameLine();
if (ImGui::SmallButton("Reset##rot")) {
selectedObj.rotation = glm::vec3(0.0f, 0.0f, 0.0f);
}
// Scale Vector3 control
float scale[3] = { selectedObj.scale.x, selectedObj.scale.y, selectedObj.scale.z };
if (ImGui::DragFloat3("Scale", scale, 0.01f, 0.01f, 10.0f)) {
selectedObj.scale = glm::vec3(scale[0], scale[1], scale[2]);
}
ImGui::SameLine();
if (ImGui::SmallButton("Reset##scale")) {
selectedObj.scale = glm::vec3(1.0f, 1.0f, 1.0f); // Default scale is 1.0
}
// Transform utilities
ImGui::Spacing();
if (ImGui::Button("Reset All Transform")) {
selectedObj.position = glm::vec3(0.0f, 0.0f, 0.0f);
selectedObj.rotation = glm::vec3(0.0f, 0.0f, 0.0f);
selectedObj.scale = glm::vec3(1.0f, 1.0f, 1.0f);
}
}
// Object Properties Section
if (ImGui::CollapsingHeader("Object Properties", ImGuiTreeNodeFlags_DefaultOpen)) {
// Visibility toggle
bool visible = selectedObj.visible;
if (ImGui::Checkbox("Visible", &visible)) {
selectedObj.visible = visible;
}
// Object name editing
static char nameBuffer[256];
strncpy_s(nameBuffer, selectedObj.name.c_str(), sizeof(nameBuffer) - 1);
if (ImGui::InputText("Name", nameBuffer, sizeof(nameBuffer))) {
selectedObj.name = std::string(nameBuffer);
}
}
// Procedural Parameters Section (for procedural shapes)
if (selectedObj.type == "Procedural") {
if (ImGui::CollapsingHeader("Procedural Parameters", ImGuiTreeNodeFlags_DefaultOpen)) {
ImGui::Text("Shape Type: %s", selectedObj.subtype.c_str());
// Dynamic parameter controls based on shape type
bool parametersChanged = false;
if (selectedObj.subtype == "Cube") {
ImGui::Text("Cube Parameters:");
ImGui::Separator();
if (ImGui::DragFloat("Width", &selectedObj.proceduralParams.cubeWidth, 0.1f, 0.1f, 10.0f, "%.2f")) {
parametersChanged = true;
}
if (ImGui::DragFloat("Height", &selectedObj.proceduralParams.cubeHeight, 0.1f, 0.1f, 10.0f, "%.2f")) {
parametersChanged = true;
}
if (ImGui::DragFloat("Depth", &selectedObj.proceduralParams.cubeDepth, 0.1f, 0.1f, 10.0f, "%.2f")) {
parametersChanged = true;
}
if (ImGui::SliderInt("Subdivisions", &selectedObj.proceduralParams.cubeSubdivisions, 1, 10)) {
parametersChanged = true;
}
if (ImGui::Button("Reset Cube Parameters")) {
selectedObj.proceduralParams.cubeWidth = 2.0f;
selectedObj.proceduralParams.cubeHeight = 2.0f;
selectedObj.proceduralParams.cubeDepth = 2.0f;
selectedObj.proceduralParams.cubeSubdivisions = 1;
parametersChanged = true;
}
} else if (selectedObj.subtype == "Sphere") {
ImGui::Text("Sphere Parameters:");
ImGui::Separator();
if (ImGui::DragFloat("Radius", &selectedObj.proceduralParams.sphereRadius, 0.05f, 0.1f, 5.0f, "%.2f")) {
parametersChanged = true;
}
if (ImGui::SliderInt("Segments", &selectedObj.proceduralParams.sphereSegments, 4, 64)) {
parametersChanged = true;
}
if (ImGui::Button("Reset Sphere Parameters")) {
selectedObj.proceduralParams.sphereRadius = 1.0f;
selectedObj.proceduralParams.sphereSegments = 16;
parametersChanged = true;
}
} else if (selectedObj.subtype == "Cylinder") {
ImGui::Text("Cylinder Parameters:");
ImGui::Separator();
if (ImGui::DragFloat("Radius", &selectedObj.proceduralParams.cylinderRadius, 0.05f, 0.1f, 5.0f, "%.2f")) {
parametersChanged = true;
}
if (ImGui::DragFloat("Height", &selectedObj.proceduralParams.cylinderHeight, 0.1f, 0.1f, 10.0f, "%.2f")) {
parametersChanged = true;
}
if (ImGui::SliderInt("Segments", &selectedObj.proceduralParams.cylinderSegments, 3, 64)) {
parametersChanged = true;
}
if (ImGui::Button("Reset Cylinder Parameters")) {
selectedObj.proceduralParams.cylinderRadius = 1.0f;
selectedObj.proceduralParams.cylinderHeight = 2.0f;
selectedObj.proceduralParams.cylinderSegments = 16;
parametersChanged = true;
}
} else if (selectedObj.subtype == "Cone") {
ImGui::Text("Cone Parameters:");
ImGui::Separator();
if (ImGui::DragFloat("Radius", &selectedObj.proceduralParams.coneRadius, 0.05f, 0.1f, 5.0f, "%.2f")) {
parametersChanged = true;
}
if (ImGui::DragFloat("Height", &selectedObj.proceduralParams.coneHeight, 0.1f, 0.1f, 10.0f, "%.2f")) {
parametersChanged = true;
}
if (ImGui::SliderInt("Segments", &selectedObj.proceduralParams.coneSegments, 3, 64)) {
parametersChanged = true;
}
if (ImGui::Button("Reset Cone Parameters")) {
selectedObj.proceduralParams.coneRadius = 1.0f;
selectedObj.proceduralParams.coneHeight = 2.0f;
selectedObj.proceduralParams.coneSegments = 16;
parametersChanged = true;
}
} else if (selectedObj.subtype == "Plane") {
ImGui::Text("Plane Parameters:");
ImGui::Separator();
if (ImGui::DragFloat("Width", &selectedObj.proceduralParams.planeWidth, 0.1f, 0.1f, 10.0f, "%.2f")) {
parametersChanged = true;
}
if (ImGui::DragFloat("Height", &selectedObj.proceduralParams.planeHeight, 0.1f, 0.1f, 10.0f, "%.2f")) {
parametersChanged = true;
}
if (ImGui::SliderInt("Subdivisions", &selectedObj.proceduralParams.planeSubdivisions, 1, 20)) {
