procedural-3d-engine/shaders/glsl/computeraytracing/raytracing.comp
Sascha Willems d82ebc8f32 Heavily reworked this sample
Code cleanup, code restructuring, simplified and lots of new code comments
2024-01-12 12:45:14 +01:00

245 lines
No EOL
5.3 KiB
Text

// Copyright 2023 Sascha Willems
// Shader is looseley based on the ray tracing coding session by Inigo Quilez (www.iquilezles.org)
#version 450
layout (local_size_x = 16, local_size_y = 16) in;
layout (binding = 0, rgba8) uniform writeonly image2D resultImage;
#define EPSILON 0.0001
#define MAXLEN 1000.0
#define SHADOW 0.5
#define RAYBOUNCES 2
#define REFLECTIONS true
#define REFLECTIONSTRENGTH 0.4
#define REFLECTIONFALLOFF 0.5
#define SceneObjectTypeSphere 0
#define SceneObjectTypePlane 1
struct Camera
{
vec3 pos;
vec3 lookat;
float fov;
};
layout (binding = 1) uniform UBO
{
vec3 lightPos;
float aspectRatio;
vec4 fogColor;
Camera camera;
mat4 rotMat;
} ubo;
struct SceneObject
{
vec4 objectProperties;
vec3 diffuse;
float specular;
int id;
int objectType;
};
layout (std140, binding = 2) buffer SceneObjects
{
SceneObject sceneObjects[ ];
};
void reflectRay(inout vec3 rayD, in vec3 mormal)
{
rayD = rayD + 2.0 * -dot(mormal, rayD) * mormal;
}
// Lighting =========================================================
float lightDiffuse(vec3 normal, vec3 lightDir)
{
return clamp(dot(normal, lightDir), 0.1, 1.0);
}
float lightSpecular(vec3 normal, vec3 lightDir, float specularFactor)
{
vec3 viewVec = normalize(ubo.camera.pos);
vec3 halfVec = normalize(lightDir + viewVec);
return pow(clamp(dot(normal, halfVec), 0.0, 1.0), specularFactor);
}
// Sphere ===========================================================
float sphereIntersect(in vec3 rayO, in vec3 rayD, in SceneObject sphere)
{
vec3 oc = rayO - sphere.objectProperties.xyz;
float b = 2.0 * dot(oc, rayD);
float c = dot(oc, oc) - sphere.objectProperties.w * sphere.objectProperties.w;
float h = b*b - 4.0*c;
if (h < 0.0)
{
return -1.0;
}
float t = (-b - sqrt(h)) / 2.0;
return t;
}
vec3 sphereNormal(in vec3 pos, in SceneObject sphere)
{
return (pos - sphere.objectProperties.xyz) / sphere.objectProperties.w;
}
// Plane ===========================================================
float planeIntersect(vec3 rayO, vec3 rayD, SceneObject plane)
{
float d = dot(rayD, plane.objectProperties.xyz);
if (d == 0.0)
return 0.0;
float t = -(plane.objectProperties.w + dot(rayO, plane.objectProperties.xyz)) / d;
if (t < 0.0)
return 0.0;
return t;
}
int intersect(in vec3 rayO, in vec3 rayD, inout float resT)
{
int id = -1;
float t = -1000.0f;
for (int i = 0; i < sceneObjects.length(); i++)
{
// Sphere
if (sceneObjects[i].objectType == SceneObjectTypeSphere) {
t = sphereIntersect(rayO, rayD, sceneObjects[i]);
}
// Plane
if (sceneObjects[i].objectType == SceneObjectTypePlane) {
t = planeIntersect(rayO, rayD, sceneObjects[i]);
}
if ((t > EPSILON) && (t < resT))
{
id = sceneObjects[i].id;
resT = t;
}
}
return id;
}
float calcShadow(in vec3 rayO, in vec3 rayD, in int objectId, inout float t)
{
for (int i = 0; i < sceneObjects.length(); i++)
{
if (sceneObjects[i].id == objectId)
continue;
float tLoc = MAXLEN;
// Sphere
if (sceneObjects[i].objectType == SceneObjectTypeSphere) {
tLoc = sphereIntersect(rayO, rayD, sceneObjects[i]);
}
// Plane
if (sceneObjects[i].objectType == SceneObjectTypePlane) {
tLoc = planeIntersect(rayO, rayD, sceneObjects[i]);
}
if ((tLoc > EPSILON) && (tLoc < t))
{
t = tLoc;
return SHADOW;
}
}
return 1.0;
}
vec3 fog(in float t, in vec3 color)
{
return mix(color, ubo.fogColor.rgb, clamp(sqrt(t*t)/20.0, 0.0, 1.0));
}
vec3 renderScene(inout vec3 rayO, inout vec3 rayD, inout int id)
{
vec3 color = vec3(0.0);
float t = MAXLEN;
// Get intersected object ID
int objectID = intersect(rayO, rayD, t);
if (objectID == -1)
{
return color;
}
vec3 pos = rayO + t * rayD;
vec3 lightVec = normalize(ubo.lightPos - pos);
vec3 normal;
for (int i = 0; i < sceneObjects.length(); i++)
{
if (objectID == sceneObjects[i].id) {
// Sphere
if (sceneObjects[i].objectType == SceneObjectTypeSphere) {
normal = sphereNormal(pos, sceneObjects[i]);
}
// Plane
if (sceneObjects[i].objectType == SceneObjectTypePlane) {
normal = sceneObjects[i].objectProperties.xyz;
}
// Lighting
float diffuse = lightDiffuse(normal, lightVec);
float specular = lightSpecular(normal, lightVec, sceneObjects[i].specular);
color = diffuse * sceneObjects[i].diffuse + specular;
}
}
if (id == -1)
return color;
id = objectID;
// Shadows
t = length(ubo.lightPos - pos);
color *= calcShadow(pos, lightVec, id, t);
// Fog
color = fog(t, color);
// Reflect ray for next render pass
reflectRay(rayD, normal);
rayO = pos;
return color;
}
void main()
{
ivec2 dim = imageSize(resultImage);
vec2 uv = vec2(gl_GlobalInvocationID.xy) / dim;
vec3 rayO = ubo.camera.pos;
vec3 rayD = normalize(vec3((-1.0 + 2.0 * uv) * vec2(ubo.aspectRatio, 1.0), -1.0));
// Basic color path
int id = 0;
vec3 finalColor = renderScene(rayO, rayD, id);
// Reflection
if (REFLECTIONS)
{
float reflectionStrength = REFLECTIONSTRENGTH;
for (int i = 0; i < RAYBOUNCES; i++)
{
vec3 reflectionColor = renderScene(rayO, rayD, id);
finalColor = (1.0 - reflectionStrength) * finalColor + reflectionStrength * mix(reflectionColor, finalColor, 1.0 - reflectionStrength);
reflectionStrength *= REFLECTIONFALLOFF;
}
}
imageStore(resultImage, ivec2(gl_GlobalInvocationID.xy), vec4(finalColor, 0.0));
}