parametersChanged = true;
}
if (ImGui::Button("Reset Plane Parameters")) {
selectedObj.proceduralParams.planeWidth = 2.0f;
selectedObj.proceduralParams.planeHeight = 2.0f;
selectedObj.proceduralParams.planeSubdivisions = 1;
parametersChanged = true;
}
} else if (selectedObj.subtype == "Torus") {
ImGui::Text("Torus Parameters:");
ImGui::Separator();
if (ImGui::DragFloat("Major Radius", &selectedObj.proceduralParams.torusMajorRadius, 0.05f, 0.2f, 5.0f, "%.2f")) {
parametersChanged = true;
}
if (ImGui::DragFloat("Minor Radius", &selectedObj.proceduralParams.torusMinorRadius, 0.02f, 0.05f, 2.0f, "%.2f")) {
parametersChanged = true;
}
if (ImGui::SliderInt("Major Segments", &selectedObj.proceduralParams.torusMajorSegments, 3, 64)) {
parametersChanged = true;
}
if (ImGui::SliderInt("Minor Segments", &selectedObj.proceduralParams.torusMinorSegments, 3, 32)) {
parametersChanged = true;
}
if (ImGui::Button("Reset Torus Parameters")) {
selectedObj.proceduralParams.torusMajorRadius = 1.0f;
selectedObj.proceduralParams.torusMinorRadius = 0.3f;
selectedObj.proceduralParams.torusMajorSegments = 16;
selectedObj.proceduralParams.torusMinorSegments = 8;
parametersChanged = true;
}
}
// Regenerate geometry if parameters changed
if (parametersChanged) {
selectedObj.regenerateGeometry();
std::cout << "Regenerated geometry for " << selectedObj.name << " (" << selectedObj.subtype << ")" << std::endl;
}
ImGui::Spacing();
ImGui::TextColored(ImVec4(0.4f, 1.0f, 0.4f, 1.0f), "✓ Real-time parameter editing enabled");
}
}
} else {
ImGui::Text("Selected: None");
ImGui::Text("Select an object in the Scene Hierarchy");
ImGui::Separator();
}
// UI Style selection is available in Preferences > UI Theme menu
ImGui::End();
} // End Inspector Panel visibility check
// Viewport Panel - Settings for 3D viewport rendering
if (uiSettings.showViewportPanel) {
ImGui::SetNextWindowPos(ImVec2(660 * example->ui.scale, 350 * example->ui.scale), ImGuiSetCond_FirstUseEver);
ImGui::SetNextWindowSize(ImVec2(320 * example->ui.scale, 280 * example->ui.scale), ImGuiSetCond_FirstUseEver);
ImGui::Begin("Viewport", &uiSettings.showViewportPanel);
ImGui::Text("3D Viewport Settings:");
ImGui::Separator();
// Render Mode Settings
if (ImGui::CollapsingHeader("Render Mode", ImGuiTreeNodeFlags_DefaultOpen))
{
// TODO: Add render mode dropdown (Solid, X-Ray, etc.) when renderer supports it
ImGui::Text("Mode: Solid"); // Placeholder until render modes implemented
}
// Grid Settings (moved from Inspector)
if (ImGui::CollapsingHeader("Grid Settings", ImGuiTreeNodeFlags_DefaultOpen))
{
ImGui::Checkbox("Show Grid", &uiSettings.showGrid);
if (uiSettings.showGrid) {
ImGui::DragFloat("Grid Size", &uiSettings.gridSize, 0.5f, 1.0f, 50.0f);
ImGui::DragInt("Grid Divisions", &uiSettings.gridDivisions, 1, 2, 50);
// Grid color picker (placeholder - needs renderer integration)
static float gridColor[3] = { 0.5f, 0.5f, 0.5f };
ImGui::ColorEdit3("Grid Color", gridColor);
}
// Note about grid rendering implementation
ImGui::TextColored(ImVec4(0.7f, 0.7f, 0.3f, 1.0f), "Note: Grid rendering requires Vulkan renderer integration.");
ImGui::TextColored(ImVec4(0.6f, 0.6f, 0.6f, 1.0f), "Settings are saved but grid is not yet rendered in viewport.");
}
// Camera Settings
if (ImGui::CollapsingHeader("Camera", ImGuiTreeNodeFlags_DefaultOpen))
{
ImGui::Text("Current Camera: Orbit Camera");
ImGui::Text("Controls:");
ImGui::BulletText("Alt + LMB: Orbit");
ImGui::BulletText("Alt + MMB: Pan");
ImGui::BulletText("Alt + RMB: Zoom");
ImGui::BulletText("Mouse Wheel: Zoom");
ImGui::BulletText("F Key: Focus Selection");
}
// Selection Tools
if (ImGui::CollapsingHeader("Selection Tools"))
{
ImGui::Text("Active Tool: Rectangle Select");
// TODO: Add gizmo tool selection when gizmos implemented
}
// Lighting Settings (moved from Inspector panel)
if (ImGui::CollapsingHeader("Lighting", ImGuiTreeNodeFlags_DefaultOpen))
{
ImGui::Checkbox("Animate light", &uiSettings.animateLight);
ImGui::SliderFloat("Light speed", &uiSettings.lightSpeed, 0.1f, 1.0f);
}
ImGui::End();
} // End Viewport Panel visibility check
// Asset Browser Panel
if (uiSettings.showAssetBrowserPanel) {
ImGui::SetNextWindowPos(ImVec2(20 * example->ui.scale, 780 * example->ui.scale), ImGuiSetCond_FirstUseEver);
ImGui::SetNextWindowSize(ImVec2(600 * example->ui.scale, 220 * example->ui.scale), ImGuiSetCond_FirstUseEver);
ImGui::Begin("Asset Browser", &uiSettings.showAssetBrowserPanel);
ImGui::Text("Project Assets:");
ImGui::Separator();
if (ImGui::CollapsingHeader("Procedural Shapes", ImGuiTreeNodeFlags_DefaultOpen))
{
ImGui::Text("Basic Geometric Shapes:");
ImGui::Separator();
// Create buttons for each shape type - First row
if (ImGui::Button("Cube")) {
sceneManager.addProceduralShape("Cube", "Cube");
}
if (ImGui::IsItemHovered()) ImGui::SetTooltip("Add a procedural cube to the scene");
ImGui::SameLine();
if (ImGui::Button("Sphere")) {
sceneManager.addProceduralShape("Sphere", "Sphere");
}
if (ImGui::IsItemHovered()) ImGui::SetTooltip("Add a procedural sphere to the scene");
ImGui::SameLine();
if (ImGui::Button("Plane")) {
sceneManager.addProceduralShape("Plane", "Plane");
}
if (ImGui::IsItemHovered()) ImGui::SetTooltip("Add a procedural plane to the scene");
// Second row
if (ImGui::Button("Cone")) {
sceneManager.addProceduralShape("Cone", "Cone");
}
if (ImGui::IsItemHovered()) ImGui::SetTooltip("Add a procedural cone to the scene");
ImGui::SameLine();
if (ImGui::Button("Cylinder")) {
sceneManager.addProceduralShape("Cylinder", "Cylinder");
}
if (ImGui::IsItemHovered()) ImGui::SetTooltip("Add a procedural cylinder to the scene");
ImGui::SameLine();
if (ImGui::Button("Torus")) {
sceneManager.addProceduralShape("Torus", "Torus");
}
if (ImGui::IsItemHovered()) ImGui::SetTooltip("Add a procedural torus to the scene");
}
if (ImGui::CollapsingHeader("Models"))
{
ImGui::Text("• MobulaBirostris.gltf");
ImGui::Text("• PolarBear.gltf");
}
if (ImGui::CollapsingHeader("Textures"))
{
ImGui::Text("• Loading textures from glTF files...");
}
if (ImGui::CollapsingHeader("Materials"))
{
ImGui::Text("• Default Vulkan Materials");
}
ImGui::End();
} // End Asset Browser Panel visibility check
// Console Panel
if (uiSettings.showConsolePanel) {
ImGui::SetNextWindowPos(ImVec2(640 * example->ui.scale, 780 * example->ui.scale), ImGuiSetCond_FirstUseEver);
ImGui::SetNextWindowSize(ImVec2(840 * example->ui.scale, 200 * example->ui.scale), ImGuiSetCond_FirstUseEver);
ImGui::Begin("Console", &uiSettings.showConsolePanel);
ImGui::Text("System Console:");
ImGui::Separator();
ImGui::Text("[INFO] ProceduralEngine - Vulkan Renderer initialized");
ImGui::Text("[INFO] Scene loaded successfully - Ready for procedural generation");
ImGui::Separator();
static char inputBuf[256] = "";
if (ImGui::InputText("Command", inputBuf, sizeof(inputBuf), ImGuiInputTextFlags_EnterReturnsTrue))
{
// Process command
inputBuf[0] = '\0';
}
ImGui::End();
} // End Console Panel visibility check
//SRS - ShowDemoWindow() sets its own initial position and size, cannot override here
// ImGui::ShowDemoWindow();
// Render to generate draw buffers
ImGui::Render();
}
// Update vertex and index buffer containing the imGui elements when required
void updateBuffers()
{
ImDrawData* imDrawData = ImGui::GetDrawData();
// Note: Alignment is done inside buffer creation
VkDeviceSize vertexBufferSize = imDrawData->TotalVtxCount * sizeof(ImDrawVert);
VkDeviceSize indexBufferSize = imDrawData->TotalIdxCount * sizeof(ImDrawIdx);
if ((vertexBufferSize == 0) || (indexBufferSize == 0)) {
return;
}
// Update buffers only if vertex or index count has been changed compared to current buffer size
// Vertex buffer
if ((vertexBuffer.buffer == VK_NULL_HANDLE) || (vertexCount != imDrawData->TotalVtxCount)) {
vertexBuffer.unmap();
vertexBuffer.destroy();
VK_CHECK_RESULT(device->createBuffer(VK_BUFFER_USAGE_VERTEX_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &vertexBuffer, vertexBufferSize));
vertexCount = imDrawData->TotalVtxCount;
vertexBuffer.map();
}
// Index buffer
if ((indexBuffer.buffer == VK_NULL_HANDLE) || (indexCount < imDrawData->TotalIdxCount)) {
indexBuffer.unmap();
indexBuffer.destroy();
VK_CHECK_RESULT(device->createBuffer(VK_BUFFER_USAGE_INDEX_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &indexBuffer, indexBufferSize));
indexCount = imDrawData->TotalIdxCount;
indexBuffer.map();
}
// Upload data
ImDrawVert* vtxDst = (ImDrawVert*)vertexBuffer.mapped;
ImDrawIdx* idxDst = (ImDrawIdx*)indexBuffer.mapped;
for (int n = 0; n < imDrawData->CmdListsCount; n++) {
const ImDrawList* cmd_list = imDrawData->CmdLists[n];
memcpy(vtxDst, cmd_list->VtxBuffer.Data, cmd_list->VtxBuffer.Size * sizeof(ImDrawVert));
memcpy(idxDst, cmd_list->IdxBuffer.Data, cmd_list->IdxBuffer.Size * sizeof(ImDrawIdx));
vtxDst += cmd_list->VtxBuffer.Size;
idxDst += cmd_list->IdxBuffer.Size;
}
// Flush to make writes visible to GPU
vertexBuffer.flush();
indexBuffer.flush();
}
// Draw current imGui frame into a command buffer
void drawFrame(VkCommandBuffer commandBuffer)
{
ImGuiIO& io = ImGui::GetIO();
vkCmdBindDescriptorSets(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, nullptr);
vkCmdBindPipeline(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
VkViewport viewport = vks::initializers::viewport(ImGui::GetIO().DisplaySize.x, ImGui::GetIO().DisplaySize.y, 0.0f, 1.0f);
vkCmdSetViewport(commandBuffer, 0, 1, &viewport);
// UI scale and translate via push constants
pushConstBlock.scale = glm::vec2(2.0f / io.DisplaySize.x, 2.0f / io.DisplaySize.y);
pushConstBlock.translate = glm::vec2(-1.0f);
vkCmdPushConstants(commandBuffer, pipelineLayout, VK_SHADER_STAGE_VERTEX_BIT, 0, sizeof(PushConstBlock), &pushConstBlock);
// Render commands
ImDrawData* imDrawData = ImGui::GetDrawData();
int32_t vertexOffset = 0;
int32_t indexOffset = 0;
if (imDrawData->CmdListsCount > 0) {
VkDeviceSize offsets[1] = { 0 };
vkCmdBindVertexBuffers(commandBuffer, 0, 1, &vertexBuffer.buffer, offsets);
vkCmdBindIndexBuffer(commandBuffer, indexBuffer.buffer, 0, VK_INDEX_TYPE_UINT16);
for (int32_t i = 0; i < imDrawData->CmdListsCount; i++)
{
const ImDrawList* cmd_list = imDrawData->CmdLists[i];
for (int32_t j = 0; j < cmd_list->CmdBuffer.Size; j++)
{
const ImDrawCmd* pcmd = &cmd_list->CmdBuffer[j];
VkRect2D scissorRect;
scissorRect.offset.x = std::max((int32_t)(pcmd->ClipRect.x), 0);
scissorRect.offset.y = std::max((int32_t)(pcmd->ClipRect.y), 0);
scissorRect.extent.width = (uint32_t)(pcmd->ClipRect.z - pcmd->ClipRect.x);
scissorRect.extent.height = (uint32_t)(pcmd->ClipRect.w - pcmd->ClipRect.y);
vkCmdSetScissor(commandBuffer, 0, 1, &scissorRect);
vkCmdDrawIndexed(commandBuffer, pcmd->ElemCount, 1, indexOffset, vertexOffset, 0);
indexOffset += pcmd->ElemCount;
}
#if (defined(VK_USE_PLATFORM_IOS_MVK) || defined(VK_USE_PLATFORM_METAL_EXT)) && TARGET_OS_SIMULATOR
// Apple Device Simulator does not support vkCmdDrawIndexed() with vertexOffset > 0, so rebind vertex buffer instead
offsets[0] += cmd_list->VtxBuffer.Size * sizeof(ImDrawVert);
vkCmdBindVertexBuffers(commandBuffer, 0, 1, &vertexBuffer.buffer, offsets);
#else
vertexOffset += cmd_list->VtxBuffer.Size;
#endif
}
}
}
};
// ----------------------------------------------------------------------------
// VulkanExample
// ----------------------------------------------------------------------------
class VulkanExample : public VulkanExampleBase
{
public:
// Dynamic rendering function pointers
PFN_vkCmdBeginRenderingKHR vkCmdBeginRenderingKHR{ VK_NULL_HANDLE };
PFN_vkCmdEndRenderingKHR vkCmdEndRenderingKHR{ VK_NULL_HANDLE };
VkPhysicalDeviceDynamicRenderingFeaturesKHR enabledDynamicRenderingFeaturesKHR{};
ImGUI *imGui = nullptr;
struct Models {
vkglTF::Model models;
vkglTF::Model logos;
vkglTF::Model background;
} models;
vks::Buffer uniformBufferVS;
struct UBOVS {
glm::mat4 projection;
glm::mat4 model;
glm::vec4 lightPos;
} uboVS;
VkPipelineLayout pipelineLayout;
VkPipeline pipeline;
VkDescriptorSetLayout descriptorSetLayout;
VkDescriptorSet descriptorSet;
// Procedural shapes pipeline
VkPipelineLayout proceduralPipelineLayout;
VkPipeline proceduralPipeline;
VkDescriptorSetLayout proceduralDescriptorSetLayout;
VkDescriptorSet proceduralDescriptorSet;
// Enhanced orbit camera
OrbitCamera orbitCamera;
// Mouse interaction state
bool mouseInteracting = false;
double lastMouseX = 0.0;
double lastMouseY = 0.0;
VulkanExample() : VulkanExampleBase(), orbitCamera(glm::vec3(5.0f, 3.0f, 5.0f), glm::vec3(0.0f, 0.0f, -5.0f))
{
title = "ProceduralEngine - Vulkan 3D Viewport";
camera.type = Camera::CameraType::lookat;
camera.setPosition(glm::vec3(0.0f, 0.0f, -8.0f));
camera.setRotation(glm::vec3(4.5f, -380.0f, 0.0f));
camera.setPerspective(45.0f, (float)width / (float)height, 0.1f, 256.0f);
// Configure orbit camera with legacy-compatible settings
orbitCamera.SetSensitivity(0.5f, 0.003f, 0.1f); // Match legacy sensitivity values
orbitCamera.SetSmoothingFactor(0.15f); // Match legacy smoothing
//SRS - Enable VK_KHR_get_physical_device_properties2 to retrieve device driver information for display
enabledInstanceExtensions.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
// Enable dynamic rendering extensions
enabledDeviceExtensions.push_back(VK_KHR_DYNAMIC_RENDERING_EXTENSION_NAME);
enabledDeviceExtensions.push_back(VK_KHR_MAINTENANCE2_EXTENSION_NAME);
enabledDeviceExtensions.push_back(VK_KHR_MULTIVIEW_EXTENSION_NAME);
enabledDeviceExtensions.push_back(VK_KHR_CREATE_RENDERPASS_2_EXTENSION_NAME);
enabledDeviceExtensions.push_back(VK_KHR_DEPTH_STENCIL_RESOLVE_EXTENSION_NAME);
// Enable dynamic rendering features
enabledDynamicRenderingFeaturesKHR.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DYNAMIC_RENDERING_FEATURES_KHR;
enabledDynamicRenderingFeaturesKHR.dynamicRendering = VK_TRUE;
deviceCreatepNextChain = &enabledDynamicRenderingFeaturesKHR;
// Don't use the ImGui overlay of the base framework in this sample
settings.overlay = false;
}
~VulkanExample()
{
vkDestroyPipeline(device, pipeline, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
vkDestroyPipeline(device, proceduralPipeline, nullptr);
vkDestroyPipelineLayout(device, proceduralPipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, proceduralDescriptorSetLayout, nullptr);
uniformBufferVS.destroy();
delete imGui;
}
void setupRenderPass()
{
// With VK_KHR_dynamic_rendering we no longer need a render pass, so skip the sample base render pass setup
renderPass = VK_NULL_HANDLE;
}
void setupFrameBuffer()
{
// With VK_KHR_dynamic_rendering we no longer need a frame buffer, so skip the sample base framebuffer setup
}
void renderProceduralShapes(VkCommandBuffer commandBuffer) {
// Render procedural shapes using persistent buffers
static int frameCount = 0;
frameCount++;
for (auto& obj : sceneManager.objects) {
if (obj.type == "Procedural" && obj.visible && !obj.indices.empty() && obj.buffersCreated) {
// Calculate model matrix for this object
glm::mat4 model = glm::mat4(1.0f);
model = glm::translate(model, obj.position);
model = glm::rotate(model, glm::radians(obj.rotation.x), glm::vec3(1.0f, 0.0f, 0.0f));
model = glm::rotate(model, glm::radians(obj.rotation.y), glm::vec3(0.0f, 1.0f, 0.0f));
model = glm::rotate(model, glm::radians(obj.rotation.z), glm::vec3(0.0f, 0.0f, 1.0f));
model = glm::scale(model, obj.scale);
// Update uniform buffer with object's model matrix while preserving camera matrices
UBOVS tempUBO;
tempUBO.projection = orbitCamera.GetProjectionMatrix((float)width / (float)height, 0.1f, 256.0f); // Use OrbitCamera projection
tempUBO.model = orbitCamera.GetViewMatrix() * model; // Combine view and model matrices
tempUBO.lightPos = uboVS.lightPos; // Preserve light position
VK_CHECK_RESULT(uniformBufferVS.map());
memcpy(uniformBufferVS.mapped, &tempUBO, sizeof(tempUBO));
uniformBufferVS.unmap();
// Validate buffers before binding
if (obj.vertexBuffer.buffer == VK_NULL_HANDLE || obj.indexBuffer.buffer == VK_NULL_HANDLE) {
std::cout << "Warning: Invalid buffer handles for " << obj.name << std::endl;
continue;
}
// Bind the vertex and index buffers for this object
VkBuffer vertexBuffers[] = { obj.vertexBuffer.buffer };
VkDeviceSize offsets[] = { 0 };
vkCmdBindVertexBuffers(commandBuffer, 0, 1, vertexBuffers, offsets);
vkCmdBindIndexBuffer(commandBuffer, obj.indexBuffer.buffer, 0, VK_INDEX_TYPE_UINT32);
// Draw the object
vkCmdDrawIndexed(commandBuffer, static_cast<uint32_t>(obj.indices.size()), 1, 0, 0, 0);
}
}
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
imGui->newFrame(this, (frameCounter == 0));
imGui->updateBuffers();
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
// Dynamic rendering requires manual image layout transitions
// Prepare color attachment for rendering
vks::tools::insertImageMemoryBarrier(
drawCmdBuffers[i],
swapChain.images[i],
0,
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
VkImageSubresourceRange{ VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 });
// Prepare depth attachment for rendering
vks::tools::insertImageMemoryBarrier(
drawCmdBuffers[i],
depthStencil.image,
0,
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL,
VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT,
VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT,
VkImageSubresourceRange{ VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT, 0, 1, 0, 1 });
// Set up rendering attachments for dynamic rendering
VkRenderingAttachmentInfoKHR colorAttachment{};
colorAttachment.sType = VK_STRUCTURE_TYPE_RENDERING_ATTACHMENT_INFO_KHR;
colorAttachment.imageView = swapChain.imageViews[i];
colorAttachment.imageLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
colorAttachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
colorAttachment.storeOp = VK_ATTACHMENT_STORE_OP_STORE;
colorAttachment.clearValue.color = { 0.2f, 0.2f, 0.2f, 1.0f };
VkRenderingAttachmentInfoKHR depthStencilAttachment{};
depthStencilAttachment.sType = VK_STRUCTURE_TYPE_RENDERING_ATTACHMENT_INFO_KHR;
depthStencilAttachment.imageView = depthStencil.view;
depthStencilAttachment.imageLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
depthStencilAttachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
depthStencilAttachment.storeOp = VK_ATTACHMENT_STORE_OP_STORE;
depthStencilAttachment.clearValue.depthStencil = { 1.0f, 0 };
VkRenderingInfoKHR renderingInfo{};
renderingInfo.sType = VK_STRUCTURE_TYPE_RENDERING_INFO_KHR;
renderingInfo.renderArea = { 0, 0, width, height };
renderingInfo.layerCount = 1;
renderingInfo.colorAttachmentCount = 1;
renderingInfo.pColorAttachments = &colorAttachment;
renderingInfo.pDepthAttachment = &depthStencilAttachment;
renderingInfo.pStencilAttachment = &depthStencilAttachment;
// Begin dynamic rendering
vkCmdBeginRenderingKHR(drawCmdBuffers[i], &renderingInfo);
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
// Render vkglTF models with original pipeline
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, nullptr);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
if (uiSettings.displayBackground) {
models.background.draw(drawCmdBuffers[i]);
}
if (uiSettings.displayModels) {
models.models.draw(drawCmdBuffers[i]);
}
// Switch to procedural pipeline for procedural shapes
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, proceduralPipelineLayout, 0, 1, &proceduralDescriptorSet, 0, nullptr);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, proceduralPipeline);
// Render procedural shapes
renderProceduralShapes(drawCmdBuffers[i]);
// Render imGui
if (ui.visible) {
imGui->drawFrame(drawCmdBuffers[i]);
}
// End dynamic rendering
vkCmdEndRenderingKHR(drawCmdBuffers[i]);
// Prepare image for presentation
vks::tools::insertImageMemoryBarrier(
drawCmdBuffers[i],
swapChain.images[i],
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
0,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
VK_IMAGE_LAYOUT_PRESENT_SRC_KHR,
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
VkImageSubresourceRange{ VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 });
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
void setupLayoutsAndDescriptors()
{
// descriptor pool (increased to handle procedural pipeline too)
std::vector<VkDescriptorPoolSize> poolSizes = {
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 4),
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1)
};
VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, 4);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
// Set layout
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0),
};
VkDescriptorSetLayoutCreateInfo descriptorLayout =
vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout));
// Pipeline layout
VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayout, 1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &pipelineLayout));
// Descriptor set
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet));
std::vector<VkWriteDescriptorSet> writeDescriptorSets = {
vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBufferVS.descriptor),
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, nullptr);
// Allocate procedural descriptor set (note: proceduralDescriptorSetLayout is created in prepareProceduralPipeline)
// This will be done after pipelines are prepared
}
void setupProceduralDescriptorSet()
{
// Allocate procedural descriptor set
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &proceduralDescriptorSetLayout, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &proceduralDescriptorSet));
std::vector<VkWriteDescriptorSet> writeDescriptorSets = {
vks::initializers::writeDescriptorSet(proceduralDescriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBufferVS.descriptor),
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, nullptr);
}
void preparePipelines()
{
// Rendering
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_COUNTER_CLOCKWISE);
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT);
std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables);
std::array<VkPipelineShaderStageCreateInfo,2> shaderStages;
// Create pipeline without render pass for dynamic rendering
VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo();
pipelineCI.layout = pipelineLayout;
pipelineCI.pInputAssemblyState = &inputAssemblyState;
pipelineCI.pRasterizationState = &rasterizationState;
pipelineCI.pColorBlendState = &colorBlendState;
pipelineCI.pMultisampleState = &multisampleState;
pipelineCI.pViewportState = &viewportState;
pipelineCI.pDepthStencilState = &depthStencilState;
pipelineCI.pDynamicState = &dynamicState;
pipelineCI.stageCount = static_cast<uint32_t>(shaderStages.size());
pipelineCI.pStages = shaderStages.data();
pipelineCI.pVertexInputState = vkglTF::Vertex::getPipelineVertexInputState({ vkglTF::VertexComponent::Position, vkglTF::VertexComponent::Normal, vkglTF::VertexComponent::Color });;
// Dynamic rendering create info to define color, depth and stencil attachments at pipeline create time
VkPipelineRenderingCreateInfoKHR pipelineRenderingCreateInfo{};
pipelineRenderingCreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_RENDERING_CREATE_INFO_KHR;
pipelineRenderingCreateInfo.colorAttachmentCount = 1;
pipelineRenderingCreateInfo.pColorAttachmentFormats = &swapChain.colorFormat;
pipelineRenderingCreateInfo.depthAttachmentFormat = depthFormat;
pipelineRenderingCreateInfo.stencilAttachmentFormat = depthFormat;
// Chain into the pipeline create info
pipelineCI.pNext = &pipelineRenderingCreateInfo;
shaderStages[0] = loadShader(getShadersPath() + "imgui/scene.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "imgui/scene.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipeline));
// Create procedural shapes pipeline
prepareProceduralPipeline();
}
void prepareProceduralPipeline()
{
// Descriptor set layout for procedural shapes (uniform buffer only)
VkDescriptorSetLayoutBinding layoutBinding = vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0);
VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(&layoutBinding, 1);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &proceduralDescriptorSetLayout));
// Pipeline layout
VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&proceduralDescriptorSetLayout, 1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &proceduralPipelineLayout));
// Pipeline
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_BACK_BIT, VK_FRONT_FACE_COUNTER_CLOCKWISE);
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT);
std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables);
// Vertex input for procedural shapes
VkVertexInputBindingDescription vertexInputBinding = vks::initializers::vertexInputBindingDescription(0, sizeof(ProceduralVertex), VK_VERTEX_INPUT_RATE_VERTEX);
std::vector<VkVertexInputAttributeDescription> vertexInputAttributes = {
vks::initializers::vertexInputAttributeDescription(0, 0, VK_FORMAT_R32G32B32_SFLOAT, 0), // Position
vks::initializers::vertexInputAttributeDescription(0, 1, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 3), // Normal
vks::initializers::vertexInputAttributeDescription(0, 2, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 6), // Color
};
VkPipelineVertexInputStateCreateInfo vertexInputState = vks::initializers::pipelineVertexInputStateCreateInfo();
vertexInputState.vertexBindingDescriptionCount = 1;
vertexInputState.pVertexBindingDescriptions = &vertexInputBinding;
vertexInputState.vertexAttributeDescriptionCount = static_cast<uint32_t>(vertexInputAttributes.size());
vertexInputState.pVertexAttributeDescriptions = vertexInputAttributes.data();
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo();
pipelineCI.layout = proceduralPipelineLayout;
pipelineCI.pInputAssemblyState = &inputAssemblyState;
pipelineCI.pRasterizationState = &rasterizationState;
pipelineCI.pColorBlendState = &colorBlendState;
pipelineCI.pMultisampleState = &multisampleState;
pipelineCI.pViewportState = &viewportState;
pipelineCI.pDepthStencilState = &depthStencilState;
pipelineCI.pDynamicState = &dynamicState;
pipelineCI.pVertexInputState = &vertexInputState;
pipelineCI.stageCount = static_cast<uint32_t>(shaderStages.size());
pipelineCI.pStages = shaderStages.data();
// Dynamic rendering create info
VkPipelineRenderingCreateInfoKHR pipelineRenderingCreateInfo{};
pipelineRenderingCreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_RENDERING_CREATE_INFO_KHR;
pipelineRenderingCreateInfo.colorAttachmentCount = 1;
pipelineRenderingCreateInfo.pColorAttachmentFormats = &swapChain.colorFormat;
pipelineRenderingCreateInfo.depthAttachmentFormat = depthFormat;
pipelineRenderingCreateInfo.stencilAttachmentFormat = depthFormat;
pipelineCI.pNext = &pipelineRenderingCreateInfo;
shaderStages[0] = loadShader(getShadersPath() + "imgui/scene.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "imgui/scene.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &proceduralPipeline));
}
// Prepare and initialize uniform buffer containing shader uniforms
void prepareUniformBuffers()
{
// Vertex shader uniform buffer block
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&uniformBufferVS,
sizeof(uboVS),
&uboVS));
updateUniformBuffers();
}
void updateUniformBuffers()
{
// Update orbit camera
orbitCamera.Update(frameTimer);
// Vertex shader - use OrbitCamera matrices
uboVS.projection = orbitCamera.GetProjectionMatrix((float)width / (float)height, 0.1f, 256.0f);
uboVS.model = orbitCamera.GetViewMatrix() * glm::mat4(1.0f);
// Light source
if (uiSettings.animateLight) {
uiSettings.lightTimer += frameTimer * uiSettings.lightSpeed;
uboVS.lightPos.x = sin(glm::radians(uiSettings.lightTimer * 360.0f)) * 15.0f;
uboVS.lightPos.z = cos(glm::radians(uiSettings.lightTimer * 360.0f)) * 15.0f;
};
VK_CHECK_RESULT(uniformBufferVS.map());
memcpy(uniformBufferVS.mapped, &uboVS, sizeof(uboVS));
uniformBufferVS.unmap();
}
void draw()
{
VulkanExampleBase::prepareFrame();
// Check if we need to create buffers for new objects
bool needsCommandBufferRebuild = false;
for (auto& obj : sceneManager.objects) {
if (obj.type == "Procedural" && !obj.buffersCreated && !obj.vertices.empty() && !obj.indices.empty()) {
// Wait for GPU to finish current operations before creating new buffers
vkDeviceWaitIdle(device);
sceneManager.createBuffersForObject(obj);
needsCommandBufferRebuild = true;
}
}
// If new objects were added, ensure proper synchronization
if (needsCommandBufferRebuild) {
vkDeviceWaitIdle(device);
}
buildCommandBuffers();
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VulkanExampleBase::submitFrame();
}
void loadAssets()
{
const uint32_t glTFLoadingFlags = vkglTF::FileLoadingFlags::PreTransformVertices | vkglTF::FileLoadingFlags::PreMultiplyVertexColors | vkglTF::FileLoadingFlags::FlipY;
// Models available in assets but not auto-loaded
// models.models.loadFromFile(getAssetPath() + "models/MobulaBirostris.gltf", vulkanDevice, queue, glTFLoadingFlags);
// models.background.loadFromFile(getAssetPath() + "models/PolarBear.gltf", vulkanDevice, queue, glTFLoadingFlags);
}
void prepareImGui()
{
imGui = new ImGUI(this);
imGui->init((float)width, (float)height);
imGui->initResources(renderPass, queue, getShadersPath(), swapChain.colorFormat, depthFormat);
}
void prepare()
{
VulkanExampleBase::prepare();
// Get dynamic rendering function pointers
vkCmdBeginRenderingKHR = reinterpret_cast<PFN_vkCmdBeginRenderingKHR>(vkGetDeviceProcAddr(device, "vkCmdBeginRenderingKHR"));
vkCmdEndRenderingKHR = reinterpret_cast<PFN_vkCmdEndRenderingKHR>(vkGetDeviceProcAddr(device, "vkCmdEndRenderingKHR"));
// Validate function pointers
if (!vkCmdBeginRenderingKHR || !vkCmdEndRenderingKHR) {
std::cout << "ERROR: Failed to load dynamic rendering function pointers" << std::endl;
exit(1);
}
// Initialize scene manager with device pointer
sceneManager.device = vulkanDevice;
loadAssets();
prepareUniformBuffers();
setupLayoutsAndDescriptors();
preparePipelines();
setupProceduralDescriptorSet();
prepareImGui();
buildCommandBuffers();
prepared = true;
}
virtual void render()
{
if (!prepared)
return;
updateUniformBuffers();
// Update imGui
ImGuiIO& io = ImGui::GetIO();
io.DisplaySize = ImVec2((float)width, (float)height);
io.DeltaTime = frameTimer;
io.MousePos = ImVec2(mouseState.position.x, mouseState.position.y);
io.MouseDown[0] = mouseState.buttons.left && ui.visible;
io.MouseDown[1] = mouseState.buttons.right && ui.visible;
io.MouseDown[2] = mouseState.buttons.middle && ui.visible;
// Handle mouse wheel for camera zoom
if (io.MouseWheel != 0.0f) {
orbitCamera.ZoomImmediate(-io.MouseWheel * 10.0f, frameTimer);
}
draw();
}
// Input handling is platform specific, to show how it's basically done this sample implements it for Windows
#if defined(_WIN32)
virtual void OnHandleMessage(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam) {
ImGuiIO& io = ImGui::GetIO();
// Handle mouse wheel for ImGui (needed for camera zoom)
if (uMsg == WM_MOUSEWHEEL) {
io.MouseWheel += (float)GET_WHEEL_DELTA_WPARAM(wParam) / (float)WHEEL_DELTA;
}
// Only react to keyboard input if ImGui is active
if (io.WantCaptureKeyboard) {
// Character input
if (uMsg == WM_CHAR) {
if (wParam > 0 && wParam < 0x10000) {
io.AddInputCharacter((unsigned short)wParam);
}
}
// Special keys (tab, cursor, etc.)
if ((wParam < 256) && (uMsg == WM_KEYDOWN || uMsg == WM_SYSKEYDOWN)) {
io.KeysDown[wParam] = true;
}
if ((wParam < 256) && (uMsg == WM_KEYUP || uMsg == WM_SYSKEYUP)) {
io.KeysDown[wParam] = false;
}
}
}
#endif
// Override keyPressed for F key focus functionality
virtual void keyPressed(uint32_t keyCode) override
{
// Handle F key for focus (immediate, no smoothing)
if (keyCode == KEY_F) {
if (sceneManager.hasSelection()) {
// Focus on selected object immediately
SceneObject* selectedObject = sceneManager.getSelectedObject();
if (selectedObject) {
glm::vec3 objectCenter = selectedObject->getBoundingBoxCenter();
float objectRadius = selectedObject->getBoundingRadius();
orbitCamera.SetFocusToSelectionImmediate(objectCenter, objectRadius);
std::cout << "Focused camera on selected object: " << selectedObject->name << std::endl;
}
} else {
// No selection, focus on scene center immediately
orbitCamera.FrameAllImmediate(glm::vec3(0.0f, 0.0f, -5.0f), 3.0f);
std::cout << "Focused camera on scene center (no selection)" << std::endl;
}
}
// Call base implementation for other keys
VulkanExampleBase::keyPressed(keyCode);
}
// Override mouseMoved for camera orbit/pan controls
virtual void mouseMoved(double x, double y, bool &handled) override
{
ImGuiIO& io = ImGui::GetIO();
// Calculate mouse delta
double deltaX = x - lastMouseX;
double deltaY = y - lastMouseY;
lastMouseX = x;
lastMouseY = y;
// Handle industry-standard Maya/3ds Max style camera controls (Alt + mouse)
// Use Windows API directly for Alt key detection since ImGui's KeyAlt is not reliable in this Vulkan framework
#if defined(_WIN32)
bool altPressed = (GetAsyncKeyState(VK_MENU) & 0x8000) != 0;
#else
bool altPressed = io.KeyAlt; // Fallback for non-Windows platforms
#endif
// Alt key detection is now working properly using Windows GetAsyncKeyState API
if (altPressed && mouseState.buttons.left) {
// Alt + Left mouse: orbit around focus point
if (std::abs(deltaX) > 0.1 || std::abs(deltaY) > 0.1) {
orbitCamera.Orbit(deltaX * 0.5f, deltaY * 0.5f, frameTimer);
handled = true;
}
} else if (altPressed && mouseState.buttons.middle) {
// Alt + Middle mouse: pan viewport (immediate, no smoothing)
if (std::abs(deltaX) > 0.1 || std::abs(deltaY) > 0.1) {
orbitCamera.PanImmediate(-deltaX, deltaY, frameTimer);
handled = true;
}
} else if (altPressed && mouseState.buttons.right) {
// Alt + Right mouse: zoom (dolly camera)
if (std::abs(deltaY) > 0.1) {
orbitCamera.Zoom(deltaY * 0.01f, frameTimer);
handled = true;
}
}
// Call base implementation if not handled
if (!handled) {
VulkanExampleBase::mouseMoved(x, y, handled);
}
}
};
VULKAN_EXAMPLE_MAIN()